ASxxxx Assemblers

and

ASLINK Relocating Linker

Version 5.40
March 2021

CHAPTER

PRRPRRPRRPRRPRPRPRPRRPRRPRPRPRPRPRPRPRRPRPRPRPRPRPRRPRPRPRPRPRPRPRRPREPREPREPRPRPRRPRRPRREPREPREPRERPRRRERRERERR
ArRAPADMMDPMDMDMNAMAADADMNDMNDMNDAPADADMNDDMDASADADMDDMDAEAALADMNDDNWWOWWWWWWNNNNNNRERRREER

1
.2
3

CoO~NOOUA~WNE

RPRRRPR

~N~NoOUA~WNE

Table Of Contents

1 THE ASSEMBLER
THE ASXXXX ASSEMBLERS
Assembly Pass 1
Assembly Pass 2
Assembly Pass 3
SOURCE PROGRAM FORMAT
Statement Format
Label Field
Operator Field

-1
.2
-3 Operand Field
-4

Comment Field

SYMBOLS AND EXPRESSIONS
Character Set
User-Defined Symbols
Reusable Symbols
Current Location Counter
Numbers
Terms
Expressions

GENERAL ASSEMBLER DIRECTIVES
-.modulle Directive
.title Directive
.sbttl Directive
.list and .nlist Directives
.page Directive
.msg Directive
.error Directive
.byte, .db, and .fcb Directives
.word, .dw, and .fdb Directives
.3byte and .triple Directives
.4byte and .quad Directive

.blkb, .ds, .rmb, and .rs Directives
.blkw, .blk3, and .blk4 Directives
.ascii, .str, and .fcc Directives
.ascis and .strs Directives

.asciz and .strz Directives

.assume Directive

.radix Directive

.even Directive

.odd Directive

.bndry Directive

.area Directive

.bank Directive

.org Directive

.globl Directive

.local Directive

.equ, -gblequ, and .lIclequ Directives
.if, .else, and .endif Directives
ifFF, _ift, and .iftf Directives
.1Txx Directives

R e e e e

|
NPN~NNODOPRWWWNNER

CH

NNNNNPNONNDNNNDNDNDNNNNNNNNDNDNNN >
~NOOUUIORArBRARRARADMNWWWWWWWNRRERREAH

RPRRPRRPRRPRRPRRPRPRPRPRPRRPRRPRREPREPRPRPRRRRRERRERR
PrOoO~NOODRDMNDMADAMNDMNDIMDIMDIMAADMDMDMDMDAAD

P

.31
.32
.33
.34
.35
.36
.37
.38
-39
.40
.40.
.40.
.41
.42
.43
.44
.45
.46

ER 2

OO hWNPE WN P

A WNPEP

N

.i1fdef Directive
.i1fndef Directive
.i1Tfb Directive
.i1fnb Directive
.i1fidn Directive
.ifdif Directive
Alternate .if Directive Forms
Immediate Conditional Assembly Directives
.incbin Directive
.include Directive
Including Files In Windows/DOS
Including Files in Linux
.define and .undefine Directives
.setdp Directive
.16bit, .24bit, and .32bit Directives
.msb Directive
.lohi and .hilo Directives
.end Directive
INVOKING ASXXXX
ERRORS
LISTING FILE
SYMBOL TABLE FILE
OBJECT FILE
HINT FILE

THE MACRO PROCESSOR

DEFINING MACROS
.macro Directive
.endm Directive
-.mexit Directive

CALLING MACROS

ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS
Macro Nesting
Special Characters In Macro Arguments
Passing Numerical Arguments as Symbols
Number of Arguments in Macro Calls
Creating Local Symbols Automatically
Concatenation of Macro Arguments

MACRO ATTRIBUTE DIRECTIVES
.narg Directive
.nchr Directive
-.ntyp Directive
.nval Directive

INDEFINITE REPEAT BLOCK DIRECTIVES
-irp Directive
-.irpc Directive

REPEAT BLOCK DIRECTIVE
.rept Directive

MACRO DELETION DIRECTIVE

Page

N~NOoOWNOON~NOOOPPRWNPOONOOA,WNEO

R D 2 2 S e e e
| AL o000 oMM DIMNDIAMDMNDMNDAW

I\)NI\JI\)II\)I\JI\)I\)I\)I\JI\)I\)
NOOWOO~NOOUPLPWWNEER

CH

O
I
INGININGy~

WWWWWWWwWwWwWwWwwWwWwwWwWwwWwWwwWwwWwwWwwWwwWwwWwwWwWwwWwWwwWwwWwwwwwww X

NNNNNNN
PR ERER OO0~
ROOO '

P

T

wN -

OCO~NOOOOOOOOOOOOOOO TN oToTahrhwWNE -

E

OCoO~NOUhAWNE

=

N

R 3

el
N~ O

POOO~NOOTAWNEPE

Py
N

.mdelete Directive
MACRO INVOCATION DETAILS
CONTROLLING MACRO LISTINGS
BUILDING A MACRO LIBRARY

.mlib Macro Directive

.mcall Macro Directive
EXAMPLE MACRO CROSS ASSEMBLERS

THE LINKER
ASLINK RELOCATING LINKER
INVOKING ASLINK
LIBRARY PATH(S) AND FILE(S)
ASLINK PROCESSING
ASXXXX VERSION 5.XX (4.XX) LINKING
Object Module Format
Header Line
Module Line
Merge Mode Line
Bank Line
Area Line
Symbol Line
T Line
R Line
P Line
24-Bit and 32-Bit Addressing
ASlink V5.xx (V4.xx) Error Messages
ASXXXX VERSION 3.XX LINKING
Object Module Format
Header Line
Module Line
Area Line
Symbol Line
T Line
R Line
P Line
24-Bit and 32-Bit Addressing
ASlink V3.xx Error Messages
HINT FILE FORMAT FOR RELOCATED LISTINGS
INTEL IHX OUTPUT FORMAT (16-BIT)
INTEL 186 OUTPUT FORMAT (24 OR 32-BIT)
MOTOROLA S1-S9 OUTPUT FORMAT (16-BIT)
MOTOROLA S2-S8 OUTPUT FORMAT (24-BIT)
MOTOROLA S3-S7 OUTPUT FORMAT (32-BIT)
TANDY COLOR COMPUTER DISK BASIC FORMAT

BUILDING ASXXXX AND ASLINK

BUILDING ASXXXX AND ASLINK WITH LINUX
BUILDING ASXXXX AND ASLINK WITH CYGWIN
BUILDING ASXXXX AND ASLINK WITH DJGPP

EENN AN

EENN AN

AbhD
ahbh b

AbhD AbhD AbhD
(NG N

AbhD

AbhD

4
4.
4.13

N -

N -

N -

N

.10.
.10.
211

11,
211,
.12

.12.

12.

N - N -

N -

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

BUILDING ASXXXX AND ASLINK
TURBO C++ 3.0
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
MS VISUAL C++ 6.0
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
MS VISUAL STUDIO 2005
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
MS VISUAL STUDIO 2010
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
MS VISUAL STUDIO 2013
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
MS VISUAL STUDIO 2015
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
MS VISUAL STUDIO 2019
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
OPEN WATCOM V1.9
Graphical User Interface
Command Line Interface
BUILDING ASXXXX AND ASLINK
SYMANTEC C/C++ V7.2
Graphical User Interface
Command Line Interface

WITH BORLAND"S

WITH

WITH

WITH

WITH

WITH

WITH

WITH

WITH

THE _CLEAN.BAT AND _PREP.BAT FILES

A ASXSCN LISTING FILE SCANNER

B

C

D

ASXCNV LISTING CONVERTER

S190S9 CONVERSION UTILITY

RELEASE NOTES

CONTRIBUTORS

Page 1v

-b-l|>-l>
DD

-b-l|>-l>
o1 o1 O

T
(o)l e)Ne)}

RS
0o~ ~

4-11
4-11
4-11

4-12
4-12
4-12
4-13
4-14
4-14
4-15

A-1

B-1

D-1

E-1

Page v

APPENDIX F NOTES AND TIPS F-1

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

AB
AC
AD
AE
AF
AG
AH
Al
AJ
AK
AL
AM
AN
AO
AP
AQ
AR
AS
AT
AU
AV
AW

AX

-—-— Assembler Appendices ----

ASCHECK ASSEMBLER
AS1802 ASSEMBLER

AS2650 ASSEMBLER

AS430 ASSEMBLER

AS6100 ASSEMBLER
AS61860 ASSEMBLER
AS6500 ASSEMBLER

AS6800 ASSEMBLER

AS6801 ASSEMBLER

AS6804 ASSEMBLER
AS68(HC)05 ASSEMBLER
AS68(HC[S])08 ASSEMBLER
AS6809 ASSEMBLER

AS6811 ASSEMBLER
AS68(HC[S])12 ASSEMBLER
AS6816 ASSEMBLER

AS740 ASSEMBLER

AS78KO ASSEMBLER
AS78KOS ASSEMBLER
AS8008 ASSEMBLER
AS8008S ASSEMBLER
AS8048 ASSEMBLER

AS8051 ASSEMBLER

AS8085 ASSEMBLER

AA-1
AB-1
AC-1
AD-1
AE-1
AF-1
AG-1
AH-1
Al-1
AJ-1
AK-1
AL-1
AM-1
AN-1
AO-1
AP-1
AQ-1
AR-1
AS-1
AT-1
AU-1
AV-1
AW-1

AX-1

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

APPENDIX

AY
AZ
BA
BB
BC
BD
BE
BF
BG
BH
Bl
BJ
BK
BL
BM
BN
BO

BP

BQ

AS89LP ASSEMBLER

AS8X300 ASSEMBLER

AS8XCXXX ASSEMBLER

ASAVR ASSEMBLER

ASEZ80 ASSEMBLER

ASF2MC8 ASSEMBLER

ASF8 ASSEMBLER

ASGB ASSEMBLER

ASH8 ASSEMBLER

ASM8C ASSEMBLER

ASPIC ASSEMBLER

ASRAB ASSEMBLER

ASSCMP ASSEMBLER

ASST6 ASSEMBLER

ASST7 ASSEMBLER

ASST8 ASSEMBLER

ASZ8 ASSEMBLER

ASZ80 ASSEMBLER

ASZ280 ASSEMBLER

———— Link To The Assemblers Index ----

Page v

AY-1
AZ-1
BA-1
BB-1
BC-1
BD-1
BE-1
BF-1
BG-1
BH-1
BI-1
BJ-1
BK-1
BL-1
BM-1
BN-1
BO-1
BP-1

BQ-1

PREFACE

The ASxxxx assemblers were written following the style of
several unfinished cross assemblers found in the Digital Equip-
ment Corporation Users Society (DECUS) distribution of the C
programming language. The incomplete DECUS code was provided
with no documentation as to the iInput syntax or the output
format. 1 wish to thank the author for inspiring me to begin
the development of this set of assemblers.

The ASLINK program was written as a companion to the ASxxxx
assemblers, its design and implementation was not derived from
any other work.

I would greatly appreciate receiving the details of any
changes, additions, or errors pertaining to these programs and
will attempt to 1i1ncorporate any Tixes or generally useful
changes In a future update to these programs.

Alan R. Baldwin

Kent State University
Physics Department
Kent, Ohio 44242
U.S.A.

http://shop-pdp.net
baldwin@shop-pdp.net
baldwin@kent.edu

tel: (330) 672 2531
fax: (330) 672 2959

Page 2

END USER LICENSE AGREEMENT

Copyright (C) 1989-2021 Alan R. Baldwin

This program 1i1s free software: you can redistribute i1t
and/or modify it under the terms of the GNU General Public
License as published by the Free Software Foundation, either
version 3 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be use-
ful, but WITHOUT ANY WARRANTY; without even the implied war-
ranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
See the GNU General Public License for more details.

You should have received a copy of the GNU General Public
License along with this program. It not, see
<http://www.gnu.org/licenses/>.

Page 3

ASxxxx Cross Assemblers, Version 5.40, March 2021

Submitted by Alan R. Baldwin,
Kent State University, Kent, Ohio

Operating System: Linux, Windows, MS-DOS
or other supporting ANSI C.

Source Language: C
Abstract:

The ASxxxx assemblers are a series of microprocessor assem-
blers written In the C programming language. This collection
contains cross assemblers for the 1802, S2650, SC/MP, MPS430,
6100, 61860, 6500, 6800(6802/6808), 6801(6803/HD6303), 6804,
6805, 68HC(S)08, 6809, 68HC11, 68HC(S)12, 68HC16, 740, 78K/0,
78K/0S, 8008, 8008S, 8048(8041/8022/8021), 8051, 8085(8080),
AT89LP, 8X300(8X305), DS8XCXXX, AVR, EzZ80, F2MC8L/FX, F8/3870,
GameBoy(Z80), H8/3xx, Cypress PSoC(M8C), PIC, Rabbit 2000/3000,
ST6, ST7, ST8, Z8, Z80(HD64180), and Z280 series microproces-
sors. Each assembler has a device specific section which
includes: (1) device description, byte order, and file exten-
sion information, (2) a table of assembler general directives,
special directives, assembler mnemonics and associated operation
codes, (3) machine specific code for processing the device
mnemonics, addressing modes, and special directives.

The assemblers have a common device independent section which
handles the details of file iInput/output, symbol table genera-
tion, program/data areas, expression analysis, and assembler
directive processing.

The assemblers provide the following features: (1) alpha-
betized, formatted symbol table listings, (2) relocatable object
modulles, (3) global symbols for linking object modules, (4) con-
ditional assembly directives, (5) reusable Ilocal symbols, (6)
include-file processing, and (7) a general macro processing
facility.

The companion program ASLINK is a relocating linker perform-
ing the following functions: (1) bind multiple object modules
into a single memory 1image, (2) resolve inter-module symbol
references, (3) resolve undefined symbols from specified
librarys of object modules, (4) process absolute, relative, con-
catenated, and overlay attributes iIn data and program sections,
(5) perform byte and word program-counter relative (pc or pcr)
addressing calculations, (6) define absolute symbol values at
link time, (7) define absolute area base address values at link

Page 4

time, (8) produce an Intel Hex record, Motorola S vrecord or
Tandy CoCo Disk Basic output Tile, (9) produce a map of the
linked memory image, and (10) update the ASxxxx assembler list-
ing files with the absolute linked addresses and data.

The assemblers and Ulinker have been tested using Linux and
DJGPP, Cygwin, Symantec C/C++ V7.2, Borland Turbo C++ 3.0, Open
Watcom V1.9, VC6, Visual Studio 2005, 2010, 2013, 2015, 2019.
Complete source code and documentation for the assemblers and
linker 1i1s included with the distribution. Additionally, test
code for each assembler and several microprocessor monitors (
ASSISTO5 for the 6805, MONDEB and ASSIST09 for the 6809, BUFFALO
2.5 for the 6811, and MONDEB for 8051 / AT89LP series) are in-
cluded as working examples of use of these assemblers.

CHAPTER 1

THE ASSEMBLER

1.1 THE ASXXXX ASSEMBLERS

The ASxxxx assemblers are a series of microprocessor assem-
blers written In the C programming language. Each assembler has
a device specific section which includes:

1. device description, byte order, and file extension iIn-
formation

2. a table of the assembler general directives, special
device directives, assembler mnemonics and associated
operation codes

3. machine specific code for processing the device mnemon-
ics, addressing modes, and special directives

The device specific information is detailed in the appendices.
The assemblers have a common device independent section which
handles the details of file input/output, symbol table genera-
tion, program/data areas, expression analysis, and assembler
directive processing.
The assemblers provide the following features:
1. Command string control of assembly functions

2. Alphabetized, formatted symbol table listing

3. Relocatable object modules

THE ASSEMBLER PAGE 1-2
THE ASXXXX ASSEMBLERS

4. Global symbols for linking object modules
5. Conditional assembly directives

6. Program sectioning directives

ASxxxx assembles one or more source files iInto a single relo-
catable ascii object file. The output of the ASxxxx assemblers
consists of an ascii relocatable object file(*.rel), an assembly
listing file(*.Ist), and a symbol file(*.sym) each controlled by
an assembler option. |If both the object and listing files are
specified then a listing to relocated listing hint file (.hlr)
IS created as a helper for the linker to properly create the
relocated listing file.

1.1.1 Assembly Pass 1

During pass 1, ASxxxx opens all source files and performs a
rudimentary assembly of each source statement. During this pro-
cess all symbol tables are built, program sections defined, and
number of bytes for each assembled source line is estimated.

At the end of pass 1 all undefined symbols may be made global
(external) using the ASxxxx switch -g, otherwise undefined sym-
bols will be flagged as errors during succeeding passes.

1.1.2 Assembly Pass 2

During pass 2 the ASxxxx assembler resolves forward refer-
ences and determines the number of bytes for each assembled
line. The number of bytes used by a particular assembler in-
struction may depend upon the addressing mode, whether the 1in-
struction allows multiple forms based upon the relative distance
to the addressed location, or other factors. Pass 2 resolves
these cases and determines the address of all symbols.

THE ASSEMBLER PAGE 1-3
THE ASXXXX ASSEMBLERS

1.1.3 Assembly Pass 3

Pass 3 by the assembler generates the listing file, the relo-
catable output file, the listing to relocated listing hint file,
and the symbol tables. Also during pass 3 the errors will be
reported.

The relocatable object file is an ascii file containing sym-
bol references and definitions, program area definitions, and
the relocatable assembled code, the linker ASLINK will use this
information to generate an absolute load file (Intel, Motorola
or Tandy CoCo Disk Basic formats).

1.2 SOURCE PROGRAM FORMAT

1.2.1 Statement Format

A source program is composed of assembly-language statements.
Each statement must be completed on one line. A line may con-
tain a maximum of 128 characters, longer lines are truncated and
lost.

An ASxxxx assembler statement may have as many as four
fields. These fields are i1dentified by their order within the
statement and/or by separating characters between fields. The
general format of the ASxxxx statement is:

[label:] Operator Operand [;Comment(s)]

The label and comment fields are optional. The operator and
operand fields are interdependent. The operator field may be an
assembler directive or an assembly mnemonic. The operand field
may be optional or required as defined Iin the context of the
operator.

ASxxxX interprets and processes source statements one at a
time. Each statement causes a particular operation to be per-
formed.

THE ASSEMBLER PAGE 1-4
SOURCE PROGRAM FORMAT

1.2.1.1 Label Field -

A label i1s a user-defined symbol which iIs assigned the value
of the current location counter and entered into the user de-
fined symbol table. The current location counter is used by
ASxxxx to assign memory addresses to the source program state-
ments as they are encountered during the assembly process. Thus
a label i1s a means of symbolically referring to a specific
statement.

When a program section is absolute, the value of the current
location counter is absolute; 1its value references an absolute
memory address. Similarly, when a program section is relocat-
able, the value of the current location counter i1Is relocatable.
A relocation bias calculated at link time is added to the ap-
parent value of the current location counter to establish 1its
effective absolute address at execution time. (The user can
also force the linker to relocate sections defined as absolute.
This may be required under special circumstances.)

IT present, a label must be the first Tield iIn a source
statement and must be terminated by a colon (:). For example,
if the value of the current Ilocation counter 1is absolute
O1FO(H), the statement:

abcd: nop

assigns the value O01FO(H) to the label abcd. I1If the location
counter value were relocatable, the final value of abcd would be
O1FO(H)+K, where K represents the relocation bias of the program
section, as calculated by the linker at link time.

More than one label may appear within a single label field.
Each label so specified is assigned the same address value. For
example, i1f the value of the current Ilocation counter is
1FFO(H), the multiple labels in the following statement are each
assigned the value 1FFO(H):

abcd: aq: $abc: nop

Multiple labels may also appear on successive lines. For ex-
ample, the statements

abcd:

ag:
$abc: nop

likewise cause the same value to be assigned to all three la-
bels.

THE ASSEMBLER PAGE 1-5
SOURCE PROGRAM FORMAT

A double colon (::) defines the label as a global symbol.
For example, the statement

abcd: : nop

establishes the label abcd as a global symbol. The distinguish-
ing attribute of a global symbol is that it can be referenced
from within an object module other than the module in which the
symbol i1s defined. References to this label in other modules
are resolved when the modules are linked as a composite execut-
able image.

The legal characters for defining labels are:

A through Z

a through z

0 through 9
(Period)

$ (Dollar sign)

_ (underscore)

A label may be any length, however only the Tfirst 79
characters are significant and, therefore must be unique among
all labels in the source program (not necessarily among separa-
tely compiled modules). An error code(s) (<m> or <p>) will be
generated 1In the assembly listing 1If the first 79 characters in
two or more labels are the same. The <m> code is caused by the
redeclaration of the symbol or its reference by another state-
ment. The <p> code is generated because the symbols location is
changing on each pass through the source file.

The label must not start with the characters 0-9, as this
designates a reusable symbol with special attributes described
in a later section.

The label must not start with the sequence $$, as this
represents the temporary radix 16 for constants.

THE ASSEMBLER PAGE 1-6
SOURCE PROGRAM FORMAT

1.2.1.2 Operator Field -

The operator field specifies the action to be performed. It
may consist of an instruction mnemonic (op code) or an assembler
directive.

When the operator Is an instruction mnemonic, a machine in-
struction is generated and the assembler evaluates the addresses
of the operands which follow. When the operator is a directive
ASxxxx performs certain control actions or processing operations
during assembly of the source program.

Leading and trailing spaces or tabs iIn the operator field
have no significance; such characters serve only to separate
the operator field from the preceeding and following fields.

An operator is terminated by a space, tab or end of line.

1.2.1.3 Operand Field -

When the operator is an instruction mnemonic (op code), the
operand Tfield contains program variables that are to be
evaluated/manipulated by the operator.

Operands may be expressions or symbols, depending on the
operator. Multiple expressions used in the operand Tfields may
be separated by a comma. An operand should be preceeded by an
operator fTield; 1i1f it is not, the statement will give an error
(<g> or <o0>). All operands following iInstruction mnemonics are
treated as expressions.

The operand field i1s terminated by a semicolon when the field

is followed by a comment. For example, 1in the following
statement:
label: Ida abcd, x ;Comment field

the tab between lda and abcd terminates the operator field and
defines the beginning of the operand field; a comma separates
the operands abcd and x; and a semicolon terminates the operand
field and defines the beginning of the comment field. When no
comment field Tfollows, the operand field is terminated by the
end of the source line.

THE ASSEMBLER PAGE 1-7
SOURCE PROGRAM FORMAT

1.2.1.4 Comment Field -

The comment field begins with a semicolon and extends through
the end of the line. This field is optional and may contain any
7-bit ascii character except null.

Comments do not affect assembly processing or program execu-
tion.

1.3 SYMBOLS AND EXPRESSIONS

This section describes the generic components of the ASxxxx
assemblers: the character set, the conventions observed in con-
structing symbols, and the use of numbers, operators, and ex-
pressions.

1.3.1 Character Set

The following characters are legal In ASXXXX source programs:

1. The letters A through Z. Both upper- and lower-case
letters are acceptable. The assemblers, by default,
are case sensitive, i.e. ABCD and abcd are not the
same symbols. (The assemblers can be made case insen-
sitive by using the -z command line option.)

2. The digits 0 through 9

3. The characters . (period), $ (dollar sign), and _ (un-
derscore).

4. The special characters listed in Tables 1 through 6.
Tables 1 through 6 describe the various ASxxxx label and

field terminators, assignment operators, operand separators, as-
sembly, unary, binary, and radix operators.

THE ASSEMBLER PAGE 1-8
SYMBOLS AND EXPRESSIONS

Table 1 Label Terminators and Assignment Operators
Colon Label terminator.
Double colon Label Terminator; defines the

label as a global label.

= Equal sign Direct assignment operator.
== Global equal Direct assignment operator; de-
fines the symbol as a global
symbol.
=: Local equal Direct assignment operator; de-
fines the symbol as a local sym-
bol.
Table 2 Field Terminators and Operand Separators
Tab Item or field terminator.
Space Item or field terminator.
, Comma Operand field separator.

: Semicolon Comment field indicator.

THE ASSEMBLER
SYMBOLS AND EXPRESSIONS

PAGE 1-9

Table 3 Assembler Operators

Number sign

Period

(Left parenthesis

) Right parenthesis

Immediate expression indicator.
Current location counter.
Expression delimiter.

Expression delimiter.

Table 4 Unary Operators

< Left bracket

> Right bracket

+ Plus sign

- Minus sign

~ Tilde

- Single quote

Double quote

\ Backslash

<FEDC Produces the lower byte
value of the expression.

(0C)

>FEDC Produces the upper byte
value of the expression.

(FE)
+A Positive value of A
-A Produces the negative

(2°s complement) of A.

~A Produces the 1°s comple-
ment of A.
D Produces the value of

the character D.

"AB Produces the double byte
value for AB.

“\n Unix style characters
\b, \f, \n, \r, \t
*\001 or octal byte values.

THE ASSEMBLER
SYMBOLS AND EXPRESSIONS

Table 5

Binary Operators

PAGE 1-10

<< Double
Left bracket

>> Double
Right bracket

+ Plus sign

- Minus sign

* Asterisk

/ Slash

& Ampersand
| Bar
% Percent sign

N Up arrow or
circumflex

0800 << 4

0800 >> 4

Produces the 4 bit
left-shifted value of
0800. (8000)

Produces the 4 bit
right-shifted value of

0800. (0080)

Arithmetic Addition
operator.

Arithmetic Subtraction
operator.

Arithmetic Multiplica-

tion operator.

Arithmetic Division

operator.

Logical AND operator.
Logical OR operator.
Modulus operator.

EXCLUSIVE OR operator.

THE ASSEMBLER PAGE 1-11

SYMBOLS

Table 6

AND EXPRESSIONS

Temporary Radix Operators

$%, Ob, OB Binary radix operator.
$&, Oo, 00, 0Oq, 0Q Octal radix operator.
$#, 0d, 0D Decimal radix operator.

$$, Oh, OH, Ox, OX Hexadecimal radix operator.

Potential ambiguities arising from the use of Ob and 0Od
as temporary radix operators may be circumvented by pre-
ceding all non-prefixed hexadecimal numbers with 00.
Leading O"s are required iIn any case where the TFfirst
hexadecimal digit is abcdef as the assembler will treat
the letter sequence as a label.

1.3.2 User-Defined Symbols

User-

defined symbols are those symbols that are equated to a

specific value through a direct assignment statement or appear
as labels. These symbols are added to the User Symbol Table as
they are encountered during assembly.

The following rules govern the creation of user-defined symbols:

1.

Symbols can be composed of alphanumeric characters,
dollar signs ($), periods (.), and underscores ()
only.

The Ffirst character of a symbol must not be a number
(except in the case of reusable symbols).

The Tirst 79 characters of a symbol must be unique. A
symbol can be written with more than 79 legal
characters, but the 80th and subsequent characters are
ignored.

THE ASSEMBLER PAGE 1-12
SYMBOLS AND EXPRESSIONS

4_. Spaces and Tabs must not be embedded within a symbol.

1.3.3 Reusable Symbols

Reusable symbols are specially formatted symbols used as la-
bels within a block of coding that has been delimited as a reus-
able symbol block. Reusable symbols are of the form n$, where n
is a decimal integer from O to 65535, inclusive. Examples of
reusable symbols are:

1%
27%
138%
244%

The range of a reusable symbol block consists of those state-
ments between two normally constructed symbolic labels. Note
that a statement of the form:

ALPHA = EXPRESSION

iIs a direct assignment statement but does not create a label and
thus does not delimit the range of a reusable symbol block.

Note that the range of a reusable symbol block may extend
across program areas.

Reusable symbols provide a convenient means of generating la-
bels for branch instructions and other such references within
reusable symbol blocks. Using reusable symbols reduces the pos-
sibility of symbols with multiple definitions appearing within a
user program. In addition, the use of reusable symbols dif-
ferentiates entry-point labels from other labels, since reusable
labels cannot be referenced from outside their respective symbol
blocks. Thus, reusable symbols of the same name can appear 1In
other symbol blocks without conflict. Reusable symbols require
less symbol table space than normal symbols. Their wuse is
recommended.

The wuse of the same reusable symbol within a symbol block
will generate one or both of the <m> or <p> errors.

THE ASSEMBLER PAGE 1-13
SYMBOLS AND EXPRESSIONS

Example of reusable symbols:

a: ldx #atable ;get table address
lda #0d48 ;table length

1$: clr , X+ ;clear
deca
bne 1%

b: 1dx #btable ;get table address
lda #0d48 ;table length

1%$: clr , X+ ;clear
deca
bne 1%

1.3.4 Current Location Counter

The period (.) is the symbol for the current location coun-
ter. When used in the operand field of an instruction, the
period represents the address of the Tirst byte of the
instruction:

AS: 1dx #. ;The period (.) refers to
;the address of the ldx
;instruction.

When wused 1in the operand field of an ASxxxx directive, it
represents the address of the current byte or word:

QK = 0

-word OXFFFE, .+4,0K ;The operand .+4 in the .word
;directive represents a value
;stored in the second of the
;three words during assembly.

IT we assume the -current value of the program counter is
OHO200, then during assembly, ASxxxx reserves three words of
storage starting at location OHO200. The first value, a hex-
adecimal constant FFFE, will be stored at location OHO200. The
second value represented by .+4 will be stored at location
OH0202, its value will be OH0206 (= OH0202 + 4). The third
value defined by the symbol QK will be placed at location
OHO0204.

At the beginning of each assembly pass, ASxxxx resets the lo-
cation counter. Normally, consecutive memory Hlocations are
assigned to each byte of object code generated. However, the

THE ASSEMBLER PAGE 1-14
SYMBOLS AND EXPRESSIONS

value of the location counter can be changed through a direct
assignment statement of the following form:

. = . + expression

The new Jlocation counter can only be specified relative to
the current location counter. Neglecting to specify the current
program counter along with the expression on the right side of
the assignment operator will generate the <.> error. (Absolute
program areas may use the .org directive to specify the absolute
location of the current program counter.)

The following coding illustrates the use of the current location
counter:

.area CODE1l (ABS) ;program area CODE1l
;1S ABSOLUTE

.org OH100 ;set location to
;OH100 absolute

numl: 1dx #.+0H10 :The label numl has
;the value OH100.
;X 1s loaded with
;OH100 + OH10

.org OH130 ;location counter
;set to OH130

num2: Idy #. ;The label num2 has
;the value OH130.
;Y 1s loaded with
;value OH130.

.area CODEZ2 (REL) ;program area CODE2
;1S RELOCATABLE

. = . + 0OH20 ;:Set location counter
;to relocatable 0OH20 of
;the program section.

num3: -word 0 :The label num3 has
;the value
;ofF relocatable 0H20.

. = . + 0H40 ;will reserve 0H40
;bytes of storage as will

THE ASSEMBLER PAGE 1-15
SYMBOLS AND EXPRESSIONS

_blkb OH40 ;or
_blkw OH20

The _.blkb and .blkw directives are the preferred methods of
allocating space.

1.3.5 Numbers

ASxxxx assumes that all numbers iIn the source program are to
be interpreted in decimal radix unless otherwise specified. The
.radix directive may be used to specify the default as octal,
decimal, or hexadecimal. |Individual numbers can be designated
as binary, octal, decimal, or hexadecimal through the temporary
radix prefixes shown in table 6.

Negative numbers must be preceeded by a minus sign; ASXXXX
translates such numbers into two"s complement form. Positive
numbers may (but need not) be preceeded by a plus sign.

Numbers are always considered to be absolute values, therefor
they are never relocatable.

1.3.6 Terms

A term is a component of an expression and may be one of the
following:

1. A number.

2. A symbol:
1. A period (.) specified in an expression causes the
current location counter to be used.
2 A User-defined symbol.
3. An undefined symbol is assigned a value of zero and
inserted iIn the User-Defined symbol table as an un-
defined symbol.

3. A single quote followed by a single ascii character, or
a double quote followed by two ascii characters.

4. An expression enclosed in parenthesis. Any expression
so enclosed is evaluated and reduced to a single term
before the remainder of the expression in which it
appears i1s evaluated. Parenthesis, for example, may be

THE ASSEMBLER PAGE 1-16
SYMBOLS AND EXPRESSIONS

used to alter the left-to-right evaluation of expres-
sions, (as in A*B+C versus A*(B+C)), or to apply a un-
ary operator to an entire expression (as in -(A+B)).

5. A unary operator followed by a symbol or number.

1.3.7 Expressions

Expressions are combinations of terms joined together by
binary operators. Expressions reduce to a value. The evalua-
tion of an expression includes the determination of i1ts attri-
butes. A resultant expression value may be one of three types
(as described later in this section): relocatable, absolute,
and external.

Expressions are evaluate with an operand hierarchy as follows:
* / % multiplication,
division, and

modulus first.

+ - addition and
subtraction second.

<< >> left shift and

right shift third.
N exclusive or fourth.
& logical and fifth.

| logical or last

except that unary operators take precedence over binary
operators.

A missing or 1illegal operator terminates the expression
analysis, causing error codes <o> and/or <g> to be generated
depending upon the context of the expression itself.

At assembly time the value of an external (global) expression
is equal to the value of the absolute part of that expression.
For example, the expression external+4, where "external”® is an
external symbol, has the value of 4. This expression, however,

THE ASSEMBLER PAGE 1-17
SYMBOLS AND EXPRESSIONS

when evaluated at link time takes on the resolved value of the
symbol "external®, plus 4.

Expressions, when evaluated by ASxxxx, are one of three
types: relocatable, absolute, or external. The following dis-
tinctions are important:

1. An expression is relocatable if its value i1s fixed re-
lative to the base address of the program area in which
it appears; it will have an offset value added at link
time. Terms that contain labels defined in relocatable
program areas will have a relocatable value; simi-
larly, a period (.) iIn a relocatable program area,
representing the value of the current program location
counter, will also have a relocatable value.

2. An expression 1s absolute i1f 1ts value is fixed. An
expression whose terms are numbers and asciil characters
will reduce to an absolute value. A relocatable ex-
pression or term minus a relocatable term, where both
elements being evaluated belong to the same program
area, Is an absolute expression. This IS because every
term In a program area has the same relocation bias.
When one term is subtracted from the other the reloca-
tion bias i1s zero.

3. An expression is external (or global) if it contains a
single global reference (plus or minus an absolute ex-
pression value) that is not defined within the current
program. Thus, an external expression 1i1s only par-
tially defined following assembly and must be resolved
at link time.

1.4 GENERAL ASSEMBLER DIRECTIVES

An ASxxxx directive is placed in the operator field of the
source line. Only one directive is allowed per source line.
Each directive may have a blank operand field or one or more
operands. Legal operands differ with each directive.

THE ASSEMBLER PAGE 1-18
GENERAL ASSEMBLER DIRECTIVES

1.4.1 _modulle Directive
Format:
-.module name

The _.module directive causes the name to be included in the
assemblers output file as an identifier for this particular ob-
ject module. The name may be from 1 to 79 characters in length.
The name may not have any embedded white space (spaces or tabs).
Only one 1identifier is allowed per assembled module. The main
use of this directive 1i1s to allow the [Hlinker to report a
modules®™ use of undefined symbols. At link time all undefined
symbols are reported and the modules referencing them are
listed.

1.4.2 _title Directive
Format:
.title string
The .title directive provides a character string to be placed
on the second line of each page during listing. The string be-
gins with the first non white space character (after any space
or tab) and ends with the end of the line.
1.4.3 _sbttl Directive
Format:
.sbttl string
The .sbttl directive provides a character string to be placed
on the third line of each page during listing. The string be-

gins with the first non white space character (after any space
or tab) and ends with the end of the line.

THE ASSEMBLER PAGE 1-19
GENERAL ASSEMBLER DIRECTIVES

1.4.4 _list and .nlist Directives

Format:
list ;Basic .list
.list expr ;with expression
.list (argl,arg2,...,argn) ;with sublist options
.nlist ;Basic .nlist
-.nlist expr ;with expression
.nlist (argl,arg2,...,argn) ;with sublist options

The _list and .nlist directives control the listing output to

the .Ist file. The directives have the following sublist
options:

err - errors

loc - program location

bin - binary output

eqt - symbol or .if evaluation

cyc - opcode cycle count

lin - source line number

src - source line text

pag - pagination

Ist - .list/._nlist line listing

md - macro definition listing

me - macro expansion listing

meb - macro expansion binary listing

! - sets the listing mode to

1(.list) or !'(.nlist) before
applying the sublist options

The “normal® listing mode .list is the combination of err, loc,
bin, eqt, cyc, lin, src, pag, Ist, and md enabled with me and
meb disabled. The "normal® listing mode .nlist has all sublist
items disabled. When specifying sublist options the option list
must be enclosed within parenthesis and multiple options
separated by commas.

The NOT option, !, is used to set the listing mode to the op-
posite of the .list or _.nlist directive before applying the
sublist options. For example:

THE ASSEMBLER PAGE 1-20
GENERAL ASSEMBLER DIRECTIVES

.nlist (1) i1s equivalent to .list and

list (@D is equivalent to .nlist
any additional options will
be applied normally

Normal _list/.nlist processing is disabled within false con-
ditional blocks. However, the .list/.nlist with an expression
can override this behavior i1f the expression has a non zero
value.

Examples of listing options:

.list (meb) ; macro processing lists only
; generated binary and location

list (me) ; listing options are enabled
; during macro processing

-.nlist (src) ; -nlist src lines not listed
.nlist (!,Ist) ; list all except .nlist

-.nlist ; combination lists only
list (src) ; the source line

list (!',src) ; list only the source line
list 1 ; enable listing even within
; a FALSE conditional block
1.4.5 _page Directive
Format:
-page
The .page directive causes a page ejection with a new heading
to be printed. The new page occurs after the next line of the
source program is processed, this allows an immediately follow-
ing .sbttl directive to appear on the new page. The _.page

source line will not appear in the file listing. Paging may be
disabled by invoking the -p directive or by using the directive:

-.nlist (pag)

THE ASSEMBLER PAGE 1-21
GENERAL ASSEMBLER DIRECTIVES

IT the .page directive is followed by a non zero constant or
an expression that evaluates to a non zero value then pagination
will be enabled within a false condition range to allow extended
textual information to be incorporated 1in the source program
with out the need to use the comment delimiter (;):

.af 0
-page 1 ;Enable pagination within "if" block.

This text will be bypassed during assembly
but appear in the listing file.

.endif

1.4.6 .msg Directive

Format:
.msg /string/ or
.msg ~N/string/

where: string represents a text string. The string is printed
to the console during the final assembly pass.

/ 7/ represent the delimiting characters. These
delimiters may be any paired printing
characters, as Qlong as the characters are not
contained within the string itself. IT the

delimiting characters do not match, the .msg
directive will give the <g> error.

The .msg directive 1is useful to report assembly status or
other information during the assembly process.

THE ASSEMBLER PAGE 1-22
GENERAL ASSEMBLER DIRECTIVES

1.4.7 _error Directive
Format:
.error exp
where: exp represents an absolute expression. IT the
evaluation of the expression results iIn a non

zero value then an <e> error iIs reported and the
text line is listed in the generated error.

The _.error directive 1is useful to report configuration or
value errors during the assembly process. (The .error directive
is identical in function to the .assume directive, just perhaps
more descriptive.)

1.4.8 _.byte, .db, and .fcb Directives

Format:
.byte exp ;Stores the binary value
.db exp ;of the expression in the
.Tcb exp ;hext byte.
.byte expl,exp2,expn ;Stores the binary values
.db expl,exp2,expn ;of the list of expressions
.Tcb expl,exp2,expn ;iIn successive bytes.
where: exp, represent expressions that will be

expl, truncated to 8-bits of data.

. Each expression will be calculated,
the high-order byte will be truncated.

. Multiple expressions must be

expn separated by commas.

The _byte, .db, or _.fcb directives are used to generate suc-
cessive bytes of binary data in the object module.

THE ASSEMBLER PAGE 1-23
GENERAL ASSEMBLER DIRECTIVES

1.4.9 _word, .dw, and .fdb Directives

Format:
.word exp ;Stores the binary value
-dw exp ;of the expression iIn
.Fdb exp ;the next word.
.word expl,exp2,expn ;Stores the binary values
-dw expl,exp2,expn ;of the list of expressions
.Fdb expl,exp2,expn ;In successive words.
where: exp, represent expressions that will occupy two
expl, bytes of data. Each expression will be

calculated as a 16-bit word expression.
. Multiple expressions must be
expn separated by commas.

The _.word, .dw, or .fdb directives are used to generate suc-
cessive words of binary data in the object module.

1.4.10 _.3byte and .triple Directives

Format:
.3byte exp ;Stores the binary value
.triple exp ;of the expression in
;the next triple (3 bytes).
.3byte expl,exp2,expn ;Stores the binary values
.triple expl,exp2,expn ;of the list of expressions
;In successive triples
; (3 bytes).
where: exp, represent expressions that will occupy three
expl, bytes of data. Each expression will be
calculated as a 24-bit word expression.
. Multiple expressions must be
expn separated by commas.

The _3byte or _triple directive is used to generate succes-
sive triples of binary data in the object module. (These direc-
tives are only available 1In assemblers supporting 24-bit
addressing.)

THE ASSEMBLER PAGE 1-24
GENERAL ASSEMBLER DIRECTIVES

1.4.11 _4byte and .quad Directive

Format:
.4byte exp ;Stores the binary value
-quad exp ;of the expression in
;the next quad (4 bytes).
.4byte expl,exp2,expn ;Stores the binary values
-quad expl,exp2,expn ;of the list of expressions
;In successive quads
; (4 bytes).
where: exp, represent expressions that will occupy three
expl, bytes of data. Each expression will be

calculated as a 32-bit word expression.
. Multiple expressions must be
expn separated by commas.

The .4byte or .quad directive is used to generate successive
quads of binary data in the object module. (These directives
are only available In assemblers supporting 32-bit addressing.)

1.4.12 _blkb, .ds, .rmb, and .rs Directives

Format:

-blkb N ;reserve N bytes of space
.ds N ;reserve N bytes of space
.rmb N ;reserve N bytes of space
.rs N ;reserve N bytes of space

The _blkb, .ds, .rmb, and .rs directives reserve byte blocks
in the object module;

1.4.13 _blkw, _-blk3, and _.blk4 Directives

Format:
-blkw N ;reserve N words of space
-bIk3 N ;reserve N triples of space
-blk4 N ;reserve N quads of space

The .blkw directive reserves word blocks; the _.blk3 reserves
3 byte blocks(available in assemblers supporting 24-bit
addressing); the .blk4 reserves 4 byte blocks (available in
assemblers supporting 32-bit addressing).

THE ASSEMBLER

PAGE 1-25

GENERAL ASSEMBLER DIRECTIVES

1.4.14 _ascii,

Format:
.ascii
.ascili
.Tfcc
.fcc
.str

.str

where: string

/ 7/

The _.ascil,

.str, and .fcc Directives

/string/ or
~N/string/
/string/ or
~N/string/
/string/ or
~N/string/

iIs a string of printable ascii characters.

represent the delimiting characters. These
delimiters may be any paired printing
characters, as Qlong as the characters are not
contained within the string itself. IT the

delimiting characters do not match, the .ascii
directive will give the <g> error.

fcc, and .str directives place one binary byte of

data for each character in the string into the object module.

1.4.15 _ascis
Format:
.ascis
.ascis
.strs

-strs

where: string

/ 7/

and .strs Directives

/string/ or
~N/string/

/string/ or
~N/string/

iIs a string of printable asciil characters.

represent the delimiting characters. These
delimiters may Dbe any paired printing
characters, as Qlong as the characters are not
contained within the string 1itself. IT the

THE ASSEMBLER
GENERAL ASSEMBLER DIRECTIVES

PAGE 1-26

delimiting characters do not match, the .ascis
and .strs directives will give the <g> error.

The .ascis and .strs directives place one binary byte of data
for each character in the string into the object module. The
last character in the string will have the high order bit set.

1.4.16

Format:

where:

.asciz and .strz Directives

.asciz
.asciz
.strz

.strz

string

/ 7/

/string/ or

~N/string/

/string/ or

~N/string/

iIs a string of printable ascil characters.
represent the delimiting characters. These
delimiters may be any paired printing
characters, as Qlong as the characters are not
contained within the string itself. IT the

delimiting characters do not match, the .asciz
and .strz directive will give the <g> error.

The .asciz and .strz directives place one binary byte of data
for each character in the string into the object module. Fol-
all the character data a zero byte is inserted to ter-
minate the character string.

lowing

THE ASSEMBLER

PAGE 1-27

GENERAL ASSEMBLER DIRECTIVES

1.4.17 .assume Directive

Format:

.assume exp

where: exp

represents an absolute expression. IT the
evaluation of the expression results iIn a non
zero value then an <e> error iIs reported and the
text line is listed in the generated error.

The _.assume directive 1is useful to check assumptions about
assembler values. (The .assume directive is identical in func-
tion to the .error directive, just perhaps more descriptive.)

1.4.18 _radix Directive

Format:

.radix character

where: character represents a single character specifying the
default radix to be used for succeeding numbers. The
character may be any one of the following:

B,b Binary
0,0 Octal
Q.q

D,d Decimal
"blank”

,h Hexadecimal
X

THE ASSEMBLER PAGE 1-28
GENERAL ASSEMBLER DIRECTIVES
1.4.19 _even Directive
Format:
.even
The .even directive ensures that the current location counter
contains an even boundary value by adding 1 if the current loca-
tion is odd.
1.4.20 .odd Directive
Format:
.odd
The .odd directive ensures that the current location counter
contains an odd boundary value by adding one if the current Ilo-
cation is even.
1.4.21 _bndry Directive
Format:
.bndry n
IT the current location is not an integer multiple of n then
the location counter is iIncreased to the next integer multiple
of n.
As an example:

.bndry 4

changes the current location to be at a multiple of 4, a 4-byte
boundary.

The boundary specifications are propagated to the linker as a
boundary modulus, ie the smallest common boundary for all _.odd,
.even, and .bndry directives contained within the area. A boun-
dary value of 1 is equivalent to .odd and a boundary value of 2
is equivalent to .even. Because areas are always assembled with
an initial address of 0, an even address, both _.odd and .even
are modulus 2 boundaries.

As an example, suppose there are two sections: a CODE sec-
tion and a DATA section. The program code iIs written so that

THE ASSEMBLER PAGE 1-29
GENERAL ASSEMBLER DIRECTIVES

the data associated with this section of the program code fol-
lows 1mmediately.

.area CODE
; Subroutine 1 Code
; Uses data having a boundary of 6

.area DATA
; Subroutine 1 Data
.bndry 6

-word 1, 2, 3

.area CODE
; Subroutine 2 Code
; Uses data having a boundary of 8

.area DATA
; Subroutine 2 Data
.bndry 8

-word 1, 2, 3, 4,

Since the CODE and DATA sections are assembled during a sin-
gle assembly (also applies to include files) the the assembler
compiles all CODE segments as a single area segment. The assem-
bler also compiles all the DATA segments as a single area seg-
ment which has two .bndry directives and will have a boundary
modulus of 24. 24 is the smallest boundary divisible by 6 and 8
with no remainder. When the assembled file is linked the loca-
tion of the data in the DATA area will be offset to an address
which has a boundary modulus of 24.

When multiple files containing the same area names (projects
with multiple independently compiled files or library files) are
linked together each area segment will be offset to match the
segments boundary modulus.

Boundary specifications will also be preserved when an area
base address i1s specified with the -b linker option and/or the
area i1s placed within a bank.

THE ASSEMBLER PAGE 1-30
GENERAL ASSEMBLER DIRECTIVES

1.4.22 _area Directive

Format:
.area name [(options)]
where: name represents the symbolic name of the program sec-
tion. This name may be the same as any

user-defined symbol or bank as the area names
are independent of all symbols, labels, and
banks.

options specify the type of program or data area:

ABS absolute (automatically invokes OVR)
REL relocatable

OVR overlay

CON concatenate

NOPAG non-paged area

PAG paged area

options specify a code or data segment:
CSEG Code segment
DSEG Data segment

option specifies the data area bank:
BANK Named collection of areas

The .area directive provides a means of defining and separat-
ing multiple programming and data sections. The name 1s the
area label used by the assembler and the linker to collect code
from various separately assembled modules into one section. The
name may be from 1 to 79 characters in length.

The options are specified within parenthesis and separated by
commas as shown in the following example:

.area TEST (REL,CON) ;This section is relocatable
;and concatenated with other
;sections of this program area.

.area DATA (REL,OVR) ;This section is relocatable
;and overlays other sections
;of this program area.

.area SYS (ABS,0VR) ;(CON not allowed with ABS)
:This section is defined as
;absolute. Absolute sections
;are always overlaid with

THE ASSEMBLER PAGE 1-31
GENERAL ASSEMBLER DIRECTIVES

;other sections of this program
;area.

.area PAGE (PAG) ;This Is a paged section. The
;section must be on a 256 byte
;boundary and its length is
;checked by the linker to be
;no larger than 256 bytes.
;This i1s useful for direct page
;areas.

The default area type is RELJCON; 1.e. a relocatable sec-
tion which iIs concatenated with other sections of code with the
same area name. The ABS option iIndicates an absolute area. The
OVR and CON options indicate if program sections of the same
name will overlay each other (start at the same location) or be
concatenated with each other (appended to each other).

The area can be specified as either a code segment, CSEG, or
a data segment, DSEG. The CSEG and DSEG descriptors are useful
when the microprocessor code and data unit allocations are
unequal: e.g. the executable code uses an allocation of 2
bytes for each instruction and is addressed at an increment of 1
for every instruction, and the data uses an allocation of 1 byte
for each element and is addressed at an increment of 1 for each
data byte. The allocation units are defined by the architecture
of the particular microprocessor.

The .area directive also provides a means of specifying the
bank this area is associated with. All areas associated with a
particular bank are combined at [link time iInto a block of
code/data.

The CSEG, DSEG, and BANK options are specified within the
parenthesis as shown in the following examples:

.area C_SEG (CSEG, BANK=C1)

;This 1s a code section

;and is included in bank C1
.area D SEG (DSEG,BANK=D1)

;This 1Is a data section

;and 1s included in bank D1.

Multiple 1invocations of the .area directive with the same
name must specify the same options or leave the options Tield
blank, this defaults to the previously specified options for
this program area.

THE ASSEMBLER PAGE 1-32
GENERAL ASSEMBLER DIRECTIVES

The ASxxxx assemblers automatically provide two program
sections:

" CODE*" This 1s the default code/data area.
This program area Is of type
(REL,CON,CSEG).

" DATA" This 1s the default optional data area.
This program area IS of type
(REL,CON,DSEG) -

The .area names and options are never case sensitive.

1.4.23 _bank Directive
Format:
-bank name [(options)]

where: name represents the symbolic name of the bank sec-
tion. This name may be the same as any
user-defined symbol or area as the bank names
are independent of all symbols, labels, and
areas. The name may be from 1 to 79 characters
in length.

options specify the parameters of the bank:
BASE base address of bank

SIZE maximum size of bank
FSFX file suffix for this bank
MAP NOICE mapping

The _.bank directive allows an arbitrary grouping of program
and/or data areas to be communicated to the linker. The bank
parameters are all optional and are described as follows:

1. BASE, the starting address of the bank (default is 0)
may be defined. This address can be overridden by us-
ing the linker -b option for the first area within the
bank. The bank address is always specified 1iIn “byte~
addressing. A first area which 1s not "byte® addressed
(e.g- a processor addressed by a "word®™ of 2 or more
bytes) has the area address scaled to begin at the
"byte" address.

THE ASSEMBLER PAGE 1-33
GENERAL ASSEMBLER DIRECTIVES

2. SIZE, the maximum length of the bank specified iIn
bytes. The size i1s always specified in terms of bytes.

3. FSFX, the file suffix to be used by the linker for this
bank. The suffix may not contain embedded white space.

4. MAP, NOICE mapping parameter for this bank of
code/data.

The options are specified within parenthesis and separated by
commas as shown in the following example:

.BANK C1 (BASE=0x0100,S1ZE=0x1000,FSFX=_C1)
;:This bank starts at 0x0100,
;has a maximum size of 0x1000,
;and Is to be placed into
;a file with a suffix of _C1

The parameters must be absolute (external symbols are not al-
lowed.)
1.4.24 _org Directive
Format:
.org exp

where: exp IS an absolute expression that becomes the cur-
rent location counter.

The .org directive is valid only in an absolute program section
and will give a <g> error 1T used iIn a relocatable program area.
The .org directive specifies that the current location counter
iIs to become the specified absolute value.

THE ASSEMBLER PAGE 1-34
GENERAL ASSEMBLER DIRECTIVES

1.4.25 _globl Directive

Format:
-.globl syml,sym2,...,symn

where: syml, represent legal symbolic names.
sym2, ... When multiple symbols are specified,
symn they are separated by commas.

A _globl directive may also have a label field and/or a com-
ment field.

The _globl directive is provided to export (and thus provide
linkage to) symbols not otherwise defined as global symbols
within a module. In exporting global symbols the directive
-globl J 1s similar to:

J == expression or J::

Because object modules are linked by global symbols, these
symbols are vital to a program. All internal symbols appearing
within a given program must be defined at the end of pass 1 or
they will be considered undefined. The assembly directive (-9)
can be 1invoked to make all undefined symbols global at the end
of pass 1.

The .globl directive and == construct can be overridden by a
following .local directive.
NOTE
The ASxxxx assemblers use the last occurring symbol

specification in the source file(s) as the type shown
in the symbol table and output to the .rel file.

THE ASSEMBLER PAGE 1-35
GENERAL ASSEMBLER DIRECTIVES

1.4.26 _local Directive

Format:
.local syml,sym2,...,symn

where: syml, represent legal symbolic names.
sym2, ... When multiple symbols are specified,
symn they are separated by commas.

A _local directive may also have a label field and/or a com-
ment field.

The _local directive is provided to define symbols that are
local to the current assembly process. Local symbols are not
effected by the assembler option -a (make all symbols global).
In defining local symbols the directive .local J i1s similar to:

J =: expression

The .local directive and the =: construct are useful in de-
fining symbols and constants within a header or definition Tile
that contains many symbols specific to the current assembly pro-
cess that should not be exported into the .rel output Tfile. A
typical wusage 1is 1in the definition of SFRs (Special Function
Registers) for a microprocessor.

The .local directive and =: construct can be overridden by a
following .globl directive.
NOTE
The ASxxxx assemblers use the last occurring symbol

specification in the source file(s) as the type shown
in the symbol table and output to the .rel file.

THE ASSEMBLER PAGE 1-36
GENERAL ASSEMBLER DIRECTIVES

1.4.27 _.equ, .gblequ, and .lIclequ Directives

Format:

syml -equ expr ; equivalent to syml = expr
sym2 -.gblequ expr ; equivalent to sym2 == expr
sym3 .Iclequ expr ; equivalent to sym3 =: expr
or

.equ syml, expr ; equivalent to syml = expr
.gblequ sym2, expr ; equivalent to sym2 == expr
-.Iclequ sym3, expr ; equivalent to sym3 =: expr

These alternate forms of equivalence are provided for user
convenience.

1.4.28 _if, .else, and .endif Directives

Format:
-if expr
o o
;} range of true condition
- o
.else
o o
;} range of false condition
- o
.endif

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the test condition.

The range of true condition will be processed if the expres-
sion "expr® is not zero (i.e. true) and the range of false con-
dition will be processed if the expression "expr® is zero (i.e
false). The range of true condition is optional as is the .else
directive and the range of false condition. The following are
all valid .if/_else/.endif constructions:

_if A-4 ;evaluate A-4

-byte 1,2 ;insert bytes if A-4 is
.endif ;hot zero

_if K+3 ;evaluate K+3

.else

THE ASSEMBLER PAGE 1-37
GENERAL ASSEMBLER DIRECTIVES

.byte 3,4 ;insert bytes 1t K+3
.endif ;IS zero

-if J&3 ;evaluate J masked by 3
.byte 12 ;insert this byte 1f J&3
.else ;1S not zero

-byte 13 ;insert this byte if J&3
.endif ;IS zero

All _if/._else/.endif directives are limited to a maximum nesting
of 10 levels.

The use of a .else directive outside a .if/.endif block will

generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

1.4.29 _iff, .ift, and .iftf Directives

Format:
.if expr ;1" range Condition is
;TRUE when expr is not zero
ift 1}
;} range of true condition o =
LiffF ;1 if
. ;} range of false condition ;} block
Liftf o S
. ;} unconditional range o =
.else ;"else”™ range Condition is
;TRUE when expr is zero
ift o) =
. ;} range of true condition o =
iff ;} else
. ;} range of false condition ;} block
Liftf o S
. ; } unconditional range o =
.endif

The subconditional assembly directives may be placed within
conditional assembly blocks to indicate:

1. The assembly of an alternate body of code when
the condition of the block tests false.

2. The assembly of non-contiguous body of code
within the conditional assembly block,
depending upon the result of the conditional

THE ASSEMBLER PAGE 1-38
GENERAL ASSEMBLER DIRECTIVES

test iIn entering the block.
3. The unconditional assembly of a body of code
within a conditional assembly block.
The use of the .iff, .ift, and .iftf directives makes the use of
the _else directive redundant.
Note that the i1mplementation of the .else directive causes
the .if tested condition to be complemented. The TRUE and FALSE

conditions are determined by the .if/.else conditional state.

All _i1f/.else/.endif directives are limited to a maximum
nesting of 10 levels.

The use of the .iff, _ift, or .iftf directives outside of a
conditional block results in a <i> error code.

The use of a .else directive outside a .if/.endif block will

generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <iI> error.

1.4.30 _.ifxx Directives

Additional conditional directives are available to test the
value of an evaluated expression:

.1fne expr ; true if expr =0
.ifeq expr ; true 1T expr == 0
.ifgt expr ; true 1T expr > O
JiFlt expr ; true 1F expr < O
.ifge expr ; true if expr >= 0
.ifle expr ; true 1T expr <=0
Format:
.ifxx expr
S+
;} range of true condition
. 2
.else
S+
;} range of false condition
3

_endif

THE ASSEMBLER PAGE 1-39
GENERAL ASSEMBLER DIRECTIVES

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the test condition.

The range of true condition will be processed if the expres-
sion "expr® is not zero (i.e. true) and the range of false con-
dition will be processed if the expression "expr®™ is zero (i.e
false). The range of true condition is optional as is the .else
directive and the range of false condition. The following are
all valid .ifxx/.else/._endif constructions:

.ifne A-4 ;evaluate A-4

.byte 1,2 ;insert bytes i1t A-4 is
.endif ;not zero

.ifeq K+3 ;evaluate K+3

.byte 3,4 ;insert bytes 1t K+3
.endif ;1S zero

.ifne J&3 ;evaluate J masked by 3
.byte 12 ;insert this byte 1f J&3
.else ;1S not zero

-byte 13 ;insert this byte if J&3
.endif ;IS zero

All _if/._else/.endif directives are limited to a maximum nesting
of 10 levels.

The wuse of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

1.4.31 _ifdef Directive
Format:

.ifdef sym
o o
;} range of true condition

-}
-3

;} range of false condition

-}

.else

:endif

THE ASSEMBLER PAGE 1-40
GENERAL ASSEMBLER DIRECTIVES

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the test condition.

The range of true condition will be processed if the symbol
"sym® has been defined with a .define directive or “sym®™ 1Is a
variable with an assigned value else the false range will be
processed. The range of true condition is optional as 1is the
.else directive and the range of false condition. The following
are all valid .ifdef/.else/.endif constructions:

.ifdef sym$1 ; lookup symbol sym$1
.byte 1,2 ;insert bytes if sym$l
.endif ;1s defined or

;assigned a value

.ifdef sym$2 ; lookup symbol sym$2
.else

.byte 3,4 ;insert bytes if sym$l
.endif ;is not defined and

;hot assigned a value

.ifdef sym$3 ; lookup symbol sym$3

.byte 12 ;insert this byte if sym$3
.else ;i1s defined/valued

-byte 13 ;insert this byte if sym$3
.endif ;is not defined/valued

Note that the default assembler configuration of case sensitive
means the testing for a defined symbol is also case sensitive.

All _if/.else/.endif directives are limited to a maximum
nesting of 10 levels.

The use of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

THE ASSEMBLER PAGE 1-41
GENERAL ASSEMBLER DIRECTIVES

1.4.32 _ifndef Directive

Format:
.ifndef sym
23
;} range of true condition
- 23
.else
23
;} range of false condition
- 23
.endif

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the condition test.

The range of true condition will be processed if the symbol
"sym®™ is not defined by a .define directive and a variable "sym*
has not been assigned a value else the range of false condition
will be processed. The range of true condition is optional as
is the .else directive and the range of false condition. The
following are all valid .ifndef/.else/.endif constructions:

.ifndef sym$l ; lookup symbol sym$1
.byte 1,2 ;insert bytes if sym$l is
.endif ;not defined and

;hot assigned a value

.ifndef sym$2 ; lookup symbol sym$2
.else

.byte 3,4 ;insert bytes if sym$l
.endif ;1s defined or

;is assigned a value

.ifndef sym$3 ; lookup symbol sym$3

-byte 12 ;insert this byte if sym$3
.else ;is not defined/valued
.byte 13 ;insert this byte if sym$3
.endif ;1s defined/valued

All _if/.else/.endif directives are limited to a maximum nesting
of 10 levels.

The use of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

THE ASSEMBLER PAGE 1-42
GENERAL ASSEMBLER DIRECTIVES

1.4.33 _ifb Directive

Format:
.1fb sym
S
;} range of true condition
- 23
.else
S
;} range of false condition
- ,}
.endif

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the test condition.

The conditional _.ifb 1is most useful when used in macro de-
finitions to determine if the argument is blank. The range of
true condition will be processed if the symbol "sym® is blank.
The range of true condition is optional as is the _else direc-
tive and the range of false condition. The following are all
valid .ifb/.else/.endif constructions:

.ifb sym$l ;argument is not blank
-byte 1,2 ;insert bytes if argument
.endif ;is blank

.ifb sym$2 ;argument is not blank
.else

.byte 3,4 ;insert bytes if argument
.endif ;1s not blank

.ifb ;argument is blank

-byte 12 ;insert this byte if
.else ;argument is blank

-byte 13 ;insert this byte if
.endif ;argument not blank

All _i1f/_else/._endif directives are limited to a maximum nesting
of 10 levels.

The use of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

THE ASSEMBLER PAGE 1-43
GENERAL ASSEMBLER DIRECTIVES

1.4.34 _ifnb Directive

Format:
.ifnb sym
23
;} range of true condition
- 23
.else
23
;} range of false condition
- 23
.endif

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the test condition.

The conditional _.ifnb is most useful when used in macro de-
finitions to determine if the argument is not blank. The range
of true condition will be processed it the symbol "sym®™ is not
blank. The range of true condition is optional as is the _.else
directive and the range of false condition. The following are
all valid .ifnb/.else/.endif constructions:

.ifnb sym$l ;argument is not blank
-byte 1,2 ;insert bytes if argument
.endif ;i1s not blank

.ifnb sym$2 ;argument is not blank
.else

.byte 3,4 ;insert bytes if argument
.endif ;is blank

.ifnb ;argument is blank

-byte 12 ;insert this byte if
.else ;argument is not blank
-byte 13 ;insert this byte if
.endif ;argument is blank

All _i1f/._else/._endif directives are limited to a maximum nesting
of 10 levels.

The use of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .i1f and .endif
counts will cause an <i> error.

THE ASSEMBLER PAGE 1-44
GENERAL ASSEMBLER DIRECTIVES

1.4.35 _ifidn Directive
Format:

.ifidn syml,sym2
23
;} range of true condition

23
o

;} range of false condition

-3

.else

endif

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the test condition.

The conditional .ifidn is most useful when used in macro de-
finitions to determine if the arguments are 1identical. The
range of true condition will be processed if the symbol “"sym$l*
is identical to "sym$2" (i.e. the character strings for sym$l
and sym$2 are the same consistent with the case sensitivity
flag). When this iIf statement occurs inside a macro where an
argument substitution may be blank then an argument should be
delimited with the form /symbol/ for each symbol. The range of
true condition 1is optional as is the .else directive and the
range of false condition. The following are all valid
.ifidn/.else/._endit constructions:

.ifidn sym$1l,sym$l ;arguments are the same
-byte 1,2 ;insert bytes if arguments
.endif ;are the sane

.ifidn sym$1l,sym$2 ;arguments are not the same
.else

.byte 3,4 ;insert bytes i1f arguments
.endif ;are not the same

-.ifidn sym$3,sym$3 ;arguments are the same
.byte 12 ;insert this byte if

.else ;arguments are the same
-byte 13 ;insert this byte if

.endif ;arguments are not the same

All _if/._else/.endif directives are limited to a maximum nesting
of 10 levels.

THE ASSEMBLER PAGE 1-45
GENERAL ASSEMBLER DIRECTIVES

The use of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

1.4.36 _ifdif Directive
Format:

.ifdif sym$1l,sym$2

range of true condition

.else

range of false condition

VR W T T

endif

The conditional assembly directives allow you to include or
exclude blocks of source code during the assembly process, based
on the evaluation of the test condition.

The conditional .ifdif iIs most useful when used In macro de-
finitions to determine if the arguments are different. The
range of true condition will be processed if the symbol “sym$l*
is different from "sym$2* (i.e. the character strings for sym$l
and sym$2 are the not the same consistent with the case sensi-
tivity Tlag). When this if statement occurs iInside a macro
where an argument substitution may be blank then an argument
should be delimited with the form /symbol/ for each symbol. The
range of true condition is optional as is the .else directive
and the range of false condition. The following are all valid
.ifdif/.else/._endif constructions:

.ifdif sym$1l,sym$2 ;arguments are different
-byte 1,2 ;insert bytes i1f arguments
.endif ;are different

.ifdif sym$1l,sym$l ;arguments are identical
.else

-byte 3,4 ;insert bytes i1f arguments
.endif ;are different

.ifdif sym$1l,sym$3 ;arguments are different
-byte 12 ;insert this byte if

.else ;arguments are different
-byte 13 ;insert this byte if

.endif ;arguments are identical

THE ASSEMBLER PAGE 1-46
GENERAL ASSEMBLER DIRECTIVES

All _if/._else/.endif directives are limited to a maximum nesting
of 10 levels.

The wuse of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

1.4.37 Alternate .if Directive Forms

Format:
if cnd(,) argl(, arg2)

where the c¢nd (followed by an optional comma) may be any of
the following:

condition Assemble
(complement) Args Block if:

eq (ne) expr equal to zero
(not equal to zero)

gt (le) expr greater than zero
(less than or equal to zero)

it (ge) expr less than zero
(greater than or equal to zero)

def (ndef) symbol .define"d or user set
(not .define"d or user set)

b (nb) macro argument present
symbol (argument not present)

idn (dif) macro arguments identical
symbol (arguments not identical)

T (t) - only within a .if/.else/.endif
conditional block

Tt - only within a .i1f/._else/._endif
conditional block

THE ASSEMBLER
GENERAL ASSEMBLER DIRECTIVES

PAGE 1-47

All _if/._else/.endif directives are limited to a maximum nesting
of 10 levels.

The use of a .else directive outside a .if/.endif block will
generate an <i> error. Assemblies having unequal .if and .endif
counts will cause an <i> error.

1.4.38 Immediate Conditional Assembly Directives

The i1mmediate conditional assembly directives allow a single
line of code to be assembled without using a .if/.else/.endif
construct. All of the previously described conditionals have
immediate equivalents.

Format:
iif arg(,) line_to_assemble
iifeq arg(,) line_to_assemble
1ifne arg(,) line_to_assemble
iifgt arg(,) line_to_assemble
iifle arg(,) line_to_assemble
iifge arg(,) line_to_assemble
1iflt arg(,) line_to_assemble
iifdef arg(,) line_to_assemble
iifndef arg(,) line_to_assemble
1ifb (,)arg(,) line_to_assemble
iifnb ()arg(,) line_to assemble
1ifidn (,)argl,arg2(,) line_to _assemble
1ifdif (,)argl,arg2(,) line_to_assemble
iiff line_to _assemble
1ift line_to _assemble
1ifef line _to assemble

Alternate Format:

1if arg(,) line_to_assemble
iif eq arg(,) line _to assemble
iif ne arg(,) line_to_assemble
iif gt arg(,) line_to_assemble
1if le arg(,) line_to_assemble
iif ge arg(,) line _to assemble
iif It arg(,) line_to_assemble
iif def arg(,) line_to_assemble
1if ndeft arg(,) line_to_assemble

THE ASSEMBLER PAGE 1-48
GENERAL ASSEMBLER DIRECTIVES

iif b (.)arg(,) line_to assemble
iif nb (,)arg(,) line_to_assemble
iif idn (,)argl,arg2(,) line_to_assemble
iif dif (,)argl,arg2(,) line_to_assemble
1iff line_to _assemble
iift line _to assemble
iifef line_to assemble

The (,) indicates an optional comma.

The _1i1if types b, n, idn, and dif require the commas iIf the
argument(s) may be blank. These commas may be removed 1if the
arguments are delimited with the form ~/symbol/ for each symbol.

The immediate conditional directives do not change the
.if/_else/.endif nesting level.

1.4.39 _incbhin Directive

Format:

-Incbin /string/ [,offset [,count]] or
-incbin ~N/string/ [,offset [,count]]

where: string represents a string that is the file specifica-
tion of any file type.

/ / represent the delimiting characters. These
delimiters may Dbe any paired printing
characters, as Qlong as the characters are not
contained within the string 1itself. IT the

delimiting characters do not match, the .include
directive will give the <g> error.

The _.incbin directive 1is used to insert the contents of a
file verbatim into the assembler as a byte stream. This can be
handy (for example) when including some arbitrary data directly
into the executable output. However, it is recommended to use
this only for small pieces of data.

The .incbin can be invoked with one or two optional arguments
which specify the number of bytes to skip in the Tfile and the
maximum number of bytes to insert into the output file.

THE ASSEMBLER PAGE 1-49
GENERAL ASSEMBLER DIRECTIVES

.incbin "file_dat" ; Include the whole file
.incbin "file.dat",1024 ; skip the first 1024 bytes
.incbin "file.dat",1024,512 ; skip first 1024, and

; Include at most 512 bytes

The *," delimiters can be any regular delimiter - space, tab, or
",". The offset and count arguments must be local, evaluate to

a constant, and may be 0. A blank offset i1s by default O and a
blank count i1s the remainder of the file.

An offset equal to or greater than the file length results iIn
an <i> error. A count that is larger than the remaining bytes
in a file does not result in an error.

1.4.40 _include Directive

Format:
-.include /string/ or
-.include ~N/string/

where: string represents a string that i1s the fTile specifica-
tion of an ASxxxx source fTile.

/ 7/ represent the delimiting characters. These
delimiters may be any paired printing
characters, as Qlong as the characters are not
contained within the string itself. IT the

delimiting characters do not match, the .include
directive will give the <g> error.

The .include directive is used to insert a source file within
the source fTile currently being assembled. When this directive
IS encountered, an implicit .page directive is issued. When the
end of the specified source file is reached, an implicit _.page
directive is issued and input continues from the previous source
file. The maximum nesting level of source files specified by a
-.include directive is fTive.

The total number of separately specified .include files is
unlimited as each .include file i1s opened and then closed during
each pass made by the assembler.

The default directory path, if none is specified, for any
.include file is the directory path of the current fTile. For

THE ASSEMBLER PAGE 1-50
GENERAL ASSEMBLER DIRECTIVES

example: iT the current source fTile, D:\proj\filel.asm, in-
cludes a fTile specified as "includel™ then the file
D:\proj\includel.asm is opened.

wse-goul \
|

/
| |
| |
| |
| dH™ “1STT “WAS™ “13d- \ |
	fgo	---	
	(I		
o			
wse-zoul \			
(A10310841p BUII0M JUSAAND 0] dBAIYR]SU)			
Y i malala b et >	our	---	
		I	
\- ..WSe-Zourn\ouI\24s,, apnjoulr-			
\-—-—--- LWSeTEOUI\DUI\"",, 3pNn	oul- wse-Tour '\		
/-— LWSe-{#our\our\:J,, apnjoulr- wse-3olad — 1\		v	
/- .Wse"Toul,, apnjour-			
		11 1 11 1 1	
\—mm oo >	3ohd]-----	oas	--+--
(Aao0300u1p wse-3ofud ur)			I
_	o		
9Xa "y o9yose \	wse- oul \		
	I 1	I 1	
	urg	--- /--—>	our
(pazoo0u)			
T T T T T T T T T T T T T T T T T T oo —————— /

wse-3oMad\y1olid\ous 12a-30Mad\fqo s- o- |- Moayose\ulq <

:A13us aur] puewwod BuIMOojjO) Byl A0}
Su0131ed207 ajl4 apnjoul Jo uorjeaisnjpl jesrydeuas
- S0Q/smopulfy up sajid4 Buipnjoul TTOV VT

SIAAILO3H1A JFTINISSY TVHINIO
TG-T 39vd d319W3SSY IHL

wse-goul \
|

/
| |
| |
| |
| dH™ “1STT “WAS™ “13d- \ |
	fgo	---	
	(I		
o			
wse-zoul \			
(A10310841p BUII0M JUSAAND 0] dBAIYR]SU)			
Y i malala b et >	our	---	
		I	
\- ..WSe-goul/oul/o4s,, apnjoul-			
\-—-—--- Luse-gour/out/" ", apnoul - wse-Tour '\			
/-——- .use-{oul/ouly,, apnjoul- wse-3olad — 1\		v	
/- .Wse"Toul,, apnjour-			
		11 1 I R A I	
\—mm oo >	3ohd]-----	oas	--+-—-1 ¢
(Aao0300u1p wse-3ofud ur)			I
_	o		
Moayose \	wse- oul \		
	I 1	I 1	
	urg	--- /--—>	our
(pazoo0u)			
T T T T T T T T T T T T T T T T T T oo —————— /

wse-3oMady/yoladysoas j2a-310Madysfgo s- o- |- oayoseyuilq ¢

:A13us aur] puewwod BuIMOojjO) Byl A0}
Su0131ed207 ajl4 apnjoul Jo uorjeaisnjpl jesrydeuas
- Xnuig ur sajid Buipnpoul ZTovTvUT

SIAAILO3H1A JFTINISSY TVHINIO
¢S-T 39vd d319W3SSY IHL

THE ASSEMBLER PAGE 1-53
GENERAL ASSEMBLER DIRECTIVES

1.4.41 _define and .undefine Directives

Format:
.define keyword /string/ or
.define keyword ~/string/
-undefine keyword

where: keyword is the substitutable string which must start
with a letter and may contain any combination of
digits and letters.

where: string represents a string that iIs substituted for the
keyword. The string may contain any sequence of
characters including white space.

/ / represent the delimiting characters. These
delimiters may be any paired printing
characters, as Qlong as the characters are not
contained within the string itself. IT the

delimiting characters do not match, the .define
directive will give the <g> error.

The .define directive specifies a user defined string which
IS substituted for the keyword. The substitution string may it-
self contain other keywords that are substitutable. The assem-
bler resumes the parse of the line at the point the keyword was
found. Care must be excersized to avoid any circular references
within .define directives, otherwise the assembler may enter a
"recursion runaway” resulting In an <s> error.

The _.undefine directive removes the keyword as a substitut-
able string. No error is returned iIf the keyword was not de-
fined.

THE ASSEMBLER PAGE 1-54
GENERAL ASSEMBLER DIRECTIVES

1.4.42 _setdp Directive
Format:
.setdp [base [,area]l]

The set direct page directive has a common format in all the as-
semblers supporting a paged mode. The .setdp directive is used
to inform the assembler of the current direct page region and
the offset address within the selected area. The normal Invoca-
tion methods are:

.area DIRECT (PAG)
.setdp

or
.setdp O,DIRECT

for all the 68xx microprocessors (the 6804 has only the paged
ram area). The commands specify that the direct page is In area
DIRECT and i1ts offset address is 0O (the only valid value for all
but the 6809 microprocessor). Be sure to place the DIRECT area
at address O during linking. When the base address and area are
not specified, then zero and the current area are the defaults.
IT a _setdp directive 1s not i1ssued the assembler defaults the
direct page to the area " CODE"™ at offset O.

The assembler verifies that any local variable used In a
direct variable reference is located iIn this area. Local vari-
able and constant value direct access addresses are checked to
be within the address range from O to 255.

External direct references are assumed by the assembler to be
in the correct area and have valid offsets. The linker will
check all direct page relocations to verify that they are within
the correct area.

The 6809 microprocessor allows the selection of the direct
page to be on any 256 byte boundary by loading the appropriate
value 1into the dp register. Typically one would like to select
the page boundary at link time, one method follows:

THE ASSEMBLER PAGE 1-55
GENERAL ASSEMBLER DIRECTIVES

.area DIRECT (PAG) ; define the direct page
.setdp

.area PROGRAM

1dd #DIRECT ; load the direct page register
tfr a,dp ; For access to the direct page

At 1link time specify the base and global equates to locate the
direct page:

-b DIRECT
~g DIRECT

0x1000
0x1000

Both the area address and offset value must be specified (area
and variable names are iIndependent). The [linker will verify
that the relocated direct page accesses are within the direct

page.

The preceeding sequence could be repeated for multiple paged
areas, however an alternate method is to define a non-paged area
and use the .setdp directive to specify the offset value:

.area DIRECT ; define non-paged area

.area PROGRAM

.setdp O,DIRECT ; direct page area
1dd #DIRECT ; load the direct page register
tfr a,dp ; For access to the direct page
.setdp O0x100,DIRECT ; direct page area
1dd #DIRECT+0x100 ; load the direct page register
tfr a,dp ; For access to the direct page

The [Tlinker will verify that subsequent direct page references
are 1In the specified area and offset address range. It 1is the
programmers responsibility to load the dp register with the cor-
rect page segment corresponding to the _.setdp base address
specified.

For those cases where a single piece of code must access a
defined data structure within a direct page and there are many
pages, define a dumby direct page linked at address 0. This

THE ASSEMBLER PAGE 1-56
GENERAL ASSEMBLER DIRECTIVES

dumby page is used only to define the variable labels. Then
load the dp register with the real base address but do not use a
.setdp directive. This method is equivalent to indexed address-
ing, where the dp register is the index register and the direct
addressing is the offset.

1.4.43 _16bit, .24bit, and .32bit Directives

Format:
.16bit ;specify 16-bit addressing
.24bit ;specify 24-bit addressing
.32bit ;specify 32-bit addressing

The _16bit, .24bit, and .32bit directives are special direc-
tives for assembler configuration when default values are not
used.

1.4.44 _msb Directive
Format:

-msbh n

The _.msb directive is only available In selected assemblers
which support 24 or 32-bit addressing.

The assembler operator ">" selects the upper byte (MSB) when
included In an assembler instruction. The default assembler
mode 1s to select bits <15:8> as the MSB. The .msb directive
allows the programmer to specify a particular byte as the “MSB*
when the address space is larger than 16-bits.

The assembler directive .msb n configures the assembler to
select a particular byte as MSB. Given a 32-bit address of MNmn
(M(3) 11s <31:24>, N(2) is <23:16>, m(1) is <15:8>, and n(0) is
<7:0>) the following examples show how to select a particular
address byte:

.msb 1 ;select byte 1 of address
;<M(3):N(2):m(1):n(0)>

LD A,>MNmn ;byte m <15:8> ==>> A

.msb 2 ;select byte 2 of address

THE ASSEMBLER PAGE 1-57
GENERAL ASSEMBLER DIRECTIVES

;<M(3):N(2):m(1):n(0)>

LD A,>MNmn ;byte N <23:16> ==>> A
.msb 3 ;select byte 3 of address
;<M(3):N(2):m(1):n(0)>

LD A,>MNmn ;byte M <31:24> ==>> A

1.4.45 _lohi and .hilo Directives

Format:
-lohi ;specify LSB first output
-hilo ;specify MSB first output

The .lohi and .hilo directives are special directives for as-
sembler output configuration. These directives are currently
only enabled iIn assembler "ascheck-".

An <m> error will be generated if the .lohi and .hilo direc-
tives are both used within the same assembly source file.

1.4.46 _.end Directive

Format:
.end
.end exp
where: exp represents any expression, including constants,

symbols, or labels.

The .end directive is used to specify a code entry point to
be included in the linker output file. Review the 186 and S
record formats described in the linker section for details.

The .end directive without an expression is ignhored.

THE ASSEMBLER PAGE 1-58
GENERAL ASSEMBLER DIRECTIVES

1.5 INVOKING ASXXXX

Starting an ASxxxx assembler without any arguments provides
the following option list and then exits:

Usage: [-Options] [-Option with arg] file
Usage: [-Options] [-Option with arg] outfile filel [Tile2 ...]
-h or NO ARGUMENTS Show this help list
Output:
-1 Create list file/outfile[.lIst]
-0 Create object file/outfile[.rel]
-s Create symbol file/outfile[.sym]
Listing:
-d Decimal listing
-q Octal listing
-X Hex listing (default)
-b Display .define substitutions in listing
-bb and display without .define substitutions
-C Disable instruction cycle count in listing
-f Flag relocatable references by ° in listing file
-ff Flag relocatable references by mode in listing file
-p Disable automatic listing pagination
-u Disable .list/.nlist processing
-w Wide listing format for symbol table
Assembly:
-1 Insert assembler line before input file(s)
-V Enable out of range signed / unsigned errors
Symbols:
-a All user symbols made global
-g Undefined symbols made global
-z Disable case sensitivity for symbols
""Debugging:
= | Enable NolCE Debug Symbols
-y Enable SDCC Debug Symbols

The ASxxxx assemblers are command line oriented. Most sytems
require the option(s) and file(s) arguments to follow the ASXXxX
assembler name:

as6809 -[Options] file

as6809 [-Options] outfile filel [Tile2 ...]

Some systems may request the arguments after the assembler is
started at a system specific prompt:

THE ASSEMBLER PAGE 1-59
INVOKING ASXXXX

as6809
argv: -[Options] file

as6809
argv: [-Options] outfile filel [file2 ...]

The ASxxxx options in some more detail:

-h List the ASxxxx options
Output:
-1 create list output (out)file.lst

IT -s (symbol table output) is not
specified the symbol table is included
at the end of the listing file.

-0 create object output (out)file.rel

-Ss create symbol output (out)file.sym
Listing

-d decimal listing

-q octal listing

-X hex listing (default)

The listing radix affects the
Ast, _rel, _hlr, and .sym fTiles.

-b display .define substitutions in listing

IT a .define substitution has been applied
to an assembler source line the source
line is printed with the substitution.

-bb and display without .define substitutions

IT a .define substitution has been applied
to an assembler source line the source

line is Tirst printed without substitution
followed by the line with the substitution.

-C Disable instruction cycle count in listing

This option overrides the listing option
*cyc” in the .list and .nlist directives.
Instruction cycle counts cannot be enabled
1T the -c option i1s specified.

THE ASSEMBLER PAGE 1-60
INVOKING ASXXXX

-f by ° in the listing file
-ff by mode in the listing file

Relocatable modes are flagged by byte
position (LSB, Byte 2, Byte 3, MSB)
*NMN paged,

uvuv unsigned,

rskS signed,

pgPQ program counter relative.
-p disable listing pagination

This option inhibits the generation
of a form-feed character and its
associated page header in the
assembler listing.

-u disable .list/.nlist processing

This option disables all _list and
.nlist directives. The listing mode
is .list with the options err, loc,
bin, eqt, cyc, lin, src, pag, Ist,
and md. The options cyc and pag are
overridden by the -c and -p command
line options.

-W wide listing format for symbol table
Assembly:
-1 Insert assembler line before input file(s)

This option inserts an assembly source
line before the first file to be assembled.

e.g-: -1 BUILD=2
IT the iInsert contains white space then
delimit the insert. Inserted lines are

by default not listed. To list an inserted
line preceed the insert with a .list insert.
e.g-: -1 _list -1 BUILD=2

-V Enable out of range signed / unsigned errors

This option enables checking for out of
range signed / unsigned values in symbol
equates and arithmetic operations. This
option has some ambiguities as internally
the assemblers use unsigned arithmetic

THE ASSEMBLER PAGE 1-61
INVOKING ASXXXX

for calculations. (e.g. for a 2-byte machine
-32768 and 32768 are both represented as 0x8000)

Symbols:
-a all user symbols made global
All defined (not local or external)
variables and symbols are flagged
as global.
-g undefined symbols made global
Unresollved (external) variables
and symbols are flagged as global.
-z disable case sensitivity for symbols
Debugging:
= | enable NOICE debug symbols
-y enable SDCC debug symbols

The file name for the .Ist, .rel, _hlr, and .sym files is the
first file name specified In the command line. All output files
are asciil text files which may be edited, copied, etc. The out-
put files are the concatenation of all the input files, i1f fTiles
are to be assembled independently iInvoke the assembler for each
file.

The _.rel fTile contains a radix directive so that the linker
will use the proper conversion for this file. Linked files may
have different radices.

The ASxxxx assemblers also have several "hidden® options
which are not shown in the usage message. These are:

-r Include assembler line numbers
in the _hlr hint file
-rr Also include non listed line

numbers in the _hlr hint file

-t Show Include File and Macro Expansion
levels and memory allocations for
the assembler and macro processor

THE ASSEMBLER PAGE 1-62
ERRORS

1.6 ERRORS

The ASxxxx assemblers provide limited diagnostic error codes
during the assembly process, these errors will be noted 1iIn the
listing file and printed on the stderr device.

The assembler reports the errors on the stderr device as
?ASXXxXX-Error-<*> in line nnn of filename

where * is the error code, nnn is the line number, and filename
i1s the source/include fTile. This line i1s followed by a generic
error message for the <*> error code.

The errors are:

<.> This error 1is caused by an absolute direct assign-
ment of the current location counter
. = expression (incorrect)
rather than the correct
. = . + expression

<a> Indicates a machine specific addressing or address-
Iing mode error.

 Indicates a direct page boundary error.
<c> Indicates modulus of .bndry directives to large.
<d> Indicates a direct page addressing error.

<e> Caused by a .error or _.assume directive.

<i> Caused by an .include file error or an .if/.endif
mismatch.

<m> Multiple definitions of the same label, multiple
.module directives, multiple conflicting attributes
in an .area or .bank directive or the use of _hilo
and lohi within the same assembly.

<n> An .mexit, .endm, or .narg directive outside of a
macro, repeat block or indefinite repeat block.

<o> Directive or mnemonic error or the use of the .org
directive in a relocatable area.

<p> Phase error: label location changing between passes

THE ASSEMBLER PAGE 1-63
ERRORS

2 and 3. Normally caused by having more than one
level of forward referencing.

<g> Questionable syntax: missing or improper operators,
terminators, or delimiters.

<r> Relocation error: logic operation attempted on a
relocatable term, addition of two relocatable terms,
subtraction of two relocatable terms not within the
same programming area or external symbols.

<s> String Substitution / recursion error.
<u> Undefined symbol encountered during assembly.
<z> Divide by O or Modulus by O error: vresult is O.
Most assemblers now include more descriptive error messages
for <a>, <o0>, and <g> errors. Those assemblers updated to pro-
vide the expanded error messages will show three lines on the
stdout device as shown by this error:
?ASXxxX-Error-<a> in line 1867 of tez80e.asm

<a> "1867 1d.1 sp,(varl) ;at
<a> Only .SIS and .LIL suffixes allowed.

The Tirst line is the basic error In line xxxx message. The
second line lists the actual line in error followed by a third
line containing the more specific error.

The Hlisting Tile (.Ist) will have the first and third lines

of the error message inserted preceeding the line containing the
error.

1.7 LISTING FILE

The (-1) option produces an ascii output listing file. Each
page of output contains a five line header:

1. The ASxxxx program name and page number

2. Assembler Radix and Address Bits

THE ASSEMBLER PAGE 1-64
LISTING FILE

3. Title from a .title directive (if any)

4. Subtitle from a .sbttl directive (if any)

5. Blank line

Each succeeding line contains six fTields:

1. Error field (first two characters of line)
2. Current location counter

3. Generated code in byte format

4. Opcode cycles count

5. Source text line number

6. Source text

The error field may contain upto 2 error flags indicating any
errors encountered while assembling this line of source code.

The current Ilocation counter Tfield displays the 16-bit,
24-bit, or 32-bit program position. This field will be 1i1n the
selected radix.

The generated code follows the program location. The listing
radix determines the number of bytes that will be displayed in
this field. Hexadecimal listing allows six bytes of data within
the field, decimal and octal allow four bytes within the Ffield.
IT more than one field of data is generated from the assembly of
a single line of source code, then the data field iIs repeated on
successive lines.

The opcode cycles count is printed within the delimiters []
on the line with the source text. This reduces the number of
generated code bytes displayed on the line with the source list-
ing by one. (The -c option disables all opcode cycle listing.)

The source text line number is printed in decimal and is fol-
lowed by the source text. A Source line with a .page directive
is never listed. (The -u option overrides this behavior.)

THE ASSEMBLER PAGE 1-65
LISTING FILE

Two additional options are available for printing the source
line text. |If the -b option i1s specified then the listed source
line contains all the .define substitutions. |If the -bb option
is specified then the original source line is printed before the
source line with substitutions.

Two data field options are available to flag those bytes

which will be relocated by the linker. IT the -f option is
specified then each byte to be relocated will be preceeded by
the "~ character. |If the -ff option 1is specified then each

byte to be relocated will be preceeded by one of the following
characters:

1. * paged relocation

2. U low byte of unsigned word or unsigned byte

3. vV high byte of unsigned word

4. p PCR low byte of word relocation or PCR byte

5. ¢ PCR high byte of word relocation

6. r low byte relocation or byte relocation

7. s high byte relocation

Assemblers which use 24-bit or 32-bit addressing use an ex-

tended flagging mode:

1. = paged relocation

2. U 1st byte of unsigned value

3. v 2nd byte of unsigned value

4. U 3rd byte of unsigned value

5. V 4th byte of unsigned value

6. p PCR 1st byte of relocation value or PCR byte

7. Q PCR 2nd byte of relocation value

8. P PCR 3rd byte of relocation value

9. Q PCR 4th byte of relocation value

THE ASSEMBLER PAGE 1-66
LISTING FILE

10.

11.

12.

13.

r 1st byte of relocation value or byte relocation
s 2nd byte of relocation value
R 3rd byte of relocation value

S 4th Dbyte of relocation value

1.8 SYMBOL TABLE FILE

The symbol table has two parts:

1.

The alphabetically sorted list of symbols and/or labels
defined or referenced iIn the source program.

A list of the program areas defined during assembly of
the source program.

The sorted list of symbols and/or labels contains the follow-
ing information:

1.

Program area number (none i1f absolute value or exter-
nal)

The symbol or label

Directly assigned symbol is denoted with an (=) sign
The value of a symbol, location of a label relative to
the program area base address (=0), or a **** iIndicat-

ing the symbol or label is undefined.

The characters: G - global, L - local,
R - relocatable, and X - external.

The list of program areas provides the correspondence between
the program area numbers and the defined program areas, the size
of the program areas, and the area flags (attributes).

THE ASSEMBLER PAGE 1-67
OBJECT FILE

1.9 OBJECT FILE

The object Tfile is an ascii file containing the information
needed by the linker to bind multiple object modules into a com-

plete loadable memory image. The object module contains the
following designators:

[XDQI[HL1[234]
X Hexadecimal radix
D Decimal radix
Q Octal radix
H Most significant byte first
L Least significant byte first
2 16-Bit Addressing
3 24-Bit Addressing
4 32-Bit Addressing

H Header

M Module

G Merge Mode

B Bank

A Area

S Symbol

T Object code

R Relocation information

P Paging information

Refer to the linker for a detailed description of each of the
designators and the format of the information contained 1in the
object fTile.

1.10 HINT FILE

The hint file is an ascii file containing information needed
by the linker to convert the listing file into a relocated list-
ing Tile. Each line 1i1n the _hlr file coresponds to a single
line in the listing file. The text line usually contains 3 or 4
parameters iIn the radix selected for the assembler as shown in
the following table:

Line Position: 123456789012

Octal: 111 222 333
Decimal: 111 222 333

THE ASSEMBLER PAGE 1-68
HINT FILE

Hex: 11 22 33

Parameter 1 specifies the parameters listed in the line.
A bit is set for each listing option enabled during the
assembly of the line.

BIT O - LIST_ERR Error Code(s)

BIT 1 - LIST_LOC Location

BIT 2 - LIST_BIN Generated Binary Value(s)
BIT 3 - LIST_EQT Assembler Equate Value
BIT 4 - LIST_CYC Opcode Cycles

BIT 5 - LIST_LIN Line Numbers

BIT 6 - LIST_SRC Assembler Source Code

BIT 7 - HLR_NLST Listing Inhibited

Parameter 2 is the internal assembler listing mode
value specified for this line during the assembly process:

O - NLIST No listing

1 - SLIST Source only

2 - ALIST Address only

3 - BLIST Address only with allocation
4 - CLIST Code

5 - ELIST Equate only

6 - ILIST IF conditional evaluation

Parameter 3 is the number of output bytes listed
for this line.

The 4th parameter is only output if an equate references a
value in a different area. The area name iIs output in the fol-
lowing format following the 3 parameters described above:

Line Position: 123456789012

Area Name: equatearea

When the [line number is output to the .hlr file (-r option)
the line number is prepended to the 3 or 4 parameters described
above. The [line number is always in decimal in the following
format:

Line Position: 1234567

Decimal: LLLLL

Thus the four formats (for each radix) that may be present iIn
a .hlr file are:

THE ASSEMBLER PAGE 1-69
HINT FILE

Line Position: 123456789012345678901234567890

11 22 33

11 22 33 equatearea

LLLLL 11 22 33

LLLLL 11 22 33 equatearea

The [linker understands these formats without any user inter-
action.

CHAPTER 2

THE MACRO PROCESSOR

2.1 DEFINING MACROS

By using macros a programmer can use a single line to insert
a sequence of lines Into a source program.

A macro definition is headed by a .macro directive followed
by the source lines. The source lines may optionally contain
dummy arguments. If such arguments are used, each one is listed
in the .macro directive.

A macro call is the statement used by the programmer to call
the macro source program. It consists of the macro name fTol-
lowed by the real arguments needed to replace the dummy argu-
ments used in the macro.

Macro expansion 1i1s the insertion of the macro source lines
into the main program. Included i1n this 1i1nsertion 1is the
replacement of the dummy arguments by the real arguments.

Macro directives provide a means to manipulate the macro ex-

pansions. Only one directive is allowed per source line. Each
directive may have a blank operand field or one or more
operands. Legal operands differ with each directive. The

macros and their associated directives are detailed iIn this
chapter.

Macro directives can replace any machine dependent mnemonic
associated with a specific assembler. However, the basic assem-
bler directives cannot be replaced with a macro.

THE MACRO PROCESSOR PAGE 2-2
DEFINING MACROS

2.1.1 _macro Directive

Format:
[label:] .macro name, dummy argument list
where: label represents an optional statement label.

name represents the user-assigned symbolic
name of the macro. This name may be
any legal symbol and may be used as a
label elsewhere in the program. The
macro name Is not case sensitive,
name, NAME, or nAmE all refer to the
same macro.

, represents a legal macro separator
(comma, space, and/or tab).

dummy represents a number of legal symbols

argument that may appear anywhere in the body of

list the macro definition, even as a label.
These dummy symbols can be used elsewhere
in the program with no conflict of
definition. Multiple dummy arguments
specified in this directive may be
separated by any legal separator. The
detection of a duplicate or an illegal
symbol in a dummy argument list
terminates the scan and causes a <g>
error to be generated.

A comment may follow the dummy argument list In a .macro direc-
tive, as shown below:

.macro abs a,b :Defines macro abs

The TFirst statement of a macro definition must be a .macro
directive. Defining a macro with the same name as an existing
macro will generate an <m> error. The .mdelete directive should
be used to delete the previous macro definition before redefin-
ing a macro.

THE MACRO PROCESSOR PAGE 2-3
DEFINING MACROS

2.1.2 _endm Directive

Format:

-.endm
The .endm directive should not have a label. Because the direc-
tives .irp, .irpc, and .rept may repeat more than once the label
will be defined multiple times resulting in <m> and/or <p> er-

rors.

The .endm directive may be followed by a comment field, as
shown below:

-endm ;end of macro

A comment may Tfollow the dummy argument list in a .macro
directive, as shown below:

.macro typemsg message ;Type a message.

Jsr typemsg
-word message
.endm ;End of typemsg

The Tfinal statement of every macro definition must be a .endm
directive. The .endm directive is also used to terminate inde-
finite repeat blocks and repeat blocks. A .endm directive en-
countered outside a macro definition 1is flagged with an <n>
error.

2.1.3 _mexit Directive

Format:

.mexit

The _mexit directive may be used to terminate a macro expansion
before the end of the macro is encountered. This directive 1is
also legal within repeat blocks. It i1s most useful iIn nested
macros. The _mexit directive terminates the current macro as
though a .endm directive had been encountered. Using the .mexit
directive bypasses the complexities of nested conditional direc-
tives and alternate assembly paths, as shown in the following

THE MACRO PROCESSOR PAGE 2-4
DEFINING MACROS

example:
.macro altr N,A,B
.if eq,N ;Start conditional Block
-.mexit ;Terminate macro expansion
.endif ;End of conditional block
.endm ;Normal end of macro

In an assembly where the symbol N is replaced by zero, the
.mexit directive would assemble the conditional block and ter-
minate the macro expansion. When macros ar nested, a .mexit
directive causes an exit to the next higher level of macro ex-
pansion. A .mexit directive encountered outside a macro defini-
tion is flagged with an <n> error.

2.2 CALLING MACROS

Format:
[label:] name real arguments
where: label represents an optional statement label.

name represents the name of the macro, as
specified In the macro definition.

real represent symbolic arguments which

arguments replace the dummy arguments listed
in the .macro definition. When
multiple arguments occur, they are
separated by any legal separator.
Arguments to the macro call are
treated as character strings, their
usage iIs determined by the macro
definition.

A macro definition must be established by means of the .macro

THE MACRO PROCESSOR PAGE 2-5
CALLING MACROS

directive before the macro can be called and expanded within the
source program.

When a macro name is the same as a user label, the appearance
of the symbol in the operator field designates the symbol as a
macro call; the appearance of the symbol i1n the operand field
designates it as a label, as shown below:

LESS: mov @ro,rl1 :LESS is a label
b;a LESS ;LESS is considered a label
LESS syml,sym2 ;LESS 1s a macro call

2.3 ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS
Multiple arguments within a macro must be separated by one of
the legal separating characters (comma, space, and/or tab).
Macro definition arguments (dummy) and macro call arguments
(real) maintain a strict positional relationship. That is, the
first real argument in a macro call corresponds with the Ffirst

dummy argument in the macro definition.

For example, the following macro definition and its asso-
ciated macro call contain multiple arguments:

.macro new a,b,c

new phi,sig,”/C1,C2/

Arguments which themselves contain separating characters must be
enclosed within the delimiter construct 2~/ / where the
character */° may be any character not in the argument string.
For example, the macro call:

new ~N/exg X,y/ ,#44,1]

causes the entire expression

THE MACRO PROCESSOR PAGE 2-6
ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

exg X,y

to replace all occurrances of the symbol a in the macro defini-
tion. Real arguments with a macro call are considered to be
character strings and are treated as a single entity during
macro expansion.

The wup-arrow (©) construction also allows another up-arrow
costruction to be passed as part of the argument. This con-
struction, for example, could have been used in the above macro
call, as follows:

new NN/exg xX,y/V ,#44,i]

causing the entire string ~/exg X,y/ to be passed as an argu-
ment.

2.3.1 Macro Nesting

Macro nesting occurs where the expansion of one macro in-
cludes a call to another macro. The depth of nesting 1is arbi-
trarily limited to 20.

To pass an argument containing legal argument delimiters to
nested macros, enclose the argument 1iIn the macro definition
within an up-arrow construction, as shown in the coding example
below. This extra set of delimiters for each level of nesting
IS required in the macro definition, not the in the macro call.

.macro levell duml,dum2
level2 ~/duml/

level2 7~/dum2/

.endm

-.macro level2 dum3

dum3

add #10,z
push z
.endm

A call to the levell macro, as shown below, for example:
levell ~/leaz 0,x/,~Ntfr xX,z/

causes the following macro expansion to occur:

THE MACRO PROCESSOR PAGE 2-7
ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

leaz 0,x
add #10,z
push z

tfr X,Z
add #10,z
push z

When macro definitions are nested, the inner definition cannot
be called until the outer macro has been called and expanded.
For example, in the following code:

.macro 1Ivl a,b
.macro 1Iv2 Cc
-endm

-endm

the 1v2 macro cannot be called and expanded until the Ivl macro
has been expanded. Likewise, any macro defined within the 1v2
macro definition cannot be called and expanded until Iv2 has
also been expanded.

2.3.2 Special Characters in Macro Arguments

IT an argument does not contain spaces, tabs, or commas it
may include special characters without enclosing them 1In a
delimited construction. For example:

.macro push arg
mov arg,-(sp)
-.endm

push x+3(%2)
causes the following code to be generated:

mov x+3(%2) ,-(sp)

THE MACRO PROCESSOR PAGE 2-8
ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

2.3.3 Passing Numerical Arguments as Symbols

IT the unary operator backslash (\) precedes an argument, the
macro treats the argument as a numeric value in the current pro-
gram radix. The ascii characters representing this value are
inserted In the macro expansion, and their function 1is defined
in the context of the resulting code, as shown in the following
example:

.macro inc a,b
con a,\b
b=Db+1
-endm
.macro con a,b
a“"b: -word 4
-endm
c=0 Initialize
inc X,C

The above macro call (inc) would thus expand to:
Xx0: -word 4

In this expanded code, the label x0: results from the con-
catenation of two real arguments. The single quote @)
character 1in the Ilabel a"b: concatenates the real argument X
and 0 as they are passed during the expansion of the macro.
This type of argument construction is descibed in more detail in
a following section.

A subsequent call to the same macro would generate the fol-
lowing code:

x1: -word 4

and so on, for Jlater calls. The two macro definitions are
necessary because the symbol associated with the dummy argument
b (that i1s, symbol c¢) cannot be updated in the con macro defini-
tion, because the character O has replaced c¢ i1n the argument
string (iInc X,C). In the con macro definition, the number
passed is treated as a string argument. (Where the value of the
real argument 1is 0, only a single 0O character is passed to the
macro expansion.

THE MACRO PROCESSOR PAGE 2-9
ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

2.3.4 Number of Arguments iIn Macro Calls

A macro can be defined with or without arguments. |If more
arguments appear in the macro call than in the macro definition,
a <g> error IS generated. IT fewer arguments appear in the

macro call than in the macro definition, missing arguments are
assumed to be null values. The conditional directives .if b and
.1 nb can be used within the macro to detect missing arguments.
The number of arguments can be determined using the .narg direc-
tive.

2.3.5 Creating Local Symbols Automatically

A label i1s often required in an expanded macro. In the con-
ventional macro facilituies thus far described, a label must be
explicitly specified as an argument with each macro call. The
user must be careful iIn issuing subsequent calls to the same
macro i1n order avoid duplicating labels. This concern can be
eliminated through a feature of the ASxxxx macro Tfacility that
creates a unique symbol where a label is required iIn an expanded
macro.

ASxxxx allows temporary symbols of the form n$, where n is a
decimal iInteger. Automatically created symbols are created in
numerical order beginning at 10000$.

The automatic generation of local symbols is iInvoked on each
call of a macro whose definition contains a dummy argument pre-
ceded by the question mark (?) character, as shown in the macro
definition below:

.macro beta a,?b ;dummy argument b with ?
tst a
beq b
add #5,a
b:
.endm

A local symbol is created automatically only when a real ar-
gument of the macro call is either null or missing, as shown in
Example 1 below. If the real argument is specified in the macro
call, however, generation of the local symbol i1s 1i1nhibited and
normal argument replacement occurs, as shown in Example 2 below.
(Examples 1 and 2 are both expansions of the beta macro defined
above.)

THE MACRO PROCESSOR PAGE 2-10
ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

Example 1: Create a Local Symbol for the Missing Argument

beta flag ;Second argument is missing.
tst flag

beq 10000$;Local symbol is created.
add #5,flag

10000%:
Example 2: Do Not Create a Local Symbol

beta r3,XxXyz

tst r3
beq Xyz
add #5,r3

XyZ:

Automatically created local symbols resulting from the expan-
sion of a macro, as described above, do not establish a local
symbol block in their own right.

When a macro has several arguments earmarked for automatic
local symbol generation, substituting a specific label for one
such argument risks assembly errors because the arguments are
constructed at the point of macro invocation. Therefor, the ap-
pearance of a label in the macro expansion will create a new lo-
cal symbol block. The new local symbol block could leave local
symbol references in the previous block and their symbol defini-
tions iIn the new one, causing error codes in the assembly list-
ing. Furthermore a Qlater macro expansion that creates local
symbols in the new block may duplicate one of the symbols in
question, causing an additional error code <p> iIn the assembly
listing.

2.3.6 Concatenation of Macro Arguments

The apostrophe or single quote character (") operates as a
legal delimiting character in macro definitions. A single quote
that precedes and/or follows a dummy argument in a macro defini-
tion is removed, and the substitution of the real argument oc-
curs at that point. For example, in the following statements:

THE MACRO PROCESSOR PAGE 2-11
ARGUMENTS IN MACRO DEFINITIONS AND MACRO CALLS

.macro def A,B,C
A"B: asciz cr

-byte ""A,""B

-endm

when the macro def is called through the statement:
def X,Y,~/V05.00/
it 1s expanded, as follows:

Xy: asciz "V05.00"
-byte "X,y

In expanding the first Iline, the scan for the first argument
terminates upon finding the TFfirst apostrophe (") character.
Since A is a dummy argument, the apostrphe (") i1s removed. The
scan then resumes with B; B i1s also noted as another dummy ar-
gument. The two real arguments x and y are then concated to
form the label xy:. The third dummy argument is noted 1in the
operand field of the .asciz directive, causing the real argument
VO5.00 to be substituted in this field.

When evaluating the arguments of the .byte directive during
expansion of the second line, the scan begins with the Tirst
apostrophe () character. Since it i1s neither preceded nor fol-
lowed by a dummy argument, this apostrophe remains in the macro
expansion. The scan then encounters the second apostrophe,
which is followed by a dummy argument and is therefor discarded.
The scan of argument A is terminated upon encountering the comma
(,)- The third apostrophe is neither preceded nor followed by a
dummy argument and again remains in the macro expansion. The
fourth (and last) apostrophe i1s followed by another dummy argu-
ment and 1s likewise discarded. (Four apostrophe () characters
were necessary in the macro definition to generate two apos-
trophe (") characters in the macro expansion.)

THE MACRO PROCESSOR PAGE 2-12
MACRO ATTRIBUTE DIRECTIVES

2.4 MACRO ATTRIBUTE DIRECTIVES

The ASxxxx assemblers have four directives that allow the
user to determine certain attributes of macro arguments: _narg,
.nchr, _ntyp, and .nval. The use of these directives permits
selective modifications of a macro expansion, depending on the
nature of the arguments being passed. These directives are
described below.

2.4.1 _narg Directive

Format:
[1abel:] .narg symbol
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol
IS equated to the number of arguments in
the macro call currently being expanded.
IT a symbol is not specified, the .narg
directive i1s flagged with a <g> error.

The .narg directive is used to determine the number of arguments
in the macro call currently being expanded. Hence, the _.narg
directive can appear only within a macro definition; 1if i1t ap-
pears elsewhere, an <n> error iIs generated.

The argument count includes null arguments as shown in the
following:

.macro pack A,B,C
.narg cnt

-endm

pack argl, ,arg3
pack argl

When the Tfirst macro pack is invoked .narg will assign a value
of three (3) to the number of arguments cnt, which includes the
empty argument. The second invocation of macro pack has only a
single argument specified and .narg will assign a value of one
(1) to cnt.

THE MACRO PROCESSOR PAGE 2-13
MACRO ATTRIBUTE DIRECTIVES

2.4.2 _nchr Directive

Format:
[label:] .nchr symbol,string
where: label represents an optional statement label.

symbol represents any legal symbol. This symbol
iIs equated to the number of characters in
the string of the macro call currently
being expanded. [If a symbol is not
specified, the .nchr directive 1is
flagged with a <g> error.

, represents any legal separator (comma,
space, and/or tab).

string represents a string of printable 7-bit
ascii characters. |If the character
string contains a legal separator
(comma, space and/or tab) the whole
string must be delimited using the
up-arrow () construct ™/ /.
IT the delimiting characters do not
match or if the ending delimiter
cannot be detected because of a
syntactical error in the character
string, the _nchr directive reports
a <g> error.

The _.nchr directive, which can appear anywhere In an ASXXXX pro-
gram, i1s used to determine the number of characters In a speci-
fied character string. This directive is useful in calculating
the length of macro arguments.

THE MACRO PROCESSOR PAGE 2-14
MACRO ATTRIBUTE DIRECTIVES

2.4.3 _ntyp Directive

Format:
[label:]
where: label

symbol

arg

.ntyp symbol,arg
represents an optional statement label.

represents any legal symbol. The symbol
iIs made absolute and equated to O if
arg is an absolute value or a non
relocatable symbol. The symbol is made
absolute and equated to 1 if arg iIs a
relocatable symbol. |If a symbol is not
specified then the .ntyp directive is
flagged with a <g> error.

represents any legal separator (comma,
space, and/or tab).

represents any legal expression or
symbol. If arg is not specified
then the _.ntyp directive is flagged
with a <g> error.

The .ntyp directive, which can appear anywhere in an ASXXXX pro-
gram, is used to determine the symbol or expression type as ab-
solute (0) or relocatable (1).

THE MACRO PROCESSOR PAGE 2-15
MACRO ATTRIBUTE DIRECTIVES

2.4.4 _nval Directive

Format:
[label:] -nval symbol ,arg
where: label represents an optional statement label.

symbol represents any legal symbol. The symbol
iIs equated to the value of arg and made
absolute. If a symbol is not specified
then the _nval directive is flagged
with a <g> error.

, represents any legal separator (comma,
space, and/or tab).

arg represents any legal expression or
symbol. If arg is not specified
then the _nval directive is flagged
with a <g> error.

The .nval directive, which can appear anywhere in an ASXXXX pro-
gram, is used to determine the value of arg and make the result
an absolute value.

2.5 INDEFINITE REPEAT BLOCK DIRECTIVES

An indefinite repeat block is similar to a macro definition
with only one dummy argument. At each expansion of the inde-
finite repeat range, this dummy argument is replaced with suc-
cessive elements of a real argument list. Since the repeat
directive and its associated range are coded in-line within the
source program, this type of macro definition and expansion does
not require calling the macro by name, as required in the expan-
sion of the conventional macros previously described.

An indefinite repeat block can appear within or outside
another macro definition, indefinite repeat block, or repeat
block. The rules specifying indefinite repeat block arguments
are the same as for specifying macro arguments.

THE MACRO PROCESSOR PAGE 2-16
INDEFINITE REPEAT BLOCK DIRECTIVES

2.5.1 _irp Directive

Format:

[label:]

-irp sym,argument_list

(ranée of indefinite repeat block)

where: label

sym

argument_list

range

-endm

.endm
represents an optional statement label.

represents a dummy argument that is
replaced with successive real arguments
from the argument list. If the dummy
argument is not specified, the .irp
directive is flagged with a <g> error.

represents any legal separator (comma,
space, and/or tab).

represents a list of real arguments
that are to be used in the expansion
of the indefinite repeat range. A real
argument may consist of one or more
7-bit ascii characters; multiple
arguments must be separated by any
legal separator (comma, space, and/or
tab). If an argument must contain

a legal separator then the up-arrow
(™) construct i1s require for that
argument. If no real arguments are
specified, no action is taken.

represents the block of code to be
repeated once for each occurrence of
a real argument in the list. The
range may contain other macro
definitions, repeat ranges and/or
the .mexit directive.

indicates the end of the indefinite
repeat block range.

The .irp directive is used to replace a dummy argument with suc-
cessive real arguments specified in an argument list. This

THE MACRO PROCESSOR PAGE 2-17
INDEFINITE REPEAT BLOCK DIRECTIVES

replacement process occurrs during the expansion of an inde-
finite repeat block range.

2.5.2 _i1rpc Directive

Format:

[label:] .irpc sym,string
(ranée of indefinite repeat block)

.endm
where: label represents an optional statement label.

sym represents a dummy argument that is
replaced with successive real characters
from the argument string. [If the dummy
argument is not specified, the .irpc
directive is flagged with a <g> error.

, represents any legal separator (comma,
space, and/or tab).

string represents a list of 7-bit ascii
characters. |If the string contains
legal separator characters (comma,
space, and/or tab) then the up-arrow
(™) construct must delimit the string.

range represents the block of code to be
repeated once for each occurrence of
a real argument in the list. The
range may contain other macro
definitions, repeat ranges and/or
the _mexit directive.

.endm indicates the end of the indefinite
repeat block range.

The .irpc directive is available to permit single character sub-
stition. On each i1teration of the indefinite repeat range, the
dummy argument 1is replaced with successive characters in the
specified string.

THE MACRO PROCESSOR PAGE 2-18
INDEFINITE REPEAT BLOCK DIRECTIVES

2.6 REPEAT BLOCK DIRECTIVE

A repeat block is similar to a macro definition with only one
argument. The argument specifies the number of times the repeat
block 1i1s 1nserted into the assembly stream. Since the repeat
directive and its associated range are coded in-line within the
source program, this type of macro definition and expansion does
not require calling the macro by name, as required In the expan-
sion of the conventional macros previously described.

A repeat block can appear within or outside another macro de-
finition, indefinite repeat block, or repeat block.

2.6.1 _rept Directive

Format:

[1abel:] .rept exp
(ranée of repeat block)

.endm
where: label represents an optional statement label.

exp represents any legal expression.
This value controls the number of
times the block of code i1s to be assembled
within the program. When the expression
value is less than or equal to zero (0),
the repeat block is not assembled. IFf
this value i1s not an absolute value, the
.rept directive is flagged with an <r>
error.

range represents the block of code to be
repeated. The range may contain other
macro definitions, repeat ranges and/or
the _mexit directive.

-.endm indicates the end of the repeat block
range.

The .rept directive 1is used to duplicate a block of code, a

THE MACRO PROCESSOR PAGE 2-19
REPEAT BLOCK DIRECTIVE

certain number of times, in line with other source code.
2.7 MACRO DELETION DIRECTIVE

The _.mdelete directive deletes the definitions of the the
specified macro(s).

2.7.1 _mdelete Directive

Format:
-mdelete namel,name2, . . . ,namen

where: namel, represent legal macro names. When multiple
name2, names are specified, they are separated
-y by any legal separator (comma, space, and/or
namen tab).

2.8 MACRO INVOCATION DETAILS

The iInvocation of a macro, indefinite repeat block, or repeat
block has specific implications for .if-_else-_endif constructs
and for _list-_nlist directives.

At the point a macro, indefinite repeat block, or repeat
block i1s called the following occurs:

1) The initial .if-_else-_endif
state is saved.

2) The 1nitial .list-_nlist
state is saved.

3) The macro, indefinite repeat block,
or repeat block is inserted into the
assembler source code stream. All
argument substitution is performed
at this point.

When the macro completes and after each pass through an inde-
finite repeat block or repeat block the .if-.else-.endif and
.list-_nlist state iIs reset to the initial state.

THE MACRO PROCESSOR PAGE 2-20
MACRO INVOCATION DETAILS

The reset of the .if-.else-_endif state means that the invo-
cation of a macro, indefinite repeat block, or repeat block can-
not change the .if-_else-.endif state of the calling code. For
example the following code does not change the .if-_else-.endif
condition at macro completion:

.macro Tnc A
_i1f nb,NAI

.list (meb)

.mexit
.else

-nlist

.mexit

.endif
-endm

code: fnc

Within the macro the .if condition becomes false but the con-
dition is not propagated outside the macro.

Similarly, when the _list-_nlist state i1s changed within a
macro the change iIs not propogated outside the macro.

The normal .if-_else-.endif processing verifies that every
.1T has a corresponding .endif. When a macro, indefinite repeat
block, or repeat block terminates by using the .mexit directive
the .if-_endif checking is bypassed because all source lines
between the _mexit and .endm directives are skipped.

2.9 CONTROLLING MACRO LISTINGS

The basic .list directive enables listing of all fields iIn
the assembler listing and clears the "meb® and "me® options.

When a macro is entered the listing i1s by default inhibited
unless the "meb® (list only binary and location) or "me® (enable
listing) options have been specified. The meb option clears all
listing options and sets the "bin® and “loc® options. The “me-
option simply enables any previously set listing options. |If no
listing options have been set then a list "me® option will not
cause any listing.

THE MACRO PROCESSOR PAGE 2-21
CONTROLLING MACRO LISTINGS

Within a macro the .list/.nlist directives can set or clear
any of the listing options but listing will only occur when the
"me" option Is set.

2.10 BUILDING A MACRO LIBRARY

Using the macro facilities of the ASxxxx assemblers a simple
macro library can be built. The macro library is built by com-
bining individual macros, sets of macros, or include file direc-
tives iInto a single file. Each macro entity is enclosed within
a .if/.endif block that selects the desired macro definitions.

The selection of specific macros to be imported in a program
is performed by three macros, .mlib, .mcall, and .mload, con-
tained in the file mlib.def.

2.10.1 _mlib Macro Directive

Format:
-.mlib file

where: fTile represents the macro library file name.
IT the file name does not include a path
then the path of the current assembly
file is used. |If the file name (and/or
path) contains white space then the
path/name must be delimited with the
up-arrow (™) construct ™/ /.

The .mlib directive defines two macros, .mcall and .mload, which
when invoked will read a file, importing specific macro defini-
tions. Any previous .mcall and/or .mload directives will be
deleted before the new .mcall and .mload directives are defined.

The _.mload directive 1is an internal directive which simply
includes the macro library file with the listing disabled.

The following 1is the mlib.def file which defines the macros
.mlib, .mcall, and .mload.

THE MACRO PROCESSOR PAGE 2-22
BUILDING A MACRO LIBRARY

=hEAEAEAEITAAIAAAAAAAATAAAAITAAAAATXAAATAAXAAITAAXAAITAAAAXXAAXXX

A simple Macro Library Implementation

December 2008

* o % X X

LI R S R R S R R R R R R R A R AR e R R R R S S S e R R R R R R R S
7

.macro .mlib FileName
1T b, " FileName!
.error 1 ; File Name Required
.mexit
.endif
.mdelete -mcall
.macro .mcall a,b,c,d,e,f,g,h
.irp sym ANl ANpl Al Aidl Alel ALFL ANgl ANpl
.iif nb,Msym! .define -$$. "sym
.endm
-.mload
.irp sym ANl Apl Al Aidl Alel ALFL ANgl ANpl
.1f nb,Msym!
.i11F ndef,sym”_3. .error 1 ; macro not found
.undefine -$$. "sym
-undefine sym” .$$.
.endif
.endm
.endm ;.mcall
.mdelete -.mload
.macro -.mload
.nlist
.include ~'FileName!
.list
.endm ;.mload
-.endm ;-mlib

2.10.2 _mcall Macro Directive

Format:
.mcall macrol,macro2,...,macro8

where:
macrol, represents from 1 to 8 macro library
macro2, references to a macro definition or

R set of macro definitions included in
macro8 the file specified with the .mlib macro.

THE MACRO PROCESSOR PAGE 2-23
BUILDING A MACRO LIBRARY

As can be seen from the macro definition of _.mlib and .mcall
shown above, when .mcall is invoked temporary symbols are de-
fined for each macro or macro set that is to be imported. The
macro .mload is then invoked to load the macro library file
specified in the call to .mlib.

For example, when the following macros are invoked:

.mlib crossasm.sml ; Cross Assembler Macros

.mcall M6809 ; M6809 Macro Group
The _mlib macro defines the .mload macro to access the system
macro file crossasm.sml. Invoking the .mcall macro creates a
temporary symbol, *.$$.M6809", and then invokes the macro .mload
to import the system macro file crossasm.sml. The file cros-

sasm.sml contains conditional statements that define the re-
quired macros and creates a temporary symbol "M6809.$%." to
indicate the macro group was found. |If the macro is not found
an error message iIs generated.

The fTollowing 1is a small portion of the crossasm.sml system
macro file which shows the M6809 macro group:

.title Cross Assembler Macro Library

; This MACRO Library is Case Insensitive.

; Macro Based 6809 Cross Assembler

.$.SML.$. =2 O
if idn a,A
.1if def, .$$.m6809 $.SML.$. = -1
.else
.1if def, .$$.m6809 $.SML.$. = -1
.1if def, .$$.M6809 $.SML.S. = 1
.endif
Jiif It, $.SML.$. .define m6809.3.
0if gt,.$.SML.$. .define M6809.$%.
Liif ne,.$.SML.$. .include ""'m6809.mac"’

THE MACRO PROCESSOR

EXAMPLE MACRO CROSS ASSEMBLERS

PAGE 2-24

2.11 EXAMPLE MACRO CROSS ASSEMBLERS

The “ascheck”
written using only the general macro processing facility of the

ASxxxx assemblers:

18085.
m6800.
m6801.
m6804 .
m6805.
m6809.
s2650.

mac
mac
mac
mac
mac
mac
mac

subdirectory

- 8085
- 6800
- 6801
- 6804
- 6805
- 6809
- 2650

"macroasm®™ contains 7 assemblers

Microprocessor
Microprocessor
Microprocessor
Microprocessor
Microprocessor
Microprocessor
Microprocessor

These absolute macro cross assemblers are included to i1l-
lustrate the functionality of the general macro processing
facility of the ASxxxx assemblers. In general they are useful
examples of actual macro implementations.

CHAPTER 3

THE LINKER

3.1 ASLINK RELOCATING LINKER

ASLINK is the companion linker for the ASxxxx assemblers.
The linker supports versions 3.xX, 4.xx, and 5.xx of the ASxxxx
assemblers. Object files from version 3, 4, and 5 may be freely
mixed while linking. Note that version 3 object files contain
only a subset of the options available iIn versions 4 and 5.

The program ASLINK i1s a general relocating linker performing
the following functions:

1. Bind multiple object modules into a single memory image
2. Resolve inter-module symbol references

3. Combine code belonging to the same area from multiple
object files Into a single contiguous memory region

4. Search and import object module libraries for undefined
global variables

5. Perform byte and word program counter relative
(pc or pcr) addressing calculations

6. Define absolute symbol values at link time
7. Define absolute area base address values at link time

8. Produce Intel Hex, Motorola S, or Tandy CoCo Disk Basic
output files

THE LINKER PAGE 3-2
ASLINK RELOCATING LINKER

9. Produce a map of the linked memory image

10. Produce an updated listing file with the relocated ad-
dresses and data

3.2 INVOKING ASLINK

Starting ASlink without any arguments provides the following
option list and then exits:

Usage: [-Options] [-Option with arg] file

Usage: [-Options] [-Option with arg] outfile file [File ...]
-h or NO ARGUMENTS Show this help list
-p Echo commands to stdout (default)
-n No echo of commands to stdout

Alternates to Command Line Input:

-C ASlink >> prompt input
-t fTile[.Ink] Command File input
Librarys:

-k Library path specification, one per -k

-1 Library file specification, one per -I
Relocation:

-b area base address=expression

-g global symbol=expression

Map format:
-m Map output generated as (out)file[.map]
-ml Linker generated symbols included in (out)file[.map]

-w Wide listing format for map file
-X Hexadecimal (default)
-d Decimal

-q Octal
Output:
-1 Intel Hex as (out)file[.i1--]
-1l Legacy: start address record type set to 1

-S Motorola S Record as (out)file[.s--]

-t Tandy CoCo Disk BASIC binary as (out)file[.bi-]

-3 NoICE Debug output as (out)file[.noi]

-y SDCDB Debug output as (out)file[.cdb]

-0 Linked file/library object output enable (default)
-V Linked file/library object output disable

-u Update listing Tile(s) with link data as file(s)[-rst]
Case Sensitivity:
-z Disable Case Sensitivity for Symbols

-e or null line terminates input

THE LINKER PAGE 3-3
INVOKING ASLINK

NOTE
When ASlink 1is 1invoked with a single filename the
created output file will have the same filename as the
.rel fTile.
When ASlink 1is 1invoked with multiple filenames the
first filename is the output filename and the remain-

ing Tilenames are linked together into the output
filename.

Most sytems require the options to be entered on the command
line:

aslink [-Options] [-Options with args] file

aslink [-Options] [-Options with args] outfile filel [file2 ...]
Some systems may request the arguments after the linker is
started at a system specific prompt:

aslink
argv: -[options] -[options with args] file

aslink
argv: [-Options] [-Options with args] outfile filel [file2 ...]

The linker commands are explained in some more detail:

1. -h or NO ARGUMENTS Show this help list
Simply prints the help list on stdout.

2. -C ASlink >> prompt mode.
The ASlink >> prompt mode reads linker commands from
stdin.

3. -f file Command file mode.

The command file mode imports linker commands from the
specified file (extension must be .Ink), imported -c
and -f commands are ignored. |If the directory path,

THE LINKER PAGE 3-4
INVOKING ASLINK

10.

11.

12.

13.

14.

for a file to be linked, is not specified In the com-
mand file then the path defaults to the _Ink file
directory path.

-p/-n enable/disable echoing commands to stdout.

-i/-s/-t Intel Hex (File.i--), Motorola S (file.s--),
or Tandy Color Computer Disk Basic (file.bi-) 1image
output file.

-1l Legacy: start address record type set to 1
Use the type 1 record to indicate the program start ad-
dress instead of record type 3. Record type 1 was used
in some older tools.

-0o/-v Specifies that subsequent linked
Tfiles/libraries will generate object output (default)
or suppress object output. ((if option -i, -s, or -t
was specified)

-z Disable Case Sensitivity for Symbols

-m Generate a map Tile (file.map). This file
contains a list of the symbols (by area) with absolute
addresses, sizes of linked areas, and other linking iIn-
formation.

-ml Linker generated symbols included in
(out)Ffile[-map]

The linker creates internal symbols for each area (area
segment) input during the linking process but normally
suppresses their inclusion in the map file. This op-
tion enables their inclusion In the map file.

-W Specifies that a wide listing format be used
for the map file.

-xdq Specifies the number radix for the map file
(Hexadecimal, Decimal, or Octal).

-u Generate an updated listing file (file.rst)
derived from the relocated addresses and data from the
linker and the hint file (file.hlr) output by the as-
sembler.

file File(s) to be linked. Files may be on the
same line as the above options or on a separate line(s)
one file per line or multiple files separated by spaces
or tabs.

THE LINKER PAGE 3-5
INVOKING ASLINK

15. -b area=expression
(one definition per line in a linker command file.)
This specifies an area base address where the expres-
sion may contain constants and/or defined symbols from
the linked fTiles.

16. -g symbol=expression
(one definition per line in a linker command file.)
This specifies the value for the symbol where the ex-
pression may contain constants and/or defined symbols
from the linked files.

17. -k [library directory path
(one definition per line in a linker command file.)
This specifies one possible path to an object library.
More than one path is allowed.

18. -1 library fTile specification
(one definition per line in a linker command file.)
This specifies a possible library file. More than one
file 1s allowed.

19. -e or null line, terminates input to the linker.

3.3 LIBRARY PATH(S) AND FILE(S)

The process of resolving undefined symbols after scanning the
input object Tfiles includes the scanning of object module
libraries. The [linker will search through all combinations of
the library path specifications (input by the -k option) and the
library Tfile specifications (input by the -1 option) that lead
to an existing library file. Each library file contains a list
(one Tile per 1line) of modules 1included in this particular
library. Each existing object module is scanned for a match to
the undefined symbol. The first module containing the symbol 1is
then linked with the previous modules to resolve the symbol de-
finition. The [library object modules are rescanned until no
more symbols can be resolved. The scanning algorithm allows
resolution of back references. No errors are reported for non
existant library files or object modules.

The Hlibrary TfTile specification may be formed in one of two
ways:

THE LINKER PAGE 3-6
LIBRARY PATH(S) AND FILE(S)

1. If the Llibrary Tile contained an absolute path/file
specification then this 1is the object module®s

path/file.
(i.e. C:\... orcC:/..))
2. 1If the Ilibrary fTile contains a relative path/file

specification then the concatenation of the path and
this Tfile specification becomes the object module~s
path/file.

(i.e. \... or/..))

As an example, assume there exists a library file termio.lib
in the syslib directory specifying the following object modules:

\6809\i0_disk first object module
d:\special\io_comm second object module

and the following parameters were specified to the linker:

-k c:\1osystem\ the first path

-k c:\syslib\ the second path
-1 termio the first library file
-1 10 the second library file (no such file)

The [Tlinker will attempt to use the following object modules to
resolve any undefined symbols:

c:\syslib\6809\i10o _disk.rel (concatenated path/fTile)
d:\special\io_comm.rel (absolute path/file)

all other path(s)/file(s) don"t exist. (No errors are reported
for non existant path(s)/fTile(s).)

3.4 ASLINK PROCESSING

The [linker processes the fTiles in the order they are
presented. The fTirst pass through the input files 1Is used to
define all program areas, the section area sizes, and symbols
defined or referenced. Undefined symbols will initiate a search
of any specified library file(s) and the importing of the module
containing the symbol definition. After the first pass the -b
(area base address) definitions, 1If any, are processed and the
areas linked.

THE LINKER PAGE 3-7
ASLINK PROCESSING

The area linking proceeds by first examining the area types
ABS, CON, REL, OVR and PAG. Absolute areas (ABS) from separate
object modules are always overlaid and have been assembled at a
specific address, these are not normally relocated (if a -b com-
mand 1#s used on an absolute area the area will be relocated).
Relative areas (normally defined as RELJCON) have a base address
of O0x0000 as read from the object files, the -b command speci-
fies the beginning address of the area. All subsequent relative
areas will be concatenated with preceeding relative areas.
Where specific ordering is desired, the first linker input TFfile
should have the area definitions in the desired order. At the
completion of the area linking all area addresses and lengths
have been determined. The areas of type PAG are verified to be
on a 256 byte boundary and that the length does not exceed 256
bytes. Any errors are noted on stderr and in the map file.

The [linker also automatically generates two symbols for each
linked program area:

"a_<area>" The starting address of the area.
"1_<area>" The length of the area.

and two symbols for each area segment:
"m_<area>_n- The boundary modulus of the area segment.

"s_<area> n- The starting address of the area segment.

The appended
linked area.

_n signifies the area segment number within a

These symbols are in general only useful diagnostically and
are not visible externally. However 1t the -ml1 linker option is
used these symbols will be output to the map Ffile.

Next the global symbol definitions (-g option), iIf any, are
processed. The symbol definitions have been delayed until this
point because the absolute addresses of all internal symbols are
known and can be used in the expression calculations.

Before continuing with the linking process the symbol table
is scanned to determine if any symbols have been referenced but
not defined. Undefined symbols are listed on the stderr device.
iT a .module directive was included in the assembled Tfile the
module making the reference to this undefined variable will be
printed.

THE LINKER PAGE 3-8
ASLINK PROCESSING

Constants defined as global In more than one module will be
flagged as multiple definitions if their values are not 1identi-
cal.

After the preceeding processes are complete the linker may
output a map file (-m option). This file provides the following
information:

1. Global symbol values and label absolute addresses
2. Defined areas and there lengths

3. Remaining undefined symbols

4. List of modules linked

5. List of library modules linked

6. List of -b and -g definitions

The final step of the linking process is performed during the
second pass of the input files. As the xxx.rel files are read
the code 1s relocated by substituting the physical addresses for
the referenced symbols and areas and may be output 1in Intel,
Motorola, or Tandy CoCo Disk Basic formats. The number of files
linked and symbols defined/referenced is limited by the proces-
sor space available to build the area/symbol lists. |If the -u
option is specified then the listing files (file.lst) associated
with the relocation Tiles (file.rel) are scanned and used to
create a new file (file.rst) which has all addresses and data
relocated to their final values.

The -o/-v options allow the simple creation of loadable or
overlay modules. Loadable and overlay modules normally need to
be 1linked with a main module(s) to resolve external symbols.
The -o/-v options can be used to enable object output for the
loadable or overlay module(s) and suppress the object code from
the linked main module(s). The -o/-v options can be applied
repeatedly to specify a single linked file, groups of files, or
libraries for object code inclusion or suppression.

THE LINKER Page 3-9
ASXXXX VERSION 5.XX (4.XX) LINKING

3.5 ASXXXX VERSION 5.XX (4.-XX) LINKING

The [linkers®™ iInput object file is an ascii file containing
the information needed by the linker to bind multiple object
modulles Into a complete loadable memory image.

The object module contains the following designators:

[XDQI[HL1[234]
X Hexadecimal radix
D Decimal radix
Q Octal radix
H Most significant byte first
L Least significant byte first
2 16-Bit Addressing
3 24-Bit Addressing
4 32-Bit Addressing
H Header
M Module
G Merge Mode
B Bank
A Area
S Symbol
T Object code
R Relocation information
P Paging information

3.5.1 Object Module Format

The First line of an object module contains the
[XDQ][HL][234] format specifier (i.e. XH2 indicates a hex-
adecimal file with most significant byte first and 16-bit ad-
dressing) for the following designators.

THE LINKER PAGE 3-10
ASXXXX VERSION 5.XX (4.XX) LINKING
3.5.2 Header Line
H aa areas gg global symbols
The header Hline specifies the number of areas(aa) and the
number of global symbols(gg) defined or referenced in this ob-
ject module segment.
3.5.3 Module Line
M name
The modulle line specifies the module name from which this
header segment was assembled. The module line will not appear
iT the .module directive was not used in the source program.
3.5.4 Merge Mode Line
G nn ii 00 01 02 03 04 05 06 07 08 09 OA OB OC OD OE OF
The mode structure contains the specification (or partial
specification) of one of the assemblers®™ merge modes. Sixteen
bits may be specified on a single line. Each assembler must

specify at least one merge mode. The merging specification al-
lows arbitrarily defined active bits and bit positions. The 32

element arrays are indexed from O to 31. |Index O corresponds to
bit 0, ..., and 31 corresponds to bit 31 of a normal integer
value.

1. nn 1Is merge mode number

2. i1 1s the beginning bit position of the following data

3. 00 ... merge mode bit elements

The value of the element specifies 1If the normal in-
teger bit is active (bit <7> is set, 0x80) and what
destination bit (bits <4:0>, 0 - 31) should be
loaded with this normal integer bit.

THE LINKER PAGE 3-11
ASXXXX VERSION 5.XX (4.XX) LINKING

3.5.5 Bank Line
B name base nn size nn map nn flags nn fsfx string

The B 1line defines a bank identifier as name. A bank is a
structure containing a collection of areas. The bank iIs treated
as a unique linking structure separate from other banks. Each
bank can have a unique base address (starting address). The
size specification may be used to signal the overflow of the
banks® allocated space. The Linker combines all areas included
within a bank as separate from other areas. The code from a
bank may be output to a unique file by specifying the File Suf-
fix parameter (fsfx). This allows the separation of multiple
data and code segments into isolated output Tfiles. The map
parameter is Tfor NOICE processing. The flags indicate if the
parameters have been set.

3.5.6 Area Line
A label size ss flags ff [bank bb] [bndry mm]

The area line defines the area label, the size (ss) of the
area in bytes, the area flags (ff), the optional [bank bb]
specifies the bank this area is a member of, and the optional
[bndry mm] which specifies the boundary modulus for this area
segment. The area flags specify the ABS, REL, CON, OVR, and PAG
parameters:

OVR/CON (0x04/0x00 1.e. bit position 2)
ABS/REL (0Ox08/0x00 1.e. bit position 3)
PAG (0Ox10 1.e. Dbit position 4)

The bank label is optional and only specified if the area is
to be included within a bank.

When this area (area segment) is linked and their is a boun-
dary modulus specified then the code/data beginning address will
be 1increased to match the boundary modulus. This will also in-
crease the area (area segment) size by the same amount.

THE LINKER PAGE 3-12
ASXXXX VERSION 5.XX (4.XX) LINKING

3.5.7 Symbol Line
S name Defnnnn

or
S name Refnnnn

The symbol line defines (Def) or references (Ref) the identi-
fier name with the value nnnn. The defined value i1s relative to
the current area base address. References to constants and ex-
ternal global symbols will always appear before the TfTirst area
definition. References to external symbols will have a value of
zero.

3.5.8 T Line
T XX XX nn Nnn nn nn nn ...

The T 1line contains the assembled code output by the assem-
bler with xx xx being the offset address from the current area
base address and nn being the assembled instructions and data in
byte format. (Xxx xx and nn nn can be 2, 3, or 4 bytes as speci-
fied by the .REL file header.)

3.5.9 R Line
R OOnNnNn nn nl n2 XX XX ...

The R line provides the relocation information to the linker.
The nn nn value is the current area index, i.e. which area the
current values were assembled. Relocation information is en-
coded i1n groups of 4 bytes:

1. nl is the relocation mode and object format.
1. bits <1:0> specify the number of bytes to output

2. bits <2:3> normal(0x00) / MSB (0x00C)

signed(0x04) / unsigned(0x08)

3. bit 4 normal(0x00)/page "0 (0x10) reference

4. bit 5 normal(0x00)/page "nnn® (0x20) reference
PAGX mode if both bits are set (0x30)

5. bit 6 normal(0x00)/PC relative(0x40) relocation

6. bit 7 relocatable area(0x00)/symbol (0x80)

2. n2 is a byte index and a merge mode index

THE LINKER PAGE 3-13
ASXXXX VERSION 5.XX (4.XX) LINKING

1. bits <3:0> are a byte index into the corresponding
(i.e. preceeding) T line data (i.e. a pointer to
the data to be updated by the relocation).

2. Dbits <7:4> are an index into a selected merge mode.
Currently mode O simply specifies to use standard
byte processing modes and merging is ignored.

3. XX xx 1is the area/symbol index for the area/symbol be-
ing referenced. the corresponding area/symbol i1s found
in the header area/symbol lists.

The groups of 4 bytes are repeated for each item requiring relo-
cation in the preceeding T line.

3.5.10 P Line
P OO nn nn N1 n2 XX XX

The P 1line provides the paging information to the linker as
specified by a .setdp directive. The format of the relocation
information is identical to that of the R line. The correspond-
ing T line has the following information:

T xx xx aa aa bb bb

Where aa aa is the area reference number which specifies the
selected page area and bb bb is the base address of the page.
bb bb will require relocation processing IT the "nl n2 xx xx" IS
specified in the P line. The linker will verify that the base
address i1s on a 256 byte boundary and that the page length of an
area defined with the PAG type is not larger than 256 bytes.

The Jlinker defaults any direct page references to the first
area defined in the input REL Ffile. All ASxxxx assemblers will
specify the CODE area first, making this the default page area.

THE LINKER PAGE 3-14
ASXXXX VERSION 5.XX (4.XX) LINKING

3.5.11 24-Bit and 32-Bit Addressing

When 24-bit or 32-bit addressing is specified in the file
format line [XDQ][HL][234] then the S and T Lines have modified
formats:

S name Defnnnnnn (24-bit)
S name Refnnnnnn (24-bit)
T XX XX XX NN Nnn NN nn nNn ... (24-bit)
S name Defnnnnnnnn (32-bit)
S name Refnnnnnnnn (32-bit)
T XX XX XX XX NN NN NN nn NN .. (32-bit)

The multibyte formats for byte data replace the 2-byte form
for 16-bit data with 3-byte or 4-byte data for 24-bit or 32-bit
data respectively. The 2nd byte format (also named MSB) always
uses the second byte of the 2, 3, or 4-byte data.

3.5.12 ASlink V5.xx (V4.xx) Error Messages

The linker provides detailed error messages allowing the pro-
grammer to quickly find the errant code. As the linker com-
pletes pass 1 over the 1input Tile(s) 1t reports any page
boundary or page length errors as follows:

?ASlink-Warning-Paged Area PAGEO Boundary Error
and/or

?ASlink-Warning-Paged Area PAGEO Length Error
where PAGEO is the paged area.

Also during Pass 1 any bank size (length) errors will be
reported as follows:

?ASlink-Warning-Size limit exceeded in bank BANK
where BANK is the bank name.

During Pass two the linker reads the T, R, and P lines per-
forming the necessary relocations and outputting the absolute
code. Various errors may be reported during this process

THE LINKER PAGE 3-15
ASXXXX VERSION 5.XX (4.XX) LINKING

The P line processing can produce only one possible error:

?ASlink-Warning-Page Definition Boundary Error
file module pgarea pgoffset
PgDef 168091 t68091 PAGEO 0001

The error message specifies the file and module where the .setdp
direct was issued and indicates the page area and the page
offset value determined after relocation.

The R line processing produces various error messages:

?AS1ink-Warning-Signed value error
?ASlink-Warning-Unsigned value error
?AS1ink-Warning-Byte PCR relocation error
?ASlink-Warning-Word PCR relocation error
?AS1ink-Warning-3-Byte PCR relocation error
?ASlink-Warning-4-Byte PCR relocation error
?AS1ink-Warning-PageO relocation error
?ASlink-Warning-PageN relocation error
?AS1ink-Warning-PageX relocation error
?ASlink-Warning-Signed Merge Bit Range error
?AS1ink-Warning-Unsigned/Overflow Merge Bit Range error

These error messages also specify the file, module, area, and
offset within the area of the code referencing (Refby) and de-
fining (Defin) the symbol:

?AS1ink-Warning-Signed value error for symbol two56

file module area offset
Refby t Pagetest PROGRAM 0006
Defin t Pagetest DIRECT 0100

IT the symbol is defined in the same module as the reference the
linker is unable to report the symbol name. The assembler list-
ing Tile(s) should be examined at the offset from the specified
area to locate the offending code.

The errors are:

1. The Signed value error indicates an indexing value ex-
ceeded the maximum negative or maximum positive value
for the current variable size.

2. The Unsigned value error indicates an indexing value
was greater than maximum positive value for the current
variable size.

THE LINKER PAGE 3-16
ASXXXX VERSION 5.XX (4.XX) LINKING

10.

11.

The byte PCR error is caused by exceeding the pc rela-
tive byte branch range.

The word PCR error is caused by exceeding the pc rela-
tive word branch range.

The 3-byte PCR error is caused by exceeding the pc re-
lative 3-byte branch range.

The 4-byte PCR error is caused by exceeding the pc re-
lative 4-byte branch range.

The PageO error is generated if the direct page vari-
able 1s not i1in the pageO range of 0O to 255.

The PageN error is generated if the direct page vari-
able 1s not within the Nth page range of 0O to 255.

The PageX error is generated if the direct page vari-
able is not within the extended page range.

The Signed Merge Bit Range error indicates an indexing
value exceeded the maximum negative or maximum positive
value for the current signed merge variable size.

The Unsigned/Overflow Merge Bit Range error indicates
an indexing value was greater than maximum positive
value for the current unsigned merge variable size.

THE LINKER Page 3-17
ASXXXX VERSION 3.XX LINKING

3.6 ASXXXX VERSION 3.XX LINKING

The [linkers®™ iInput object file is an ascii file containing
the information needed by the linker to bind multiple object
modulles Into a complete loadable memory image.

The object module contains the following designators:

[XDQI[HL1[234]
X Hexadecimal radix
D Decimal radix
Q Octal radix
H Most significant byte first
L Least significant byte first
2 16-Bit Addressing
3 24-Bit Addressing
4 32-Bit Addressing
H Header
M Module
A Area
S Symbol
T Object code
R Relocation information
P Paging information

3.6.1 Object Module Format

The first line of an object module contains the
[XDQ][HL][234] format specifier (i.e. XH2 indicates a hex-
adecimal file with most significant byte first and 16-bit ad-
dressing) for the following designators.

THE LINKER PAGE 3-18
ASXXXX VERSION 3.XX LINKING
3.6.2 Header Line
H aa areas gg global symbols
The header Hline specifies the number of areas(aa) and the
number of global symbols(gg) defined or referenced in this ob-
ject module segment.
3.6.3 Module Line
M name
The modulle line specifies the module name from which this
header segment was assembled. The module line will not appear
iT the .module directive was not used in the source program.
3.6.4 Area Line
A label size ss flags ff
The area line defines the area label, the size (ss) of the
area in bytes, and the area flags (ff). The area flags specify
the ABS, REL, CON, OVR, and PAG parameters:
OVR/CON (0x04/0x00 i.e. bit position 2)
ABS/REL (0Ox08/0x00 1.e. bit position 3)

PAG (0x10 i.e. Dbit position 4)

3.6.5 Symbol Line
S name Defnnnn

or
S name Refnnnn

The symbol line defines (Def) or references (Ref) the i1denti-
fier name with the value nnnn. The defined value is relative to
the current area base address. References to constants and ex-
ternal global symbols will always appear before the Tirst area
definition. References to external symbols will have a value of
Zero.

THE LINKER PAGE 3-19
ASXXXX VERSION 3.XX LINKING

3.6.6 T Line
T XX XX Nnn nn nn nn nn ...

The T 1line contains the assembled code output by the assem-
bler with xx xx being the offset address from the current area
base address and nn being the assembled instructions and data in
byte format.

3.6.7 R Line
R OO nn nn nl n2 XX XX ...

The R line provides the relocation information to the linker.
The nn nn value is the current area index, i.e. which area the
current values were assembled. Relocation information is en-

coded i1n groups of 4 bytes:

1. nl 1is the relocation mode and object format, for the
adhoc extension modes refer to asxxxx.h or aslink.h

1. bit O word(0x00)/byte(0x01)

2. bit 1 relocatable area(0x00)/symbol (0x02)

3. bit 2 normal(0x00)/PC relative(0x04) relocation
4. bit 3 1-byte(0x00)/2-byte(0x08) object format
5. bit 4 signed(0x00)/unsigned(0x10) byte data

6. bit 5 normal(0x00)/page 0" (0x20) reference
7. bit 6 normal(0x00)/page "nnn*(0x40) reference
8. bit 7 LSB byte(0x00)/MSB byte(0x80)

2. n2 1s a byte index into the corresponding (i.e. pre-
ceeding) T line data (i.e. a pointer to the data to be
updated by the relocation). The T line data may be
1-byte or 2-byte byte data format or 2-byte word
format.

3. XxxX xx 1is the area/symbol index for the area/symbol be-
ing referenced. the corresponding area/symbol is found
in the header area/symbol lists.

The groups of 4 bytes are repeated for each item requiring relo-
cation in the preceeding T line.

THE LINKER PAGE 3-20
ASXXXX VERSION 3.XX LINKING

3.6.8 P Line
P OO nn nn N1 n2 XX XX

The P 1line provides the paging information to the linker as
specified by a .setdp directive. The format of the relocation
information is identical to that of the R line. The correspond-
ing T line has the following information:

T xx xx aa aa bb bb

Where aa aa is the area reference number which specifies the
selected page area and bb bb is the base address of the page.
bb bb will require relocation processing IT the "nl n2 xx xx" 1Is
specified in the P line. The linker will verify that the base
address i1s on a 256 byte boundary and that the page length of an
area defined with the PAG type is not larger than 256 bytes.

The Jlinker defaults any direct page references to the first
area defined in the input REL Ffile. All ASxxxx assemblers will
specify the CODE area first, making this the default page area.

3.6.9 24-Bit and 32-Bit Addressing

When 24-bit or 32-bit addressing is specified in the file
format line [XDQ][HL][234] then the S and T Lines have modified
formats:

S name Defnnnnnn (24-bit)
S name Refnnnnnn (24-bit)
T XX XX XX NN NN NN NN NN ... (24-bit)
S name Defnnnnnnnn (32-bit)
S name Refnnnnnnnn (32-bit)
T XX XX XX XX NN NN NN Nnn nn ... (32-bit)

The multibyte Tformats for byte data replace the 2-byte form
for 16-bit data with 3-byte or 4-byte data for 24-bit or 32-bit
data respectively. The 2nd byte format (also named MSB) always
uses the second byte of the 2, 3, or 4-byte data.

THE LINKER PAGE 3-21
ASXXXX VERSION 3.XX LINKING

3.6.10 ASlink V3.xx Error Messages

The linker provides detailed error messages allowing the pro-
grammer to quickly find the errant code. As the linker com-
pletes pass 1 over the 1input Tile(s) 1t reports any page
boundary or page length errors as follows:

?ASlink-Warning-Paged Area PAGEO Boundary Error
and/or

?ASlink-Warning-Paged Area PAGEO Length Error
where PAGEO is the paged area.

During Pass two the linker reads the T, R, and P lines per-
forming the necessary relocations and outputting the absolute
code. Various errors may be reported during this process
The P line processing can produce only one possible error:

?AS1ink-Warning-Page Definition Boundary Error
file module pgarea pgoffset
PgDef 16809l t68091 PAGEO 0001

The error message specifies the file and module where the .setdp
direct was issued and indicates the page area and the page
offset value determined after relocation.

The R line processing produces various errors:

?ASHink-Warning-Byte PCR relocation error for symbol bra2
?AS1ink-Warning-Unsigned Byte error for symbol two56
?ASlink-Warning-PageO relocation error for symbol 1two56
?AS1ink-Warning-Page Mode relocation error for symbol two56
?ASlink-Warning-Page Mode relocation error
?AS1ink-Warning-2K Page relocation error
?ASlink-Warning-512K Page relocation error

These error messages also specify the file, module, area, and
offset within the area of the code referencing (Refby) and de-
fining (Defin) the symbol:

?ASlink-Warning-Unsigned Byte error for symbol two56
file module area offset
Refby 168001 68001 DIRECT 0015
Defin tconst tconst . .ABS. 0100

THE LINKER PAGE 3-22
ASXXXX VERSION 3.XX LINKING

IT the symbol i1s defined in the same module as the reference the
linker 1s unable to report the symbol name. The assembler list-
ing Tfile(s) should be examined at the offset from the specified
area to locate the offending code.

The errors are:

1.

The byte PCR error is caused by exceeding the pc rela-
tive byte branch range.

The Unsigned byte error indicates an indexing value was
negative or larger than 255.

The PageO error i1s generated if the direct page vari-
able is not in the pageO range of 0 to 255.

The page mode error is generated i1If the direct variable
is not within the current direct page (6809).

The 2K Page relocation error is generated 1if the
destination i1s not within the current 2K page (8051,
DS8XCxxX) -

The 512K Page relocation error is generated if the
destination 1i1s not within the current 512K page
(DS80C390) .

THE LINKER Page 3-23
HINT FILE FORMAT FOR RELOCATED LISTINGS

3.7 HINT FILE FORMAT FOR RELOCATED LISTINGS

The hint file is an ascii file containing information to help
the linker convert the listing file into a relocated listing
file. Each line in the _hlr file coresponds to a single line iIn
the listing file. The text line usually contains 3 or 4 parame-
ters iIn the radix selected for the assembler as shown in the
following table:

Line Position: 123456789012

Octal: 111 222 333
Decimal: 111 222 333
Hex: 11 22 33

Parameter 1 specifies the parameters listed in the line.
A bit i1s set for each listing option enabled during the
assembly of the line.

BIT O - LIST_ERR Error Code(s)

BIT 1 - LIST_LOC Location

BIT 2 - LIST_BIN Generated Binary Value(s)
BIT 3 - LIST_EQT Assembler Equate Value
BIT 4 - LIST_CYC Opcode Cycles

BIT 5 - LIST_LIN Line Numbers

BIT 6 - LIST_SRC Assembler Source Code

BIT 7 - HLR_NLST Listing Inhibited

Parameter 2 i1s the internal assembler listing mode
value specified for this line during the assembly process:

O - NLIST No listing

1 - SLIST Source only

2 - ALIST Address only

3 - BLIST Address only with allocation
4 - CLIST Code

5 - ELIST Equate only

6 - ILIST IF conditional evaluation

Parameter 3 i1s the number of output bytes listed
for this line.

The 4th parameter is only output if an equate references a
value iIn a different area. The area name i1s output in the fol-
lowing format following the 3 parameters described above:

Line Position: 123456789012

THE LINKER PAGE 3-24
HINT FILE FORMAT FOR RELOCATED LISTINGS

Area Name: equatearea

When the line number is present it is prepended to the 3 or 4
parameters described above. The TIine number 1is always 1in
decimal in the following format:

Line Position: 1234567

Decimal: LLLLL

Thus the four formats (for each radix) that may be present iIn
a .hlr Tile are:

Line Position: 123456789012345678901234567890
11 22 33
11 22 33 equatearea
LLLLL 11 22 33
LLLLL 11 22 33 equatearea

The [linker understands these formats without any user inter-
action.

IT a hint file does not exist then the linker attempts to
convert the list file to a relocated list file using some basic
assumptions about the parameters listed In each line. The con-
version without a hint file requires at least these listing
parameters: LOC, BIN, MEB, and ME. The “equate® values will
not be updated.

THE LINKER

INTEL IHX OUTPUT FORMAT

Page 3-25

3.8 INTEL IHX OUTPUT FORMAT (16-BIT)

Record Mark Field -

Record Length Field -

Load Address Field -

Record Type Field -

Data Field -

Checksum Field -

This Ffield signifies the start of a
record, and consists of an ascii colon

().

This field consists of two ascili
characters which indicate the number of
data bytes in this record. The
characters are the result of converting
the number of bytes 1in binary to two
ascii characters, high digit first. An
End of File record contains two ascii
zeros in this field.

This Ffield consists of the four ascii
characters which result from converting
the the binary value of the address in
which to begin loading this record. The
order is as follows:

High digit of high byte of address.
Low digit of high byte of address.
High digit of low byte of address.
Low digit of low byte of address.

In an End of File record this field con-
sists of either four ascii zeros or the
program entry address.

This Ffield 1identifies the record type,
which is either 0 for data, 1 for an End
of File, or 3 for a start address
record. It consists of two ascil
characters, with the high digit of the
record type first, followed by the low
digit of the record type. The default
start address record type iIs 3, however
the -1l option can override the default
and use the type 1 record.

This field consists of the actual data,
converted to two ascii characters, high
digit first. There are no data bytes in
the End of File record.

The checksum field is the 8 bit binary
sum of the record length field, the load
address Tield, the record type field,

THE LINKER PAGE 3-26
INTEL IHX OUTPUT FORMAT (16-BIT)

and the data field. This sum 1is then
negated (2"s complement) and converted
to two ascii characters, high digit
first.

THE LINKER

INTEL 186 OUTPUT FORMAT

Page 3-27

3.9 INTEL 186 OUTPUT FORMAT (24 OR 32-BIT)

Record Mark Field -

Record Length Field -

Load Address Field -

Record Type Field -

Data Field -

Checksum Field -

This Ffield signifies the start of a
record, and consists of an ascii colon

().

This field consists of two ascili
characters which indicate the number of
data bytes in this record. The
characters are the result of converting
the number of bytes 1in binary to two
ascii characters, high digit first. An
End of File record contains two ascii
zeros in this field.

This Ffield consists of the four ascii
characters which result from converting
the the binary value of the address in
which to begin loading this record. The
order is as follows:

High digit of high byte of address.
Low digit of high byte of address.
High digit of low byte of address.
Low digit of low byte of address.

In an End of File record this field con-
sists of either four ascii zeros or the
program entry address.

This Ffield 1identifies the record type,
which is either 0 for data, 1 for an End
of File, 3 for a start address, or 4 for
a segment record. It consists of two
ascii characters, with the high digit of
the record type first, followed by the
low digit of the record type. The
default start address record type is 3,
however the -il option can override the
default and use the type 1 record.

This field consists of the actual data,
converted to two ascii characters, high
digit first. There are no data bytes in
the End of File record.

The checksum field is the 8 bit binary
sum of the record length field, the load
address Tield, the record type field,

THE LINKER PAGE 3-28
INTEL 186 OUTPUT FORMAT (24 OR 32-BIT)

and the data field. This sum 1is then
negated (2"s complement) and converted
to two ascii characters, high digit
first.

THE LINKER

Page 3-29

MOTOROLA S1-S9 OUTPUT FORMAT

3.10 MOTOROLA S1-S9 OUTPUT FORMAT (16-BIT)

Record Type Field -

Record Length Field -

Load Address Field -

Data Field -

Checksum Field -

This Ffield signifies the start of a
record and identifies the the record
type as follows:

Ascii S1 - Data Record
Ascii S9 - End of File Record

This field specifies the record length
which includes the address, data, and
checksum fields. The 8 bit record
length value is converted to two ascii
characters, high digit first.

This Ffield consists of the four ascii
characters which result from converting
the the binary value of the address in
which to begin loading this record. The
order is as follows:

High digit of high byte of address.
Low digit of high byte of address.
High digit of low byte of address.
Low digit of low byte of address.

In an End of File record this field con-
sists of either four ascii zeros or the
program entry address.

This Tfield consists of the actual data,
converted to two ascii characters, high
digit first. There are no data bytes in
the End of File record.

The checksum field is the 8 bit binary
sum of the record length field, the load
address field, and the data field. This
sum is then complemented (1"s comple-
ment) and converted to two ascil
characters, high digit first.

THE LINKER

Page 3-30

MOTOROLA S2-S8 OUTPUT FORMAT

3.11 MOTOROLA S2-S8 OUTPUT FORMAT (24-BIT)

Record Type Field -

Record Length Field -

Load Address Field -

Data Field -

Checksum Field -

This Ffield signifies the start of a
record and identifies the the record
type as follows:

Ascii S2 - Data Record
Ascii S8 - End of File Record

This field specifies the record length
which includes the address, data, and
checksum fields. The 8 bit record
length value is converted to two ascii
characters, high digit first.

This Ffield consists of the six ascil
characters which result from converting
the the binary value of the address in
which to begin loading this record. The
order is as follows:

High digit of 3rd byte of address.
Low digit of 3rd byte of address.
High digit of high byte of address.
Low digit of high byte of address.
High digit of low byte of address.
Low digit of low byte of address.

In an End of File record this field con-
sists of either six ascii zeros or the
program entry address.

This field consists of the actual data,
converted to two ascii characters, high
digit first. There are no data bytes in
the End of File record.

The checksum field 1s the 8 bit binary
sum of the record length field, the load
address field, and the data field. This
sum is then complemented (1°s comple-
ment) and converted to two ascii
characters, high digit First.

THE LINKER

Page 3-31

MOTOROLA S3-S7 OUTPUT FORMAT

3.12 MOTOROLA S3-S7 OUTPUT FORMAT (32-BIT)

Record Type Field -

Record Length Field -

Load Address Field -

Data Field -

Checksum Field -

This Ffield signifies the start of a
record and identifies the the record
type as follows:

Ascii S3 - Data Record
Ascii S7 - End of File Record

This field specifies the record length
which includes the address, data, and
checksum fields. The 8 bit record
length value is converted to two ascii
characters, high digit first.

This field consists of the eight ascii
characters which result from converting
the the binary value of the address in
which to begin loading this record. The
order is as fTollows:

High digit of 4th byte of address.
Low digit of 4th byte of address.
High digit of 3rd byte of address.
Low digit of 3rd byte of address.
High digit of high byte of address.
Low digit of high byte of address.
High digit of low byte of address.
Low digit of low byte of address.

In an End of File record this field con-
sists of either eight ascii zeros or the
program entry address.

This Tfield consists of the actual data,
converted to two ascii characters, high
digit first. There are no data bytes in
the End of File record.

The checksum field is the 8 bit binary
sum of the record length field, the load
address field, and the data field. This
sum is then complemented (1"s comple-
ment) and converted to two ascil
characters, high digit first.

THE LINKER Page 3-32
TANDY COLOR COMPUTER DISK BASIC BINARY FORMAT

3.13 TANDY COLOR COMPUTER DISK BASIC FORMAT

Record Preamble - This Ffield 1is either $00 (for start of
new record) or $FF (for last record in
file).

Record Length Field

This Field specifies the number of data
bytes which follows the address fTield.
The [Ulength 1is 1In binary MSB to LSB
order.

16-Bit Length - 2-bytes
24-Bit Length - 3-bytes
32-Bit Length - 4-bytes

Load Address Field This field consists of the address where
the record will be loaded into memory.
The address 1i1s 1iIn binary MSB to LSB

order.

16-Bit Address - 2-bytes
24-Bit Address - 3-bytes
32-Bit Address - 4-bytes

Data Field - This fTield consists of the actual binary
data.

After the Ilast code segment, a final record like the one
above i1s placed. In this final segment, the Record Preamble 1is
$FF, the Record Length Field is $0000 and the Load Adress Field
iIs the execution address.

CHAPTER 4

BUILDING ASXXXX AND ASLINK

The assemblers and linker have been successfully compiled for
Linux, DOS, and various flavors of Windows using the Linux GCC,
the Cygwin environment, the DJGPP environment, and the graphical
user interfaces and command line environments of
MS Visual C++ V6.0, MS Visual Studio 2005, 2010, 2013, 2015,
2019, Open Watcom V1.9, Symantec C/C++ V7.2, and Turbo C 3.0.

Makefiles for Linux, Cygwin, DJGPP, project files and a
makefile for Turbo C and psuedo makefiles and project files for
vC6, VS2005, VS2010, VS2013, VS2015, VS2019, Open Watcom, and
Symantec are available to build all the assemblers and the
linker.

Unpack the asxv5p40.zip Tfile into an appropriate directory
using the utility appropriate to your environment. For DOS or
Windows the following command line will unpack the distribution
zip file:

pkunzip -d asxv5p40.zip

The distribution TfTile has been packed with DOS style end of
lines (CR/LF), and UPPER CASE file names. The Linux make Tile
assumes all Jlower case directories and file names. For Linux
the unpacking utility you choose should have an option to force
all Jlower case directories / file names and convert the ascii
files to local format. On most systems the following command
should do the trick:

unzip -L -a asxv5p40.zip

Some systems may require a -LL option to force all lower case.

BUILDING ASXXXX AND ASLINK Page 4-2

The distribution will be unpacked into the base directory
"asxv5pxx®" which will contain source directories for each sup-
ported processor (as6800, asz80, ...), the machine independent
source (asxxsrc), the linker source (linksrc), and the miscel-
laneous sources (asxxmisc). Other directories include the do-
cumentation (asxdoc), test Tile directory (asxtst), html
documentation (asxhtml), NolICE support files (noice), various
debug monitors that can be assembled with the ASxxxx assemblers
(asmasm), the project directory (project) which contains two ap-
plications, (PHS) uses the AS6809 assembler and (MFM) uses the
AS89LP assembler, and the packaging directory (zipper).

4.1 BUILDING ASXXXX AND ASLINK WITH LINUX

The Linux build directory is /asxv5pxx/Zasxmak/linux/build.
The makefile In this directory i1s compatible with the Linux GNU
make and GCC. The command

make clean
will remove all the current executable Tfiles in directory
/asxvbpxx/asxmak/linux/exe and all the compiled object modules
from the /asxv5pxx/asxmak/linux/build directory.

The command

make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink

BUILDING ASXXXX AND ASLINK PAGE 4-3
BUILDING ASXXXX AND ASLINK WITH CYGWIN

4.2 BUILDING ASXXXX AND ASLINK WITH CYGWIN

The Cygwin build directory is \asxvbpxx\asxmak\cygwin\build.
The makefile In this directory is compatible with the Cygwin GNU
make and GCC. The command

make clean
will remove all the -current executable Tfiles 1n directory
\asxv5pxx\asxmak\cygwin\exe and all the compiled object modules
from the \asxv5pxx\asxmak\cygwin\build directory. The command
make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tfile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink

4.3 BUILDING ASXXXX AND ASLINK WITH DJGPP

The DJGPP build directory is \asxv5pxx\asxmak\djgpp\build.
The makefile In this directory is compatible with the DJGPP GNU
make and GCC. The command

make clean
will remove all the current executable Tiles in directory
\asxvbspxx\asxmak\djgpp\exe and all the compiled object modules
from the \asxv5pxx\asxmak\djgpp\build directory. The command
make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink

BUILDING ASXXXX AND ASLINK PAGE 4-4
BUILDING ASXXXX AND ASLINK WITH BORLAND*S TURBO C++ 3.0

4.4 BUILDING ASXXXX AND ASLINK WITH BORLAND®"S TURBO C++ 3.0

The Borland product 1is available in the Borland Turbo C++
Suite which contains C++ Builder 1.0, Turbo C++ 4.5 for Windows
and Turbo C++ 3.0 for DOS. The DOS IDE will install and run on
x86 (16 or 32 bit) versions of Windows (not x64 versions).

4.4.1 Graphical User Interface

Each ASxxxx Assembler has two project specific Tiles
(*.dsk and *.prj) located in the subdirectory
\asxv5pxx\asxmak\turboc30\build. You must enter the .prj
filename into the Turbo C++ IDE: enter Options->Directories and
change the 1include and output directories to match your confi-
guration. After these changes have been made you will be able
to compile the selected project. These changes must be manually
entered for each project.

4_.4_.2 Command Line Interface

Before the command line interface can be used you must per-
form the steps outlined in the "Graphical User Interface® in-
structions above for each project you wish to build.

Open a command prompt window in the
\asxv5pxx\asxmak\turboc30\build directory. Assuming the Turbo C
compiler has been installed in the default location (C:\TC) the
Tile _setpath.bat will set the PATH variable. If this 1is not
the case then the line

PATH=C:\TC;C:\TC\BIN;C:\TC\INCLUDE

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxv5pxx\asxmak\turboc30\build\ directory and the executable

Tiles will be placed 1In the \asxv5pxx\asxmak\turboc30\exe direc-
tory.

The command

make all

BUILDING ASXXXX AND ASLINK PAGE 4-5
BUILDING ASXXXX AND ASLINK WITH BORLAND*S TURBO C++ 3.0

will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and sl190s9. The
make file can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink

The Turbo C make utility uses the information in the correspond-
ing .prj and .dsk files to compile and link the programs.

The file _makeall_bat found in the directory can also be used
to invoke the Turbo C command Bline compiler. The _makeall.bat
file calls the _setpath.bat file to set the path to the compiler
directories in the environment variable PATH and then invokes
"make all®.

4.5 BUILDING ASXXXX AND ASLINK WITH MS VISUAL C++ 6.0

4.5.1 Graphical User Interface

Each ASxxxx Assembler has a VC6 project file (*.dsw) located
in a subdirectory of \asxv5pxx\asxmak\vc6\build. Simply enter
this project filename into the VC6 IDE and build/rebuild the as-
sembler.

4.5.2 Command Line Interface

Open a command prompt window in the
\asxvbpxx\asxmak\vc6\build directory. The file make.bat found
in the directory can be used to invoke the VC6 command line com-
piler. The make.bat file assumes that the Visual C++ compiler
has been installed in the default location. |If this is not the
case then the line

SET MS$DEV=""C:\Program Files\Microsoft Visual Studio\
Common\MSDev98\Bin\msdev.exe"

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxv5pxx\asxmak\vc6\bui ld\as----\release directory and the exe-
cutable files will be placed 1in the \asxv5pxx\asxmak\vc6\exe
directory.

BUILDING ASXXXX AND ASLINK PAGE 4-6
BUILDING ASXXXX AND ASLINK WITH MS VISUAL C++ 6.0

The command
make all

will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tfile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink

The VC6 command line compiler uses the information in the cor-
responding .dsw/.dsp files to compile and link the programs.

The command “make clean® is not required or valid as a make
of anything does a complete rebuild of the program.

4.6 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2005

4.6.1 Graphical User Interface

Each ASxxxx Assembler has a VS2005 project file (*.vcproj)
located in a subdirectory of \asxv5pxx\asxmak\vsO5\build. Sim-
ply enter this project filename into the VS2005 IDE and
build/rebuild the assembler.

4.6.2 Command Line Interface

Open a command prompt window in the
\asxvbpxx\asxmak\vsO5\build directory. The file make.bat found
in the directory can be used to invoke the VS2005 command line
compiler. The make.bat file assumes that the Visual C++ com-
piler has been installed in the default location. |If this is
not the case then the line

SET VC$BUILD="C:\Program Files\Microsoft Visual Studio 8\
Common\MSDev98\Bin\msdev.exe"

must be changed to match your environment. The compiled object

BUILDING ASXXXX AND ASLINK PAGE 4-7
BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2005

code modules will be placed in the
\asxv5pxx\asxmak\vsO5\bui ld\as----\release directory and the ex-
ecutable files will be placed In the \asxv5pxx\asxmak\vs05\exe
directory.

The command
make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tfile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:
make aslink
The VS2005 command Hline compiler uses the information in the
corresponding .vcproj Tile to compile and link the programs.
The command “make clean® is not required or valid as a make

of anything does a complete rebuild of the program.

4.7 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2010

4.7.1 Graphical User Interface

Each ASxxxx Assembler has a VS2010 project file (*.vcxproj)
located in a subdirectory of \asxv5pxx\asxmak\vs1lO0\build. Sim-
ply enter this project filename into the VS2010 IDE and
build/rebuild the assembler.

BUILDING ASXXXX AND ASLINK PAGE 4-8
BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2010

4.7.2 Command Line Interface

Open a command prompt window in the
\asxv5pxx\asxmak\vs10\build directory. The file make.bat +found
in the directory can be used to invoke the VS2010 command line
compiler. The make.bat file assumes that the Visual C++ com-
piler has been installed in the default location. |If this is
not the case then the line

call "c:\Program Files (x86)\Microsoft Visual Studio 10.0\
VC\bin\vcvars32._bat"

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxv5pxx\asxmak\vs10\bui ld\as----\release directory and the ex-
ecutable fTiles will be placed Iin the \asxv5pxx\asxmak\vslO\exe
directory.

The command

make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tfile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink
The VS2010 command Hline compiler uses the information in the

corresponding .vcxproj File to compile and link the programs.

The command “make clean®™ is not required or valid as a make
of anything does a complete rebuild of the program.

BUILDING ASXXXX AND ASLINK PAGE 4-9
BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2013

4.8 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2013

4.8.1 Graphical User Interface

Each ASxxxx Assembler has a VS2013 project file (*.vcxproj)
located in a subdirectory of \asxv5pxx\asxmak\vsl1l3\build. Sim-
ply enter this project filename 1into the VS2013 IDE and
build/rebuild the assembler.

4.8.2 Command Line Interface

Open a command prompt window in the
\asxv5pxx\asxmak\vs13\build directory. The file make.bat found
in the directory can be used to invoke the VS2013 command line
compiler. The make.bat file assumes that the Visual C++ com-
piler has been installed in the default location. |If this is
not the case then the line

call "c:\Program Files (x86)\Microsoft Visual Studio 12.0\
VC\bin\vcvars32._bat"

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxv5pxx\asxmak\vsl1l3\build\as----\release directory and the ex-
ecutable files will be placed In the \asxv5pxx\asxmak\vsl3\exe
directory.

The command
make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:
make aslink

The VS2013 command Hline compiler uses the information in the
corresponding .vcxproj file to compile and link the programs.

BUILDING ASXXXX AND ASLINK PAGE 4-10
BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2013

The command “make clean® is not required or valid as a make
of anything does a complete rebuild of the program.

4.9 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2015

4.9.1 Graphical User Interface

Each ASxxxx Assembler has a VS2015 project file (*.vcxproj)
located in a subdirectory of \asxv5pxx\asxmak\vsl15\build. Sim-
ply enter this project Tfilename 1into the VS2015 IDE and
build/rebuild the assembler.

4.9.2 Command Line Interface

Open a command prompt window in the
\asxv5pxx\asxmak\vs15\build directory. The file make.bat found
in the directory can be used to invoke the VS2015 command line
compiler. The make.bat file assumes that the Visual C++ com-
piler has been installed in the default location. |If this is
not the case then the line

call "c:\Program Files (x86)\Microsoft Visual Studio 14.0\
VC\bin\vcvars32._bat"

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxv5pxx\asxmak\vs15\build\as----\release directory and the ex-
ecutable Tiles will be placed In the \asxv5pxx\asxmak\vsl5\exe
directory.

The command
make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink

BUILDING ASXXXX AND ASLINK PAGE 4-11
BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2015

The VS2015 command Hline compiler uses the information in the
corresponding .vcxproj Ffile to compile and link the programs.

The command “make clean®™ i1s not required or valid as a make
of anything does a complete rebuild of the program.

4_.10 BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2019

4.10.1 Graphical User Interface

Each ASxxxx Assembler has a VS2019 project file (*.vcxproj)
located i1n a subdirectory of \asxv5pxx\asxmak\vsl1l9\build. Sim-
ply enter this project filename into the VS2019 IDE and
build/rebuild the assembler.

4.10.2 Command Line Interface

Open a command prompt window in the
\asxv5pxx\asxmak\vs19\build directory. The file make.bat found
in the directory can be used to invoke the VS2019 command line
compiler. The make.bat file assumes that the Visual C++ com-
piler has been installed in the default location. |If this is
not the case then the lines

SET MSBUILD=""C:\Program Files (x86)\Microsoft Visual Studio
\2019\Community\MSBui ld\Current\MSBui ld.exe"

and

call "C:\Program Files (x86)\Microsoft Visual Studio
\2019\Community\VC\Auxi liary\Bui ld\vcvars32._bat"

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxv5pxx\asxmak\vs19\bui ld\as----\release directory and the ex-
ecutable files will be placed In the \asxv5pxx\asxmak\vsl9\exe
directory.

BUILDING ASXXXX AND ASLINK PAGE 4-12
BUILDING ASXXXX AND ASLINK WITH MS VISUAL STUDIO 2019
The command
make all
will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and sl190s9. The
make Ffile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:
make aslink
The VS2019 command Hline compiler uses the information in the
corresponding .vcxproj file to compile and link the programs.
The command “make clean® is not required or valid as a make

of anything does a complete rebuild of the program.

4_11 BUILDING ASXXXX AND ASLINK WITH OPEN WATCOM V1.9

4.11.1 Graphical User Interface

Each ASxxxx Assembler has a set of project files (.prj, -tgt,
-mk, .mk1, and -1k1) located in the subdirectory
\asxv5pxx\asxmak\watcom\build. You will have to edit the pro-
ject files to match your local file locations.

4.11.2 Command Line Interface

Open a command prompt window in the
\asxv5pxx\asxmak\watcom\build directory. Assuming the Watcom
compiler has been installed in the default location (C:\WATCOM)
the file _setpath.bat will set the PATH variable. IT this is

not the case then the line
PATH=C : \WATCOM\BINNT ;C:\WATCOM\B INW

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxvbspxx\asxmak\watcom\bui l1d\ directory and the executable
files will be placed in the \asxv5pxx\asxmak\watcom\exe direc-
tory.

BUILDING ASXXXX AND ASLINK PAGE 4-13
BUILDING ASXXXX AND ASLINK WITH OPEN WATCOM V1.9

The command
make all

will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and s190s9. The
make Tfile can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

make aslink

The Watcom command line compiler wmake.exe uses the information
in the corresponding project files to compile and link the pro-
grams.

The file _makeall_bat found in the directory can also be used
to invoke the Watcom command line compiler. The _makeall.bat
file calls the _setpath.bat file to set the path to the compiler
directories in the environment variable PATH and then invokes
"make all®.

The command “make clean®™ i1s not required or valid as a make
of anything does a complete rebuild of the program.

4.12 BUILDING ASXXXX AND ASLINK WITH SYMANTEC C/C++ V7.2

The Symantec product is no longer available but is included
for historical reasons (the final version, 7.5, was introduced
in 1996). The product had an excellent graphical user inter-
face, built in editor, project manager, and supported DOS, Ex-
tended DOS (the executable contained a built in DOS extender
which was rendered unusable 1In Windows 2000, after service pack
2, or in Windows XP), Win95, and Windows NT.

BUILDING ASXXXX AND ASLINK PAGE 4-14
BUILDING ASXXXX AND ASLINK WITH SYMANTEC C/C++ V7.2

4.12.1 Graphical User Interface

Each ASxxxx Assembler has a series of project specific files
(*.bro, *.def, *.dpd, *.Ink, *.mak, *.opn, and *.prj) located in
in the subdirectory \asxv5pxx\asxmak\symantec\build. You must
enter the .prj filename into the Symantec IDE and then select
Project->Settings->Directories and change the include, target,
and compiler output directories to match your configuration.
After these changes have been made you will be able to compile
the selected project. These changes must be manually entered
for each project.

4.12.2 Command Line Interface

Before the command line interface can be used you must per-
form the steps outlined in the “"Graphical User Interface® in-
structions above for each project you wish to build.

Open a command prompt window in the
\asxv5pxx\asxmak\symantec\build directory. The file make.bat
found 1i1n the directory can be used to invoke the Symantec com-
mand line compiler. The make.bat file assumes that the path to
the compiler directories has been set in the environment vari-
able PATH. Assuming the Symantec compiler has been installed in
the default location (C:\SC) the file _setpath.bat will set the
PATH variable. If this is not the case then the line

PATH=C:\SC;C:\SC\BIN;C:\SC\INCLUDE;C:\SC\LIB

must be changed to match your environment. The compiled object
code modules will be placed in the
\asxv5pxx\asxmak\symantec\build directory and the executable
files will be placed in the \asxv5pxx\asxmak\symantec\exe direc-
tory.

The command
make all

will compile and link all the ASxxxx assemblers, the ASlink pro-
gram, and the utility programs asxscn, asxcnv, and sl190s9. The
make file can make a single program by invoking make with the
specific assembler, linker, or utility you wish to build:

BUILDING ASXXXX AND ASLINK PAGE 4-15
BUILDING ASXXXX AND ASLINK WITH SYMANTEC C/C++ V7.2

make aslink

The Symantec make utility , smake.exe, uses the information in
the corresponding .mak files to compile and link the programs.

The file _makeall._bat found in the directory can also be used
to invoke the Symantec command line compiler. The _makeall.bat
Tfile calls the _setpath.bat file to set the path to the compiler
directories in the environment variable PATH and then i1nvokes
"make all*®.

4.13 THE _CLEAN.BAT AND _PREP.BAT FILES

Each of the build directories have two maintenance files:
_prep.bat and _clean.bat. The command file _prep.bat prepares
the particular compiler directories for distribution by removing
all exteraneous files but keeping the Tfinal compiled execut-
ables. The _clean.bat command file performs the same function
as _prep.bat and removes the compiled executables.

APPENDIX A

ASXSCN LISTING FILE SCANNER

The program ASXSCN 1is a debugging utility program used to
verify ASxxxx assembler code generation. The program may be in-
voked with any of the following options:

Usage: [-dgx234i] file

d decimal listing

q octal listing

X hex listing (default)
2 16-Bit address (default)
3 24-Bit address

4 32-Bit address

i ignore relocation flags

C comment starts at last ~;*

Select one of the -d, -q, or -x options to match the listing
file format and select only one of the -2, -3, or -4 options to
match the addressing range of the listing file. The -1 option
inhibits the verification of the assembler relocation flags
generated by the ASxxxx assemblers -f or -ff options.

Each source assembly line selected for verification must iIn-
clude the expected output code in the comment field of the line.
The default expects verification code to follow the first *;*
encountered in the line. Use the -c option to specify that the
verification code follows the last ";" on the line. The follow-

ing has been extracted from the ASF2MC8 test file tf2mc8.asm:

reti ; 30

call ext ; 31s12r34
subc a ; 32

subcw a ; 33

subc a,#v22 ; 34r22

subc a,*dir ; 35*33

ASXSCN LISTING FILE SCANNER Page A-2

subc a,@ix+off ; 36r44
subc a,Qep ; 37

The r, s, and * are specific address relocation flags created
when the -Tf option is specified with any ASxxxx assembler.

Invoking the assembler:
ast2mc8 -gloaxff tf2mc8

produces a listing file:

033B 30 677 reti ; 30

033C 31s12r34 678 call ext ; 31s12r34
033F 32 679 subc a ; 32

0340 33 680 subcw a ; 33

0341 34r22 681 subc a,#v22 ; 34r22
0343 35*33 682 subc a,*dir ; 35*33
0345 36r44 683 subc a,@ix+off ; 36r44
0347 37 684 subc a,@ep ; 37

The expected code can be compared with the generated code by
invoking the scanning program:

asxscn tf2mc8.1Ist
0 code difference(s) found in file tf2mc8.Ist

The assembled code can also be linked:
aslink -u .._options... t2fc8

to create an updated listing file:

033B 30 677 reti ; 30

033C 31 12 34 678 call ext ; 31s12r34
033F 32 679 subc a ; 32

0340 33 680 subcw a ; 33

0341 34 22 681 subc a,#v22 ; 34r22
0343 35 33 682 subc a,*dir ; 35*33
0345 36 44 683 subc a,@ix+off ; 36r44

which resolves all relocations and removes the relocation flags.
This file can also be verified:

asxscn -1 tf2mc8.rst
0 code difference(s) found in file tf2mc8.rst

ASXSCN LISTING FILE SCANNER Page A-3

The verification of both the .Ist and .rst files from the
same assembler test file requires careful definition of external
variables so that the assembler listing file and the linker
listing file have the same code values.

APPENDIX B

ASXCNV LISTING CONVERTER

The program ASXCNV 1is a debugging utility program used to
create an assembler file with verification data. The program
may be invoked with any of the following options:

Usage: [-dgx234] file

d decimal listing
q octal listing
X hex listing (default)
2 16-Bit address (default)
3 24-Bit address
4 32-Bit address

Select one of the -d, -q, or -x options to match the listing
file format and select only one of the -2, -3, or -4 options to
match the addressing range of the listing file.

Each source assembly line which creates output data will have
the data appended to the source line as a comment. The appended
comment will contain the relocation codes if they are present in
the listing file. Any existing comment on the [line will be
overwritten.

Given an existing listing file, a.lst, containing:

033B 30 677 reti

033C 31s12r34 678 call ext

033F 32 679 subc a

0340 33 680 subcw a

0341 34r22 681 subc a,#v22
0343 35*33 682 subc a,*dir
0345 36r44 683 subc a,Q@ix+off

0347 37 684 subc a,@ep

ASXCNV LISTING CONVERTER

A converted
command:

asxcnv -d2 a.lst

Page B-2

listing Tile can be created using the following

The created output file, a.out, 1s a new assembly file now con-

tain the verification data

reti
call
subc
subcw
subc
subc
subc
subc

ext

a

a
a,#v22
a,*dir

a,@ix+off ;

a,@ep

in the comments:

30
31s12r34
32

33

34r22

; 35*%33

36r44

; 37

APPENDIX C

S190S9 CONVERSION UTILITY

C.1 BACKGROUND

0S9 1is an Operating System for the TRS-80/Tandy Color Com-
puters based on the 6809/6309 processors. The open source ver-
sion of the 0S9 operating system is Nitr0S-9 and i1s available
at:

The NitrOS-9 Project
http://www._nitros9.org
The s190s9 utility package contains the following:
1) 0S9 definition files and an 0S9 assembler module

which creates the 0S9 header, code and data areas,
and the module CRC block:

0s9 _mod.def 0S9 Module Definitions
0s9_sys.def 0S9 Sytem Definitions
0s9_mod.asm 0S9 Modulle Begin / End Code

2) a program, sl190s9, to post-process assembled 0S9
modules from S19 format into binary 0S9 modules
with the appropriate header checksum and module
CRC values calculated.

The Tile 0s9 mod.def contains module definitions used iIn the
header of 0S9 binary files and was derived from the NiItr0S-9
file 0s9 mod.def.

S190S9 CONVERSION UTILITY PAGE C-2
BACKGROUND

The Tfile 0s9 sys.def contains system definitions pertaining
to system service request codes, system reserved calls, 1/0 ser-
vice request calls, TfTile access modes, signal codes, get/put
status codes, module offsets, and error codes. This file was
derived from the Nitr0S-9 file o0s9defs.a.

C.2 CREATING AN 0S9 MODULE

This section describes how to create an 0S9 module using the
files 0s9 mod.def, 0s9 sys.def, and 0s9 _mod.asm.

When creating an 0S9 module certain parameters are required
by the 0s9 mod.asm file to create the appropriate headers. The

list of supported parameters is listed here:

Basic Header:

.define 0S9 ModNam, "Modulle _Name™*
.define 0S9 Typ, "Type_Value™
.define 0S9 Lng, "Language_Value'
.define 0S9 Att, "Attributes Value"
.define 0S9 Rev, "Revision Value™

General Parameters:
.define 0S9 ModExe, "Module Entry Point Offset"
.define 0S9 ModMem, "Module Permanent Storage"
Device Driver Parameters:

.define 0S9 Mod, "Module Mode™

Descriptor Parameters:

.define 0S9 FMN, "Device Driver Name Label™
.define 0S9 DDR, "Device Driver Name Label™
.define 0S9_AbsAdr02, "Device Absolute Address <23:16>"
.define 0S9 AbsAdrO1, "Device Absolute Address <15:08>"
.define 0S9 AbsAdr00, "Device Absolute Address <07:00>"
.define 0S9 Opt, "Descriptor Option™

.define 0S9 DType, "Descriptor Data Type"

The 0S9 Module file 0s9 mod.asm supports the creation of the
following simple module types:

SYSTM - System Module
PRGRM - Program Module

S190S9 CONVERSION UTILITY PAGE C-3
CREATING AN 0OS9 MODULE

SBTRN - Subroutine Module

DRIVR - Device Driver Module
FLMGR - File Manager Module
DEVIC - Device Descriptor Module

The following code shows the steps required when creating an
0S9 program using the o0s9 mod.asm file. 0s9 mod.asm Qloads the
0s9 mod.def and o0s9 sys.def files, defines the software inter-
rupt macro 0s9, and creates the 0s9 program header and crc
blocks.

C.2.1 Step 1: Define Header Values

- XXX
; Step 1:
; Use the .define assembler directive

; to insert the parameters into the
; 0S9 mod.asm®s header structure.

; Note: See the file 0s9 mod.asm for
; parameter names and definitions.

.title List Program
.sbttl Header Definitions
.define 0S9 ModNam, "LSTNAM"'
.define 0S9 Typ, "PRGRM"™
.define 0S9 Lng, "OBJCT™
.define 0S9 Att, "REENT"
.define 0S9 Rev, it
.define 0S9 ModExe, "LSTENT"
.define 0S9 ModMem, "LSTMEM™

C.2.2 Step 2: Create The Module Header

; Step 2:
; Set the symbol 0S9 Module equal to 1
; and .include the file 0s9 mod.asm.

0S9 Module =1 ; 0S9 Module Begin (==1)
; -include ""0s9 mod.asm™

-nlist

-.include ""0s9 mod.asm"

_list

S190S9 CONVERSION UTIL
CREATING AN OS9 MODULE

With 0S9 Module =
code stream:

.define 0s9,

; Include 0S9
; 0S9 sys.def
.nlist
.include
.list

; 0S9 mod.def
.nlist
.include
.list

ITY PAGE C-4

1 the following code is inserted into the

swi2 -byte”™ ; 0s9 macro

Definition Files
Listing Disabled

"0s9_sys.def"
Listing Disabled

"0s9 mod.def™

; Define The 0S9 Module Bank and Areas.

; Place the module program code in area 0S9 Module

; and the modu

le data i1n area 0S9 Data.

.bank 0S9 Module (BASE=0,FSFX=_0S9)

.area 0S9 Module (REL,CON,BANK=0S9 Module)
.bank 0S9_Data (BASE=0,FSFX=_DAT)

.area 0S9 Data (REL,CON,BANK=0S9_Data)

.area 0S9 Module

0S9_ModBgn = .

_byte 0S9 1DO, 0S9 ID1

; 0S9 Module Sync Bytes

-word 0S9 ModEnd - 0S9 ModBgn

; Length (Includes 3 CRC Bytes)

-word 0S9_ ModNam - 0S9 ModBgn

Offset to Module Name String

-byte 0S9 Typ | 0S9 Lng

; Type / Language

.byte 0S9 Att | 0S9_Rev

.byte OxFF

; Attributes /7 Revision

; Header Parity

-word 0S9_ ModExe - 0S9 ModBgn

; Execution Entry Offset

S190S9 CONVERSION UTILITY

PAGE C-5

CREATING AN 0OS9 MODULE

-word

C.2.3 Step 3:

The

the program.

next step

0S9 ModMem

; Storage Requirement
0S9_ ModData

; Module Data

Allocate Storage

IS to add the program data storage space for
Note that the space is only allocated here and no

initialization is done.

-area

LIST UTILITY COMMAND

Syntax: list <pathname>
COPIES INPUT FROM SPECIFIED FILE TO STANDARD OUTPUT
; Step 3:

; Allocate the storage in .area 0S9 Data

0S9_Data

; STATIC STORAGE OFFSETS

BUFSIZ _equ 200 ; size of input buffer

Base =
IPATH = . - Base

-rmb 1 ; Input path number
PRMPTR = . - Base

-rmb 2 ; parameter pointer
BUFFER = . - Base

-rmb BUFSI1Z ; allocate line buffer

.rmb 200 ; allocate stack

-rmb 200 ; room for parameter list
LSTMEM = . - Base

S190S9 CONVERSION UTILITY
CREATING AN 0OS9 MODULE

C.2.4 Step 4:

PAGE C-6

Insert The Program Code

Once the data storage space has been allocated then the pro-
gram code is added to .area 0S9 Module:

; Step 4:
; Insert the Module Code into .area 0S9 Module

.area
LSTNAM: .strs

LSTENT: stx
lda
0s9
bcs
sta
stx

LIST20: Ida
leax
ldy
0s9
bcs
Ida
0s9
bcc
bra

LIST30: cmpb
bne
lda
0s9
bcs
1dx
lda
cmpa
bne
clrb

LIST50: o0s9

0S9 Module
"List"

*PRMPTR
#READ.
1$OPEN
L1ST50
*1PATH
*PRMPTR
*1PATH
*BUFFER, U
#BUFSI1Z
I$READLN
LIST30
#1
ISWRITLN
LIST20
LISTS0

#ESEOF
LIST50
*1PATH
ISCLOSE
LIST50
*PRMPTR
» X
#0x0D
LSTENT

FSEXIT

; String with last byte

; or"d with 0x80

; save parameter ptr

; select read access mode
; open input file

; exit i1If error

; save i1nput path number
; save updated param ptr

load input path number
load buffer pointer

; maximum bytes to read

read line of input

; exit if error

load std. out. path #

; output line
; Repeat if no error
; exit 1T error

; at end of file?
: branch if not

load input path number

; close input path

..exit if error
restore parameter ptr

; End of parameter line?

.-no, list next file

. terminate

S190S9 CONVERSION UTILITY PAGE C-7
CREATING AN 0OS9 MODULE

C.2.5 Step 5: End Assembly By Inserting CRC
; Step 5:

; Set the symbol 0S9 Module equal to O
; and .include the file 0s9 mod.asm.

0S9 Module = 0 ; 0S9 Module End (==0)
; -include "0s9 mod.asm"

-nlist

-include ""0s9 mod.asm"

.list

-end

With 0S9 Module = 0 the following code is the last code in-
serted into the code stream:

.area 0S9 Module

; The 3-Byte Module CRC
-byte 0S9 CRCO, 0S9 CRC1, 0S9 CRC2

0S9 ModEnd = . ; End of 0S9 Module

C.3 THE CONVERSION UTILITY: S190S9

Once you have assembled your module into an .S19 file use the
program s190s9 to create the binary 0S9 module file.

The program s190s9 is invoked from the command line:
s190s9 mod.sl19 -o mod.bin

where mod.s19 1i1s the input S19 file and mod.bin 1s the 0S9
binary output file.

The conversion utility s190s9 reads the .S19 file into an in-
ternal buffer (48K bytes maximum). As each line 1s read from
the .S19 file the record length, address, data, and checksum
values are processed checking for invalid characters and a valid
checksum.

After the .S19 file has been loaded into the internal buffer
the 0S9 module is checked for correct length, and the 0S9 Module
ID, 0S9 Initial Header Checksum, and 0S9 Initial Module CRC are

S190S9 CONVERSION UTILITY

PAGE C-8
THE CONVERSION UTILITY: S190S9

verified. After these parameters have been checked then the ac-
tual header checksum and module CRC values are calculated and
replace the Initial Module Checksum and CRC values. The final-
ized module is then written to the file mod.bin.

APPENDIX D

RELEASE NOTES

Asxxxx/ASlink version 5.40 is
considered a major release version.

March 2021 Version 5.40

€y

)

3

€Y

)

C)

€

C)

®

Added a new assembler:

AS89LP, which supports the AT89LP series of
advanced 8051 clones with extensions.

SFR files and a Macro Library are included.

A rewrite of the AS6816 assembler to provide
full 20 bit addressing and fixes to the code
generation.

ASZ80 assembler has been updated to support the
8085 and 8080 using the Z80 syntax.

AS8085 assembler has been updated to support
the 8080.

Assemblers flagging <# and ># as syntax errors
have been Tixed to be equivalent to #< and #>.

Added the .incbin directive to allow verbatim
inclusion of a byte stream.

Added extended error reporting to all assemblers
for most <a>, <o>, and <g> errors.

Fixed bug in macro processor related to
missing or malformed arguments.

Update sections of code using strncpy() giving
errors when compiled with GCC 10.2.0 (no other

RELEASE NOTES Page D-2

compiler flagged this code with an error).

2019 03 10 Version 5.30 Update 1

This update for Version 5.30 of the ASxxxx Cross
Assemblers includes fixes for the following errors:

(1) The as78k0 assembler had numerous register
"H®" and "L" errors which have been corrected.

(2) The linker reported the wrong version and has
been corrected.

January 2019 Version 5.3

(1) Added new assemblers:
as78k0, as8008, as8008s, as8x300, and asz280

(2) General assembler updates
added -1 to insert assember lines before i1nput files
fixed .macro listing options
fixes related to <g> errors and the -bb option
fix the escape processing of the "\" character
-.include file location i1llustrations

(3) General linker updates
fix library path file strings
rewrite of _Ist to .rst translation

(4) Assembler specific fixes
as740
changed 2-byte code to 1-byte code definition

as8048
Corrected bug in "sel™ instruction in .8041 mode.

ast2mc
Corrected documentation for asf2mc processor types.

aspic
Fixed missing machine type variable definition
Fixed "tris”™ instruction

asst8

Included add/addw/sub/subw sp,#byte modes.
Added the int opcode. Cleaned up st8addr.c
addressing mode comments and code.

RELEASE NOTES Page D-3

January 2017 Version 5.20

€y

&)

3

Completed the functionality for propagating
the boundary specifications .odd, .even, and
.bndry processed during assembly to the linker.

Restored the correct functionality of the
.org directive In areas of REL type.

Added Intel Hex legacy start address record
type 1 as an option.

Summary of changes/additions to the ASxxxx Assemblers from Ver-
sion 5.11 to Version 4.11.

2015 _06_27 Version 5.10 Update 1

This update for Version 5.10 of the ASxxxx Cross
Assemblers includes fixes for the following errors:

€y

2

The as6500 assembler incorrectly assembled
cpx # and cpy # instructions.

An error In asmain.c inhibited the listing of
all _if.. assembly directives.

2014 10 _31 Version 5.10

€y

)
3

Rewrite of listing to relocated listing translation
code i1In the assembler and the linker base code.

The Assemblers now create a .Ist to .rst hint file
with the extension .hlr (when both .Ist and .rel
files are created by the assembler).

Add as6100 assembler (Intersil IM6100 / Harris HM6100)

Add as78k0s assembler (Renesas/NEC 78K/0S)

2013 05 12 Version 5.00 Update 6

RELEASE NOTES Page D-4

This update for Version 5.00 of the ASxxxx Cross
Assemblers rolls up updates 1, 2, 3, 4, and 5 with fixes
for the following:

(1) Fix asscmp assembler (pre-increment on fetch).

(2) Fix aslink error reporting for PC relative modes.

2012 _08 01 Version 5.00 Update 5

Update 05 for the ASxxxx Assembler and Linker Version 5.00
(use "pkunzip -d u05500.zip® for extraction with MS-DOS)
(use "unzip -L -a u05500.zip" for extraction with Linux)

See the note about merging
this update with the
asxvbpxx distribution.

This update for Version 5.00 of the ASxxxx Cross
Assemblers rolls up updates 1, 2, 3, and 4 with the addition of
a new assembler and fixes:

(1) A new cross assembler for the Fairchild
F8 microprocessor (or Mostek 3870).

(2) Minor syntactical changes for ANSI C compatability,
fix type conversion warnings, and update the
various build, make, and test files.

Update 4 ltems

(1) The AS8048 base opcode value for the JMPP
instruction should be B3 and NOT 83.

(2) The AS8051 assembler calculates iIncorrect
offsets when using the program counter, .,
as a destination iIn the iInstructions having
a PC-Relative addressing mode. These
instructions include: jbc, jb, jbn, jc,
jnc, jz, jnz, cjne, and djnz.

Update 3 ltems

(1) A new cross assembler for the Fairchild

RELEASE NOTES Page D-5

F8 microprocessor (or Mostek 3870).

(2) Minor syntactical changes for ANSI C compatability,
fix type conversion warnings, and update the
various build, make, and test files.

(3) New cross assemblers for STMicroelectronics
ST6, ST7, and STM8 microprocessors.

(4) An ASlink list Tile update error fTix (-u option)
causing some errors not to be iInserted into the
created .rst fTile.

(5) An additional ASxxxx assembler option (-v) which
enables checking for out of range signed / unsigned
values iIn symbol equates and arithmetic operations.
This option has some ambiguities as internally the
assemblers use unsigned arithmetic for calculations.
(e.g. for a 2-byte machine -32768 and 32768 are both
represented as 0x8000)

Update 2 ltems

(1) When using the assembler directive .end to specify
the code entry address the assembler fails to set
the variable . _END. as a global. Therefor the
value of . _END. i1s not passed to the linker and
the start address frame i1s always zero.

(2) The linker will fail to create a start address frame
when there is no code generated within the area/bank
referenced by the . _END. variable.

Update 1 ltems

(1) The newest versions of gcc (and perhaps other
compilers) give warnings about missing arguments
in the fprintf() function. This update replaces
fprintf(argl, arg2) with fprintf(argl, "%s'", arg2)
in each affected line of code.

(2) The newest versions of gcc (and perhaps other
compilers) have defined “getline® as a standard
function In "stdio.h". This conflicts with the
function "getline()" in the ASxxxx package.

All references to "getline()" have been changed
to "nxtline()".

RELEASE NOTES Page D-6

Before merging the asxvbpxx directory and subdirectories with
the V5.00 distribution the following files/directories must be
deleted:

[asxv5pxx\asf2mc8\f8mch.c
[asxv5pxx\asf2mc8\f8adr.c
[asxv5pxx\asf2mc8\f8pst.c
[asxv5pxx\ast2mc8\f8.h

[asxv5pxx\asxmak\vc6\asf2mc8]
[asxv5pxx\asxmak\vs05\ast2mc8]

2011 _07_24 Version 5.00 Update 4

This update for Version 5.00 of the ASxxxx Cross
Assemblers includes fixes for the following errors:

(1) The AS8048 base opcode value for the
JMPP instruction should be B3 and NOT 83.

(2) The AS8051 assembler calculates incorrect
offsets when using the program counter, ".',
as a destination In the instructions having
a PC-Relative addressing mode. These
instructions include: jbc, jb, jbn, jc,
jnc, jz, jnz, cjne, and djnz.

2010_10_31 Version 5.00 Update 3

This update for Version 5.00 of the ASxxxx Cross
Assemblers rolls up updates 1 and 2 with the addition of
three new assemblers and fixes:

(1) New cross assemblers for STMicroelectronics
ST6, ST7, and STM8 microprocessors.

(2) An ASlink list file update error fix (-u option)
causing some errors not to be iInserted into the
created .rst fTile.

(3) An additional ASxxxx assembler option (-v) which
enables checking for out of range signed / unsigned
values i1n symbol equates and arithmetic operations.

RELEASE NOTES Page D-7

This option has some ambiguities as internally the
assemblers use unsigned arithmetic for calculations.
(e.g. for a 2-byte machine -32768 and 32768 are both
represented as 0x8000)

Update 2 ltems

(1) When using the assembler directive .end to specify
the code entry address the assembler fails to set
the variable . _END. as a global. Therefor the
value of . _END. i1s not passed to the linker and
the start address frame i1s always zero.

(2) The linker will fail to create a start address frame
when there iIs no code generated within the area/bank
referenced by the . _END. variable.

Update 1 ltems

(1) The newest versions of gcc (and perhaps other
compilers) give warnings about missing arguments
in the fprintf() function. This update replaces
fprintf(argl, arg2) with fprintf(argl, "%s", arg2)
in each affected line of code.

(2) The newest versions of gcc (and perhaps other
compilers) have defined “getline® as a standard
function In "stdio.h®". This conflicts with the
function "getline()" in the ASxxxx package.

All references to “"getline()" have been changed
to "nxtline()".

2010 _04_01 Version 5.00 Update 2

This update for Version 5.00 of the ASxxxx Cross
Assemblers includes fixes for the following errors:

(1) When using the assembler directive .end to specify
the code entry address the assembler fails to set
the variable . _END. as a global. Therefor the
value of ._ _END. is not passed to the linker and
the start address frame is always zero.

(2) The linker will fail to create a start address frame
when there 1Is no code generated within the area/bank

RELEASE NOTES Page D-8

referenced by the . _END. variable.

2010 03 _03 Version 5.00 Update 1

This update for Version 5.00 of the ASxxxx Cross
Assemblers includes fixes for the following errors:

(1) The newest versions of gcc (and perhaps other
compilers) give warnings about missing arguments
in the fprintf() function. This update replaces
fprintf(argl, arg2) with fprintf(argl, "%s", arg2)
in each affected line of code.

(2) The newest versions of gcc (and perhaps other
compilers) have defined "getline”™ as a standard
function in "stdio.h”". This conflicts with the
function “getline()" in the ASxxxx package.

All references to “"getline()" have been changed
to "nxtline()".

2009 04 _01 (Version 5.00)

Added a general purpose macro processor to the ASxxxx assem-
blers.

Added true (t), false (f), and true or false (tf) condition-
als to the .if / .else / .endif construct. The conditionals
aft, _(iff, and .iftf allow replacement of the .else directive
making the .if / .endif construct more readable.

e.g- ift 1T condition iIs true

An alternate .if construction has been added to the ASxxxx
assemblers:
e.g- .if eq,--- if argument ==

The i1mmediate conditional statements have been added to the

ASxxxx assemblers. These conditionals can replace the
.if / ... / .endif construct for a single assembler source line:

RELEASE NOTES Page D-9

e.g- .iifeq arg label: _word 0x1234

The alternate immediate conditional statements have also been
added to the ASxxxx assemblers:
e.g- aif eq,arg label: _word 0x1234

The [listing options TfTor the ASxxxx assemblers has been up-

dated to enable/disable any of the following parameters from be-
ing output to a generated listing file:

err error codes

loc code location

bin assembler binary code

eqt symbolic equates / 1T evaluations
cyc machine cycles

lin assembler source line number
src assembler source code

pag paging control

Ist listing of _list /7 .nlist

md macro definition

me macro expansion

meb macro expansion binary code

! sets the listing mode to
1(.list) or !'(.nlist) before
applying the sublist options
e.g- .nlist (Ist,pag) ; disable _list/.nlist listing
; and pagination
The NOT parameter, !, is used to set the listing mode to the

opposite sense of the ._list or .nlist directive. For example:

.nlist (1) 1is equivalent to .list and
.list (1) is equivalent to .nlist

To enable listing and simultaneously disable the cycle count use
the directive:

.nlist (!,cyc)

or 1f you wish to suppress the listing of the .list / .nlist
directives:

-.nlist ; disables all listing

RELEASE NOTES Page D-10

-.nlist (1,Ist) ; enables all listing except
list (...) and .nlist

Normally the _list and .nlist directives are not evaluated
when encountered within a FALSE conditional block. This default
behavior can be modified by specifying a non zero argument iIn
the _list or .nlist directive:

-nlist 1,(1,Ist) ; enables listing even within
; a FALSE conditional block

The .bndry assembler directive has been added to ASxxxx. The
.bndry directive changes the current location address to be
evenly divisible by a specified integer value.

e.g- .org 0
.bndry 4
;. ==0
org 1
bndry 4
; == 4
2009 02
Added the Cypress PSoc (M8C) ASMBC assembler
to ASXXXX.
2008_09

Added the 8048 (8021, 8022, and 8041) AS8048
assembler to AsxXXXX.

2008 02
Added the SC/MP ASSCMP assembler to ASXXxXXX.

RELEASE NOTES

2008_02_03 (Version 4.11 Update 4)

An update to the AS2650 assembler to
fix the following errors:

1

2)

3)

The i1ndexed addressing mode generates invalid
code by using the first argument register as
the i1ndex register: (addr = 0x1234)

loda rO, [addr,rl] OC F2 34
this should give OD F2 34

The iIndex addressing mode did not generate
an addressing error when the first argument
register was not rO:

stra rl,[addr,r2] should give an <a>
error, the source must be rO

loda r2,[addr,r3] should give an <a>
error, the destination must be rO

The S2650 auto increment and decrement indexing
modes always perform the register update before
the register i1s used. 1.e. +Rn or -Rn. The
assembler now accepts +Rn or Rn+ as meaning
pre-increment and -Rn or Rn- as meaning
pre-decrement.

The AS2650 assembler tstscn files have been updated
for testing the assemblers.

2007_10_21 (Version 4.11 Fix)

In the AS6816 assembler the instruction ANDP gives
wrong object code. Changed from 37 2A to 37 3A.

Page D-11

RELEASE NOTES Page D-12

2007_04_01 (Version 4.11 Update 3)

An update to the ASPIC assembler and
associated fTix to ASLINK:

1) Change the pic addressing to lo/hi from hi/lo
byte ordering.

2) The update fixes an error in the picl7 series
LCALL instruction.

3) A rewrite of the picl8 series assembler to change
the PC addressing from 1 per 16-bit word to 1 per
8-bit byte and add the extended iInstruction set.

4) Modify the Linker Merge Mode processing to take into
account the discarded low order bits for PC Relative
Addressing.

5) New tstscn files for testing the assemblers.

2006_11 01 (Version 4.11 Optional Update 2)

1) 0S9 definition files and an 0S9 assembler module
which creates the 0S9 header, code and data areas,
and the module CRC block:

0s9 mod.def 0S9 Module Definitions
0s9_sys.def 0S9 Sytem Definitions
0s9_mod.asm 0S9 Modulle Begin / End Code

2) a program, sl1l90s9, to post-process assembled 0S9
modulles In S19 format into binary 0S9 modules
with the appropriate header checksum and module
CRC values calculated.

3) new make and project files which may be used to
compile the s190s9 program.

RELEASE NOTES Page D-13

2006_11 01 (Version 4.11 Optional Update 01)

The .list and .nlist directives are now modified
by .if / .else / .endif processing so that they are
active only in a TRUE clause.

The _.page and .include directives are now modified
by the _list and .nlist directives so that pagination
occurs only when listing is active.

The new default functionality for the _list, .nlist
and .page directives may be modified by including an
optional argument 1iIn the directive as shown here for
the the _list directive:

list arg

a non-zero argument invokes the directive irrespective
of the .if / _else / .endif status.

2006_07_26 (Version 4.11 Patch 01)
The assembly of a direct page instruction with a
numeric constant causes a program crash when a .rel
file is created. e.g.:

andb *0x02

The wuse of a symbolic constant or symbol plus a
a constant compiles normally.

val = 0x02
andb *val
andb *extern+0x01

The assemblers effected are:

as6809
as6812
ash8
aspic

RELEASE NOTES Page D-14

Summary of changes/additions to the ASxxxx Assemblers from
Version 4.10 to Version 4._.11.

1.

Incorporated the patches contained in p01410.zip which
corrected a coding error that affected BANKS containing
multiple ABS areas or mixed AREA types.

Incorporated the patches contained in p02410.zip which
corrected improper use of R _USGN 1i1n most addressing
modes i1n AS6500. This caused unexpected <a> errors iIn
V4 _.xx because of the ASxxxx core change to 32-bit in-
tegers and arithmetic.

Incorporated the patches contained in p03410.zip which
corrected errors in the _.local and .globl assembler
directive processing routine that introduced unwanted
side effects for variable and symbol definition Tiles.
These effects included improper definitions and incor-
rect error warnings.

The following new subdirectories and their files have
been added to the asxtst directory:

* areabank Area and Bank Processing Test

This directory contains several test programs:
ts.asm (single file - multiple areas), tml.asm and
tm2.asm (multiple file - multiple areas), and
tbm.asm, tbml.asm, and tbm2.asm (multiple file -
multiple areas within a bank) and several other
files which verify the correct operation of the
linker when used with a single linked file, multi-
ple linked files having no banking, and multiple
linked Tiles with banking. These reference fTiles
show 1n detail how the .area and _bank directives
work together.

* equtst Equate Processing Test
This directory contains a test file for verifying
the operation of the .globl, .local, .equ, .gblequ,
and .Iclequ directives and the =, ==, and =:
equalities.

* jnctst Nested Include File Test

* itst Include File Error Reporting Test

RELEASE NOTES Page D-15

Incorporated the updates contained in u01410.zip which
added 10 undocumented 8085 instructions to the AS8085
assembler.

Summary of changes/additions to the ASxxxx Assemblers from
Version 4.00 to Version 4.10.

1.

Added new assemblers for the Zilog EZ80, Zilog Z8, Sig-
netics 2650, and Fujitsu F2MC8(L,FX) processors.

Added the processor cycle count option (-c) to all pro-
Cessors.

Several of the assemblers (ASzZ80, ASRAB, AS6805,
AS6808, AS6812, ASF2MC8, ...) now support subsets or
supersets of their basic opcodes by the use of assem-
bler specific directives.

Added .ifeq, -ifne, .iflt, .ifgt, .ifle, and .ifge con-
ditional assembly directives.

Added support for the Tandy Color Computer Disc Basic
binary file format to ASLINK.

Problem:

When an area size is equal to the "address space size”
the size parameter is reported as 0. (A normal condi-
tion caused by address rollover to 0.) Aslink inter-
preted this as a 0 size.

Fix:

A new area "Output Code Flag®™ bit was defined to indi-
cate when data 1s defined 1In an area. ASxxxx and
Aslink have been updated to set and process this area
flag bit.

Problem:

The wuse of the .end assembler directive in an ASXXXX
assembler would cause Aslink to output the optional
start address in all output files.

Fix:
Updated Aslink to output the optional start address
only in the output file associated with the area/bank

RELEASE NOTES Page D-16

10.

11.

12.

containing the .end directive.

Problem:
Aslink creates output Tfiles for banks with no output
data.

Fix:
Aslink now deletes any created output file for banks
with no data.

Incorporated the patches contained in p01400.zip for
files t1802.asm and 1802pst.c to correct for an error
in the opcodes generated for the BM, BL, and BNF
mnemonics.

Incorporated the patches contained in p02400.zip for
file ds8adr.c to correct for an error 1iIn the direct
page addressing mode of AS8XCxXX.

Incorporated the patches contained in p03400.zip for
file rabmch.c to correct for an error in the processing
of the "ret cc" instruction.

Made many corrections to internal code comments.

APPENDIX E

CONTRIBUTORS

Contributing Authors:

Marko Makela
Marko dot Makela at Helsinki dot Fi

John L. Hartman
noice at noicedebugger dot com

G. Osborn Contributed To:

gary at s-4 dot com

Ken Hornstein Contributed To:

kenh at cmf dot nrl dot navy dot mil

Bill McKinnon
w_mckinnon at conknet dot com

Roger lvie
ivie at cc dot usu dot edu

Uwe Stellar
Uwe dot Steller at t-online dot de

Shugen Chen
schen at devry dot edu

Edgar Puehringer
edgar_pue at yahoo dot com

Ulrich Raich / Razaq ljoduola
Ulrich dot Raich at cern dot ch

Patrick Head
patrick at phead dot net

First Author: AS6500

First Author: AS8051

ASxxxx Internals

LKS19.C and LKIXX.C

Object Libraries

CoAuthor: AS8XCXXX

First Author: ASGB

First Author: AS740

First Author: AS1802

First Author: AS61860

First Authors: ASRAB

First Author: ASEZ80

CONTRIBUTORS Page E-2

Boisy G. Pitre Tandy Color Computer Disk Basic Binary
boisy at boisypitre dot com .ifxx directives
Mike McCarty Processor Cycle Count Option

mike dot mccarty at sbcglobal dot net

Mengjin Su PIC18Fxxx Extended Instructions
msu at micron dot com

Carl Rash Visual Studio 2010 Project Files
crash at triad dot rr dot com

John Coffman First Author: ASZ280
johninsd at gmail dot com

Mike Naberezny Suggestions and Debugging: AS78KO0
mike at naberezny dot com

Mike Bezera Extensive Debugging: AS6816
mikebezera at gmail dot com

And thanks to all those who took the time to
send bug reports, suggest changes, or simply
sent a note of encouragement. These were and
are greatly appreciated. Thank you.

APPENDIX F

NOTES AND TIPS

In no particular order are some notes and tips on using the
ASxxxx assemblers that users have asked about.

F.1 REGISTER RENAMING

Sometimes it 1is convenient to give alternate names to a
processor®s registers to improve readability or make your code
more descriptive.

For almost all the assemblers the registers are defined in-
ternally and do not have a value. This means that using an
equate statement will fail:

iptr .equ R3 / iptr = R3
and will give a <u>, undefined, error.

Use the .define directive to specify the alternate name for a
register:

.define keyword ~N/string”

e.g-
.define iptr ~/R3/

The assembler, when it finds the key word "iptr®, will first
replace the string "iptr® with "R3" and then process the line.
(Note that the the keyword must start with a letter.)

NOTES AND TIPS PAGE F-2
AREAS AND BANKS

F.2 AREAS AND BANKS

The .area and .bank directives are just a means of organiz-
ing, ordering, combining, and placing code where you want it.

An example might be the construction of an area which con-
tains addresses of messages and an area containing the messages.
In this case define an area which will only contain the base ad-
dress of the address table, the second will contain the list of
addresses, and the third which will contain the messages.

.area msgbas ; Message address base
.area msgadr ; Message addresses
.area msgs ; Messages

Then insert message addresses in area msgaddr and messages iIn
area msgs:

.area msgbas ; Base of msgadr table

msgadr :
.area msgadr
-word msg01 ; Address of message 1
-word msg02 ; Address of message 2
.area msgs

msg0l: .asciz 'Message Number 1"

msg02: .asciz 'Message Number 2"
.area MyCode ; Reselect Code Area

(Note: be sure to reselect the code area you want before

continueing with your coding.)

At any further point iIn your source code you can insert addi-
tional messages in the table by simply repeating the process:

NOTES AND TIPS PAGE F-3
AREAS AND BANKS

.area msgadr
-word msg03 ; Address of message 3

.area msgs
msg03: .asciz ''Message Number 3"

.area MyCode ; Reselect Code Area

with the message addresses and messages appended to the previous
entries. (Note that the label msgadr, which is the beginning of
the address table, is required to be presented to the linker be-
fore area msgadr.)

This procedure can be replicated as needed and also iIn other
assembly files. The ordering will be defined by the order 1in
which the individually assembled modules are linked. This may
be especially useful when [linking optional modules and want
their messages included in the same dispatch table.

It will be easier to manage your areas by creating an assem-
bly file which contains the ordering of your code and including
it in all your assembly files or assemble this definition file
and make 1t the first file when linking your project.

In this example the definition file should contain the fol-
lowing three areas:

.area msgbas ; Message Base
.area msgadr ; Message Addresses
.area msgs ; Messages

The bank directive allows the programmer to position code
anywhere in the address space of the processor. Suppose it is
desired to place the message tables at location 0x6000 in the
processor address space. The bank directives might be:

.bank MsgTbl (Base=0x6000)

and the area definitions should be changed to place the code
into the specific bank:

NOTES AND TIPS PAGE F-4
AREAS AND BANKS

.area msgbas (Bank=MsgTbl) ; Message Base
.area msgadr (Bank=MsgTbl) ; Message Addresses
.area msgs (Bank=MsgTbl) ; Messages

One should note that by using a definition file, which con-
tains all the area/bank options, all other assembly Tfiles need
only .area directives with the area name.

F.3 INHIBITING INCLUDE FILE PAGINATION

The default actions when the .include directive is invoked
are:

1) Interrupt current assembly processing
2) Start a New Page

3) Assemble include file statements

4) Start a New Page

5) Continue assembling where interrupted

To i1nhibit the “Start a New Page® steps when including a
file, insert the appropriate listing directives as shown in this

example.
-nlist ; Inhibits Pagination
-.include area.def™ ; Include the File
list ; Restart Listing

Because the .nlist directive also applies to the include fTile
you must place an appropriate .list directive 1iIn the 1include
file. At completion of the include file processing listing au-
tomatically reverts to the .nlist mode and pagination 1is again
suppressed. The .list directive then restores normal listing as
assembly processing continues.

NOTES AND TIPS PAGE F-5
INHIBITING INCLUDE FILE PAGINATION

NOTE

IT the assembled include file generates output object
code and a .rst file i1s going to be created by the
linker, then the assembler listing file must include
the .list options (loc,bin) for regular code or (meb)
for macro generated code. Failure to include all
generated code in the listing Tfile will result 1in
translation errors In the .rst file.

When i1nserting an included file using the above technique and
there 1s no listing directive within the file, then the result-
ing assembler listing file will show no indication the file was
actually included. .list and .nlist are never shown in the out-
put listing file. To indicate the file was included, using the
example Area/Bank definition file, one might list a single line
description of the inclusion by inserting these lines in the in-
cluded fTile.

list (!,src)
; area.def Areas/Banks Defined
-nlist

Then the result of

-.nlist ; Inhibits Pagination
-.include area.def" ; Include the File
list ; Restart Listing

will be a single line In the assembly listing:

: area.def Areas/Banks Defined

F.4 TO INCLUDE OR TO INCLUDE

When building a project there is always the decision to as-
semble multiple files together on the command line, use the .iIn-
clude directive to iInsert assembly files Into the project, or to
assemble files seperately and then combine them using the
linker.

When coding reusable modules 1t may be more convenient to as-
semble these modules seperately. However this also requires a
method to define the global entry points and data for the

NOTES AND TIPS PAGE F-6
TO INCLUDE OR TO INCLUDE

calling program. The following technique allows any of the
three methods described to be used.

The module 1s designed in such a way that it can be used as
an independent module, included module, and a globals definition
file. The Tirst step is to open a file, perhaps "fnctns.asm”,
inhibit listing, and create a macro which holds all the global
definitions:

-nlist

.macro fnctns.globals

-globl funcl ; function 1

-globl func2 ; function 2

-globl inpval ; Input variable

-globl outval ; ouput variable
-.endm

Next add code that invokes just the globals or the globals
and the module®s code. Do this by wusing a conditional that
checks 1T a specific label has been defined. As an example use
the string " fnctns" as the label that must be defined.

.ifdef " fnctns"
fnctns.globals
.else
list
fnctns.globals

: module code

-nlist
.endif

This Ffile can be assembled as a seperate module or as an in-
cluded file in the project. If the project is built by linking
this module with other modules then any module which references
the functions or variables in the module "fnctns.asm" will need
these to be defined. Add this code to any module using the mod-
ule "fnctns™.

NOTES AND TIPS PAGE F-7
TO INCLUDE OR TO INCLUDE

.define " fnctns” ; key word

-nlist ; Inhibits Pagination
.include "fnctns.asm" ; Include the File
list ; Restart Listing

This results 1i1n only the globals being defined for the module
"fnctns.asm™.

APPENDIX AA

ASCHECK ASSEMBLER

The ASxxxx assembler ASCHECK is used to test the machine in-
dependent features of the ASxxxx assemblers. The source Tiles
for the ASCHECK assembler are also useful as a template for the
development of a new ASxxxx assembler.

The ASCHECK assembler has all the ASxxxx directives enabled
for testing all features of the assemblers.

ASCHECK ASSEMBLER Page AA-2

AA.1 _opcode DIRECTIVE
Format:
.opcode n

The _.opcode directive creates a single byte of code having the
value n and having cycle counts defined in the following table:

/*--*-->0 1 2 3 4 5 6 7 8 9 A B C D E F*
/*__*__* — — — — — — — — — — — — */
/*00*/ 0, 1, 2, 3, 4, 5, 6, 7, 8, 9 10 11 12 13,14,15,

/*10*/ UN, 1,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
/*20*/ UN,UN, 2,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
/*30*/ UN,UN,UN, 3,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
/*40*/ UN,UN,UN,UN, 4,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
/*50*/ UN,UN,UN,UN,UN, 5,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,
/*60*/ UN,UN,UN,UN,UN,UN, 6,UN,UN,UN,UN,UN,UN,UN,UN,UN,
/*70*/ UN,UN,UN,UN,UN,UN,UN, 7,UN,UN,UN,UN,UN,UN,UN,UN,
/*80*/ UN,UN,UN,UN,UN,UN,UN,UN, 8,UN,UN,UN,UN,UN,UN,UN,
/*90*/ UN,UN,UN,UN,UN,UN,UN,UN,UN, 9,UN,UN,UN,UN,UN,UN,
/*A0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,10,UN,UN,UN,UN,UN,
/*B0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,11,UN,UN,UN,UN,
/*C0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,12,UN,UN,UN,
/*D0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,13,UN,UN,
/*EO*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,14 ,UN,
/*FO0*/ UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,UN,15

The UN symbols indicate “undefined cycles®™ where no cycle count
will be output.

APPENDIX AB

AS1802 ASSEMBLER

AB.1 ACKNOWLEDGMENT
Thanks to Shujen Chen for his contribution of the AS1802
cross assembler.
Shujen Chen
DeVry University
Tinley Park, IL
schen at tp dot devry dot edu

AB_.2 1802 REGISTER SET

The following is a list of the 1802 registers used by AS1802:

ro-ri5 8-bit registers
sp - register r2

pc - register r3
call - register r4
return - register r5

argr - register r6

AS1802 ASSEMBLER PAGE AB-2
1802 INSTRUCTION SET

AB_.3 1802 INSTRUCTION SET

The TfTollowing tables list all 1802 mnemonics recognized by
the AS1802 assembler. The designation [] refers to a required
addressing mode argument. The fTollowing list specifies the
format for each addressing mode supported by AS1802:

#data immediate data
byte or word data

expr expression
Rn register addressing
label branch label

The terms data, expr, and label may be expressions.

Note that not all addressing modes are valid with every in-
struction, refer to the 1802 technical data for valid modes.

AB.3.1 1802 Inherent Instructions

adc add and
dis idl irx
1dx ldxa Isdf
Isie Iskp Isnft
Isnq Isnz Isq
Isz mark nop
or req ret
rshl rshr sav
sd sdb seq
shl shlc shr
shrc skp sm

smb stxd Xor

AS1802 ASSEMBLER

1802 INSTRUCTION SET

AB.3.2 1802 Short Branch

AB.3.3

AB.3.4

AB.3.5

bl
b3
bdf
bl
bnl
bn3
bnf
bnz
bq
bz

label
label
label
label
label
label
label
label
label
label

Instructions

b2
b4
bge
bm
bn2
bn4
bng
bpz
br
nbr

1802 Long Branch Instructions

Ibdf
Ibnq
I1bg
Ibz

1802

adci
ani
ori
sdi
smi

label
label
label
label

#data
#data
#data
#data
#data

Ibnf
lbnz
1br

nlbr

Immediate Instructions

adi
Idi
sdbi
smbi
Xri

1802 Register Instructions

dec
glo
Ida
phi
sep
str

Rn
Rn
Rn
Rn
Rn
Rn

ghi
inc
Idn
plo
sex

label
label
label
label
label
label
label
label
label
label

label
label
label
label

#data
#data
#data
#data
#data

Rn
Rn
Rn
Rn
Rn

PAGE AB-3

AS1802 ASSEMBLER PAGE AB-4
1802 INSTRUCTION SET
AB.3.6 1802 Input and Output Instructions

inp expr
out expr

AS1802 ASSEMBLER PAGE AB-5
1802 INSTRUCTION SET

AB.3.7 CDP1802 COSMAC Microprocessor Instruction Set Summary

RCA

1 88888 000 22222
11 8 8 0O O 2 2
1 8 8 0 00O 2
1 88888 O 0 O 222

1 8 8 00 O 2

1 8 8 0O O 2

111 88888 000 2222222

CDP1802 COSMAC Microprocessor Instruction Set Summary

Written by Jonathan Bowen
Programming Research Group
Oxford University Computing Laboratory
8-11 Keble Road
Oxford OX1 3QD
England

Tel +44-865-273840

|Created August 1981
| Updated April 1985
| Issue 1.3 Copyright (C) J.P.Bowen 1985

AS1802 ASSEMBLER

1802 INSTRUCTION SET

PAGE AB-6

--> CLOCK

--> WAIT

--> CLEAR
< Q

<-- SC1
<-- SCO
<-- MRD
<--> BUS 7

<--> BUS 6

<--> BUS 4
<--> BUS 3
<--> BUS 2
<--> BUS 1
<--> BUS O
Vcc

<-- N2

<-- N1

<-- NO

Vss

|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| <--> BUS 5
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|

1802

vdd

XTAL -->
DMA IN <--
DMA OUT <--

INTERRUPT <--

MWR <--
TPA ——>
TPB -—>
MA7 -->
MAG —->
MAS ——>
MA4 —-->
MA3 -->
MA2 —-->
MA1l -->
MAO -->
EF1 <--
EF2 <--
EF3 <--
EF4 <--

AS1802 ASSEMBLER

1802 1

NSTRUCTION SET

PAGE AB-

7

[Mnem. |Op|F|Description |Notes

|-——--- N R S o
|ADC |74]*|Add with Carry | {DF,D}=mx+D+DF

|ADCI 1]7C|*]Add with Carry Immediate | {DF,D}=mp+D+DF, p=p+1
| ADD |F4]|*]Add | {DF,D}=mx+D

|ADI 1]FC]*]Add Immediate |{DF,D}=mp+D, p=p+1

| AND |F2]*|Logical AND | D={mx}&D

|ANI 1]FA]*|Logical AND Immediate | D={mp}&D, p=p+1

|B1 al34]-|Branch 1f EF1 |1 ¥ EF1=1 BR else NBR
|B2 al35|-|Branch if EF2 |1 ¥ EF2=1 BR else NBR
IB3 a]36]-|Branch if EF3 |1 ¥ EF3=1 BR else NBR
IB4 a]37]-|Branch if EF4 | 1T EF4=1 BR else NBR
IBDF a]33]-|Branch i1t DF |1f DF=1 BR else NBR
IBGE a|33]-|Branch if Greater or Equal |See BDF

IBL a]38]-|Branch if Less |See BNF BR else NBR

| BM a|38]-|Branch 1f Minus | See BNF

IBN1 a]3C|-|Branch if Not EF1 |1f EF1=0 BR else NBR
IBN2 a]3D]-|Branch if Not EF2 |1 ¥ EF2=0 BR else NBR
IBN3 a]3E]-|Branch if Not EF3 |1 ¥ EF3=0 BR else NBR
IBN4 a]3F]-|Branch i1f Not EF4 | 1T EF4=0 BR else NBR
IBNF a]38]-|Branch i1f Not DF | 1T DF=0 BR else NBR
IBNQ a]39]-|Branch if Not Q |1f Q=0 BR else NBR
IBNZ a]3A]-|Branch if D Not Zero |1f D=1 BR else NBR
IBPZ a]33]-|Branch if Positive or Zero |See BDF

IBQ a]31]-|Branch if Q |1f Q=1 BR else NBR
IBR a]30]-|]Branch Ipl=mp

IBZ a]32]-|Branch if D Zero |1f D=0 BR else NBR
IDEC r|2N]-|Decrement register N |n=n-1

IDIS |71]-|Disable | {X,P}=mx,x=x+1, 1E=0
|IGHI r|9N]-]Get High register N |D=nh

|GLO r|8N]-]Get Low register N | D=nl

| 1DL |00]-]1dle (wait for DMA or int.) |Bus=mO

|INC r|]IN]J-]Increment register N |n=n+1

| INP d|6N]-]Input (N=d+8=9-F) | mx=Bus,D=Bus,Nlines=d|
| IRX |60]-] Increment register X | x=x+1

|[LBDF a]C3]-]Long Branch if DF |1 ¥ DF=1 LBR else LNBR]
|ILBNF a]C8]-]Long Branch i1f Not DF |1f DF=0 LBR else LNBR]
|LBNQ a]C9]-]Long Branch if Not Q |1 Q=0 LBR else LNBR

ILBNZ

aJCA|-]Long Branch if D Not Zero

|1 D=1 LBR else LNBR

AS1802 ASSEMBLER
1802 INSTRUCTION SET

PAGE AB-8

|1T Q=1 LBR else LNBR

|1f D=0 LBR else LNBR

[Mnem. |Op|F|Description |Notes

|-——--- N R S o |
|[LBQ a]Cl]-]JLong Branch if Q

ILBR a]CO]-]Long Branch | p=mp

|ILBZ a]C2]-]Long Branch i1f D Zero

|[LDA r|4N]-]Load advance |D=mn,n=n+1

|[LDI i|F8]-]Load Immediate

ILDN r|ON]-]JLoad via N (except N=0)
| LDX |FO]-|Load via X

|[LDXA |72]-]Load via X and Advance
|[LSDF |CF]-]Long Skip if DF

ILSIE |CC]-]Long Skip if IE

|[LSKP |C8]-]Long Skip

|JLSNF |C7]-]Long Skip if Not DF
JLSNQ [|C5]-]Long Skip if Not Q
ILSNZ |C6]-]Long Skip if D Not Zero
|LSQ |ICD]-]Long Skip if Q

|LSZ ICE]-]Long Skip if D Zero

| MARK

|NBR |38]-|No short Branch (see SKP)

INLBR a]C8]-|No Long Branch (see LSKP)
|C4]-|No Operation

|OR |F1]*|Logical OR

|ORI 1]F9]*|Logical OR Immediate
d]6N|-]0utput (N=d=1-7)
rJ]AN|-]Put Low register N

|PHI r|BN]-]Put High register N

| REQ | 7A]-|Reset Q
|RET | 70]-|Return
|[RSHL |7E]*|Ring Shift Left

IRSHR |76]*|Ring Shift Right

|D=mp, p=p+1
| D=mn
| D=mx
| D=mx, Xx=x+1

| I¥ DF=1 LSKP else NOP]
|1T 1E=1 LSKP else NOP]

| See NLBR

|1 ¥ DF=0 LSKP else NOP
| 1T Q=0 LSKP else NOP
| 1T D=1 LSKP else NOP
|1 Q=1 LSKP else NOP
|1 ¥ D=0 LSKP else NOP
179]-|Push X,P to stack (T={X,P})|m2={X,P},X=P,r2=r2-1

Ip=p+1
Ip=p+2
|Continue
| D={mx}vD

|D={mp}VvD,p=p+1
| Bus=mx,x=x+1,Nl1nes=d

|nl=D
|nh=D
Q=0

|{X,P}=mx,x=x+1, 1E=1

|See SHLC
| See SHRC

AS1802 ASSEMBLER

1802

INSTRUCTION SET

PAGE AB-9

[Mnem. [|Op]F|Description |[Notes |
|-——--- N R S o |
SAV	78] -]Save	mx=T	
SDB	75]*	Subtract D with Borrow	{DF,D}=mx-D-DF
SDB1 1]	7D]*	Subtract D with Borrow Imm.	{DF,D}=mp-D-DF,p=p+1
SD	F5]*	Subtract D	{DF,D}=mx-D
ISDI i	FD]*	Subtract D Immediate	{DF,D}=mp-D, p=p+1
ISEP r	DN]-	Set P	P=N
ISEQ	7B]-ISet Q 1Q=1		
ISEX r	EN]-]Set X	X=N	
SHL	[FE]*	Shift Left	{DF,D}={DF,D,0}<-
SHLC	7E]*	Shift Left with Carry	{DF,D}={DF,D}<-
SHR	[F6]*	IShift Right	{D,DF}=->{0,D,DF}
SHRC	76]*	Shift Right with Carry	{D,DF}=->{D,DF}
SKP	38]-	Short Skip	See NBR
SMB	77]*	Subtract Memory with Borrow	{DF,D}=D-mx-{~DF}
SMBI 1]	7F]*	Subtract Mem with Borrow Imm]{DF,D}=D-mp-~DF,p=p+1]	
SM	F7]*	Subtract Memory	{DF,D}=D-mx
[SMI i	FF]*]	Subtract Memory Immediate	{DF,D}=D-mp, p=p+1
ISTR r	5N]-]Store via N	mn=D	
STXD	73]-]Store via X and Decrement	mx=D,x=x-1	
XOR	F3]*	Logical Exclusive OR	D={mx}.D
IXR1 i|FB]*]Logical Exclusive OR Imm. |D={mp}.D,p=p+1 |

I

| |1-lInterrupt action
|??] |8-bit hexadecimal opcode

| |-IDF flag unaffected

| T={X,P},P=1,X=2,1E=0

—————— g

|
|?N] |Opcode with register/device in low 4/3 bits |
|
|

| [|*IDF flag affected

AS1802 ASSEMBLER

1802 INSTRUCTION SET

PAGE AB-10

___________ -

m M

X 40O U Z==QO

___________ o

|Register addressing
|Register-indirect addressing

| Immediate addressing

|Stack addressing (implied addressing)

|Data register (accumulator, 8-bit)

|[Data Flag (ALU carry, 1-bit)

|High-order instruction digit (4-bit)

| Interrupt Enable (1-bit)

|]Low-order instruction digit (4-bit)

|Designates Program Counter register (4-bit)
|Output Flip-flop (1-bit)

|1 of 16 scratchpad Registers(16-bit)

|]Holds old {X,P} after interrupt (X high, 8-bit)
|Designates Data Pointer register (4-bit)

|[Memory byte addressed by R(N)
|[Memory byte addressed by R(P)
|[Memory byte addressed by R(X)
|[Memory byte addressed by R(?)
|Short form for R(N)
|[High-order byte of R(N)

| Low-order byte of R(N)

|Short form for R(P)

| Low-order byte of R(P)

|Short form for R(?)

|Short form for R(X)

|Register specified by N
|Current program counter
|Current data pointer
|Specific register

AS1802 ASSEMBLER PAGE AB-11
1802 INSTRUCTION SET

a |Address expression |
d |Device number (1-7) |
i | Immediate expression |
n |Expression |
r |Register (hex digit or an R followed by hex digit)|
——————————— Fo——_———————————_—— -]
+ |Arithmetic addition |
|Arithmetic subtraction |
|Arithmetic multiplication |
|Arithmetic division |
|]Logical AND |
|]Logical NOT |
|]Logical inclusive OR |
|]Logical exclusive OR |
I
I
I
I
I
I
I

<- |Rotate left

-> |Rotate right

{} |]Combination of operands
? |Hexadecimal digit (0-F)
-—> | Input pin

<—- |Output pin

< ! RN\ %1

<--> | Input/output pin

APPENDIX AC

AS2650 ASSEMBLER

AC.1 2650 REGISTER SET
The following is a list of the 2650 registers used by AS2650:

ro,rl - 8-bit accumulators
r2,r3

AC.2 2650 INSTRUCTION SET

The Tfollowing tables list all 2650 mnemonics recognized by
the AS2650 assembler. The designation [] refers to a required
addressing mode argument. The designation CC refers to a re-
quired condition code argument: .eq., .gt., .It., _.un., or
value of 0-3. The following list specifies the format for each
addressing mode supported by AS2650:

#data immediate byte data
ro,rl,r2,r3 registers

addr location/branch address
[addr] or indirect addressing
@addr

[addr,r0] or register indexed
@addr,rO indirect addressing

[addr,-r0] or autodecrement register indexed
@addr,-rO indirect addressing

AS2650 ASSEMBLER

2650 INSTRUCTION SET

The terms data,

Note that
struction,

AC.2.1

AC.2.2

AC.2.3

[addr,rO0+] or

@addr, ro+

.eq.
_gt.
It
.un.

label, and

autoincrement register indexed
indirect addressing

CC: equal

CC: greater than

CC: less than

CC: unconditional

Load / Store Instructions

lodz
lodr

stoz
stor

lodi

loda

stoa

#data
L1

1

Arithmetic / Compare Instructions

addz
addr

subz
subr

comz
comr

dar

Logical / Rotate Instructions

andz
andr

iorz
iorr

eorz
eorr

rrr

r

addi
adda

subi
suba

comi
coma

andi
anda
iori
iora

eori
eora

#data
]

#data
L1

#data
]

#data
]

#data
]

#data
]

(:: O)
(:: 1)
(:: 2)
(:: 3)

addr may all be expressions.

PAGE AC-2

not all addressing modes are valid with every in-
refer to the 2650 technical data for valid modes.

AS2650 ASSEMBLER
2650 INSTRUCTION SET

AC.2.4

AC.2.5

AC.2.6

AC.2.7

rri r

Condition Code Branches

bctr CC,I1
bcfr CC,[1
bstr CC,I1

bsfr CC,[1

Register Test Branches

brar r,[1
birr r.[]
bdrr r,[]
bsnr v,

bcta

bcfa

bsta

bsta

brna

bira

bdra

bsna

CC,[1
CC, 11
CC,[1

CC, 11

r,[]
r.[]
r,[]
r.[]

Branches (to Subroutines) / Returns

bxa [1
zbrr [1
retc CC

Input / Output

redc r
redd r
rede r,addr

bsxa

zbsr

rete

wrtc
wrtd
wrte

1

[1
ccC

r,addr

PAGE AC-3

AS2650 ASSEMBLER
2650 INSTRUCTION SET

AC.2.8 Miscellaneos

halt
tmi r,#data

AC.2.9 Program Status

Ipsl
spsl
cpsl #data
ppsl #data
tpsl #data

nop

Ipsu
spsu
cpsu
ppsu
tpsu

#data
#data
#data

PAGE AC-4

APPENDIX AD

AS430 ASSEMBLER

AD.1 MPS430 REGISTER SET
The following is a list of the MPS430 registers used by AS430:

Sixteen 16-bit registers provide adddress, data, and
special functions:

pc / ro - program counter

sp / ri - stack pointer

sr / r2 - status register

cgl / r2 - constant generator 1

cg2 / r3 - constant generator 2
r4 - working register r4
r5 - working register r5
ri4 - working register rl4

ris - working register rl5

AS430 ASSEMBLER
MPS430 REGISTER SET

AD.2 MPS430 ADDRESSING MODES

The following
mode supported by AS430:

PAGE AD-2

list specifies the format for each addressing

Source/Destination Operand Addressing Modes

01/1

10/-

11/-

11/-

Addressing Mode Syntax Description

Register mode

Indexed mode

Symbolic mode

Absolute mode

Indirect
register mode

Indirect
autoincrement

X(Rn)

ADDR

&ADDR

@RN

@Rn+

Immediate mode #N

Register contents are operand.

(Rn + X) points to the operand,
X is stored in the next word.

(PC + X) points to the operand,
X 1s stored in the next word,
Indexed mode X(PC) is used.

The word following the
instruction, contains the
absolute address.

Rn Is used as a pointer to the
operand.

Rn Is used as a pointer to the
operand. Rn is incremented
afterwards.

The word following the
instruction contains the
immediate constant N. Indirect
autoincrement mode @PC+ iIs used.

The terms ADDR, X and N may all be expressions.

Note that
struction,

not all addressing modes are valid with every in-
refer to the MPS430 technical data for valid modes.

AS430 ASSEMBLER
MPS430 ADDRESSING MODES

AD.2.1 MPS430

PAGE AD-3

Instruction Mnemonics

The following table lists all MPS430 family mnemonics recognized
by the AS430 assembler.
required source

*

* %

* ok % X

ADC[.W] ;ADC.B
ADD[.W] ;ADD.B

ADDCI[. W] ; ADDC.

AND[.W] ;AND.B

BIC[.W];BIC.B
BIS[.W]:BIS.B
BIT[.W];BIT.B
BR dst

BRANCH dst

CALL dst
CLR[.W];CLR.B
CLRC

CLRN

CLRZ

CMP[.W] ;CMP.B

DADC[. W] ; DADC.
DADD[W] ; DADD.

DEC[.W] ;DEC.B

DECD[. W] ; DECD.

DINT
EINT

INC[.W];INC.B

INCD[.W]; INCD.

INV[.W];INV.B

JC/JHS Label
JEQ/JZ Label
JGE Label
JL Label
JMP Label
JN Label
JNC/JLO Label
JNE/ZJINZ Label

MOV[.W] :MOV.B

NOP

and/or d

dst

src,dst
B

src,dst

src,dst
src,dst
src,dst

dst

src,dst

B dst

B src,ds
dst

B dst

dst
B dst
dst

src,dst

The designations src and dst refer to
estination addressing mode arguments.

dst + C -> dst

src + dst -> dst

src,dst src + dst + C -> dst
src .and. dst -> dst

.not.src .and. dst -> dst
src .or. dst -> dst
src .and. dst

Branch to

Branch to

PC+2 -> stack, dst -> PC
Clear destination
Clear carry bit
Clear negative bit
Clear zero bit
dst - src

dst + C -> dst (decimal)
t src + dst + C -> dst (decimal)
dst - 1 -> dst
dst - 2 -> dst

Disable interrupt
Enable iInterrupt

dst + 1 -> dst
dst + 2 -> dst
Invert destination

Jump to Label if Carry-bit is set
Jump to Label i1f Zero-bit i1s set
Jump to Label if (N _XOR. V) 0
Jump to Label if (N .XOR. V) 1
Jump to Label unconditionally

Jump to Label i1f Negative-bit is set
Jump to Label if Carry-bit is reset
Jump to Label if Zero-bit is reset

src -> dst

No operation

AS430 ASSEMBLER PAGE AD-4
MPS430 ADDRESSING MODES

* POP[.-W];POP.B dst Item from stack, SP+2 -> SP
PUSH[.W];PUSH.B src SP - 2 -> SP, src -> @SP

RETI Return from interrupt
TOS -> SR, SP + 2 -> SP
T0S -> PC, SP + 2 -> SZP

* RET Return from subroutine
T0S -> PC, SP + 2 -> SP

* RLA[-W];RLA.B dst Rotate left arithmetically

* RLC[.W];RLC.B dst Rotate left through carry
RRA[-W];RRA.B dst MSB -> MSBLSB -> C
RRC[-W];RRC.B dst C->MSB LSB -> C

* SBC[.W];SBC.B dst Subtract carry from destination

* SETC Set carry bit

* SETN Set negative bit

* SETZ Set zero bit
SUB[.W];SUB.B src,dst dst + .not.src + 1 -> dst
SUBC[.W];SUBC.B src,dst dst + .not.src + C -> dst
SBB[.W];SBB.B src,dst dst + .not.src + C -> dst
SWPB dst swap bytes
SXT dst Bit7 -> Bit8 Bitl5

* TST[-W];TST.B dst Test destination
XOR[-W];XOR.B src,dst src .xor. dst -> dst

Note: Asterisked Instructions

Asterisked (*) instructions are emulated.
They are replaced with coreinstructions
by the assembler.

APPENDIX AE

AS6100 ASSEMBLER

AE.1 6100 MACHINE DESCRIPTION

The IM6100 (Intersil) and HM6100 (Harris) microprocessors are
12-bit word addressable machines having three 12-bit program ac-
cessible registers and one single bit register. These are the
Accumulator (AC), MQ Register (MQ), Program Counter (PC), and
the Link (L) respectively.

The 6100 is basically a clone of the Digital Equipment Cor-
poration PDP-8E minicomputer architecture. This architecture
predates all microprocessors and labeled the bits from 0 (the
most significant) to 11 (the least significant) rather than from
least to most significant. The actual labelling i1s arbitrary
and the as6100 assembler uses the now more common labelling.

The output generated from the assembler/linker is two bytes
per word ordered as MSB then LSB with the upper 4 bits of the
MSB always zero.

AE_2 ASSEMBLER SPECIFIC DIRECTIVES

Because the 6100 microprocessor has no concept of bytes
several of the cross assembler directives have their operation
changed to reflect the 12-Bit nature of the microprocessor.

These are:
-byte (.db and .fcb are aliases)
output an 8-Bit value
into a 12-bit word
-word (.dw and .fdb are aliases)

AS6100 ASSEMBLER PAGE AE-2
ASSEMBLER SPECIFIC DIRECTIVES

output a 12-Bit value
into a 12-Bit word

.ascili (.asciz and ascis also)
output a sequence of 8-Bit
characters in 12-bit words

A double precision integer (24-Bits) mnemonic has been added:

-dubl (-4byte and .quad are aliases)
output a 24-Bit value
into two 12-bit words

Two new directives have been added to implement 6-bit
character string operations. The characters A-Z and [/]”_are
masked to values of 0x01 to Ox1F, the characters a-z are masked
to values of 0x01 to Ox1A, and the characters from = * (space)
to "?° are masked to 0x20 to Ox3F. All other asciil characters
become a space (0x20).

These are:

.text output upto two characters per 12-bit
word

.textz output upto two characters per 12-bit
word

followed by a 6-bit zero value.

AE.3 MACHINE SPECIFIC DIRECTIVES

The 6100 microprocessor memory architecture consists of 32
pages each having 128 words for a total of 4096 addressable
words. The 6100 1instruction set allows direct access only to
the current page and to page 0. Three machine specific direc-
tives provide differing methods to select the memory page.
These directives are:

AS6100 ASSEMBLER PAGE AE-3
MACHINE SPECIFIC DIRECTIVES

AE.3.1 .setpg

Format:
.setpg ; - = next page boundary
.setpg N ; - = Nth page boundary
where: N is the page number from O to 31

The .setpg directive is used to set the current program loca-
tion counter to a specific 128 word page boundary or to the next
128 word page boundary and inform the assembler/linker of this
boundary.

AE.3.2 _mempn
Format:

.mempn N ; - = Nth page boundary
where: N iIs the page number from 0 to 31

The .mempn directive is used to set the current program loca-
tion counter to a specific 128 word page boundary and inform the
assembler/linker of this boundary.

AE.3.3 .mempa
Format:
-.mempa A ; - = A (a page boundary)
where: A iIs a 128 word page address boundary
The .mempa directive is used to set the current program loca-

tion counter to a specific page boundary address and inform the
assembler/linker of this boundary.

AS6100 ASSEMBLER PAGE AE-4
6100 INSTRUCTION SET

AE_4 6100 INSTRUCTION SET

The Tfollowing tables [list all 6100 family mnemonics recog-
nized by the AS6100 assembler. The instruction set is described
in 3 major groupings: Basic Instructions, Operate Microinstruc-
tions, and 10T Instructions.

AE_4_.1 Basic Instructions

The basic instructions are:

and Logical AND

tad Binary ADD

1Sz Increment and skip if zero
dca Deposit and clear AC

Jjms Jump to subroutine

Jjmp Jump

These iInstructions have two paging addressing modes:

addr current page address
*addr page 0 address

which can be combined with an indirect mode signified by an i
argument or enclosing brackets []:

1 addr indirect current page
[addr]
1 *addr indirect page O

[*addr] or *[addr]

The 6100 i1mplements an auto-increment mode when accessing ad-
dresses 0x08 - OxOF in page O by incrementing the contents of
the location before using the value as an address.

AS6100 ASSEMBLER PAGE AE-5
6100 INSTRUCTION SET

AE.4_.2 Operate Instructions

The operate instructions are split into three groups of mu-
tually exclusive micro operations. The single micro operation
in common with all three groups is:

CLA Clear Accumulator

AE.4.2.1 Group 1 Operate Instructions -

The group 1 microinstructions are used primarily to perform
logical operations on the contents of the accumulator and link:

CLL Clear Link

CMA Complement Accumulator
CML Complement Link

1AC Increment Accumulator
RAL Rotate Accumulator Left
RTL Rotate Two Left

RAR Rotate Accumulator Right
RTR Rotate Two Right

BSW Byte Swap

A group 1 microinstruction can contain one or all of the mnemon-
ics CLA, CLL, CMA, CML, IAC, but only one of the RAL, RTL, RAR,
RTR, or BSW mnemonics (RAL, RTL, RAR, RTR, and BSW are mutually
exclusive).

The NOP (No Operation) functionality can be implemented iIn
all three operate instruction groups but is specified by the as-
sembler as a group 1 instruction.

Several common group 1 operations have been given their own
mnemonics:

NOP NO Operation
CIA Complement and Increment Accumulator
GLT Get Link

STA Set Accumulator

AS6100 ASSEMBLER PAGE AE-6
6100 INSTRUCTION SET

AE.4.2.2 Group 2 Operate Instructions -
The group 2 microinstructions are used primarily to test the

contents of the accumulator and/or link and then conditionally
skip the next sequential instruction:

HLT Halt

OSR Or With Switch Register

SKP Skip

SNL Skip On Non-Zero Link

SZL Skip On Zero Link

SZA Skip On Zero Accumulator

SNA Skip On Non-Zero Accumulator
SMA Skip On Minus Accumulator
SPA Skip On Plus Accumulator

A group 2 microinstruction can contain one or all of the mnemon-
ics CLA, HLT, OSR, but only one of the SKP, SNL, SZL, SZA, SNA,
SMA, or SPA mnemonics (SKP, SNL, SZL, SZA, SNA, SMA, and SPA are
mutually exclusive).

One common group 2 operation has been given its own mnemonic:

LAS Load Accumulator With Switch Register

AE.4.2.3 Group 3 Operate Instructions -

The group 3 microinstructions perform logical operations on
the contents of AC and MQ.

MQL MQ Register Load
MQA MQ Register Into Accumulator

A group 3 microinstruction can contain one or all of the mnemon-
ics CLA, MQL, and MQA.

Several common group 3 operations have been given their own
mnemonics:

SWP Swap Accumulator and MQ Register
CAM Clear Accumulator and MQ Register
ACL Clear Accumulator and Load

MQ Register into Accumulator

AS6100 ASSEMBLER PAGE AE-7
6100 INSTRUCTION SET

AE_4.2.4 Group Errors -

The 6100 assembler has three additional error codes which oc-

cur when the group 1, 2, or 3 operations are mixed. The error
code will be <1>, <2>, or <3> based upon the first group type
encountered followed by any other type of group operation. The

CLA operation is valid with all groups and does not cause an er-
ror code to be generated.

AE.4.3 Input/Output (I0T) Instructions

The 1nput/output transfer iInstructions are used to control
the operation of peripherals and transfer data between peri-
pherals and the 6100 microprocessor. Of the lower 9 bits of the
instruction used for device selection and control typically the
3 LSBs are the 1/0 operation bits and the remaining 6 bits
select the peripheral device.

10T DEV,CMND

where DEV i1s the device select code and
CMND is the command code.

Specifying a device select code of zero in the 10T instruction
allows the user program to control the interrupt mechanism of
the 6100 microprocessor. These instructions are:

SKON Skip If Interrupt On

10N Interrupt Turn On

I10F Interrupt Turn OFF

SRQ Skip If Int Request

GTF GetFlags

RTF Return Flags

SGT Defined By Device Logic

CAF Clear All Flags

APPENDIX AF

AS61860 ASSEMBLER

AF_.1 ACKNOWLEDGMENT

Thanks to Edgar Puehringer for his contribution of the
AS61860 cross assembler.

Edgar Peuhringer
edgar_pue at yahoo dot com

AF.2 61860 REGISTER SET

The SC61860 from Sharp has 96 bytes of internal RAM which are

used as registers and hardware stack. The last four bytes of

the internal RAM are special purpose registers (1/0, timers
..)- Here i1s a list of the 61860 registers:

Reg Address Common use

i, § 0, 1 Length of block operations

a, b 2, 3 Accumulator

xlI, xh 4, 5 Pointer for read operations

yl, yh 6, 7 Pointer for write operations

k - n 8 - Ox0b General purpose (counters ...)
- 0Ox0c - 0x5b Stack

1a 0x5c Inport A

ib 0x5d Inport B

fo Ox5e Outport F

cout Ox5fF Control port

Other parts of the 61860 are the 16 bit program counter (pc)
and 16 bit data pointer (dp). The ALU has a carry flag (¢) and

AS61860 ASSEMBLER PAGE AF-2
61860 REGISTER SET

a zero flag (z). There i1s an internal register d which can"t be
accessed with machine instructions. It is filled from 1 or J
when executing block operations.

In addition there are three 7 bit registers p, q, and r which
are used to address the internal RAM (r is the stack pointer, p
and q are used for block operations).

AF_.3 PROCESSOR SPECIFIC DIRECTIVES

The AS61860 cross assembler has two (2) processor specific
assembler directives which are used for the etc mnemonic (which
is a kind of a built-in switch/case statement):

.default A 16 bit address (same as .dw)
.case One byte followed by a 16 bit address

Here is an example how this should be used (cut from a Ist
file)::

022B 7A 05 02 18 614 PTC 0x05, CONT16
022F 69 615 DTC

0230 4C 01 25 616 .CASE 0x4C, SLOADI
0233 4D 01 2F 617 .CASE 0x4D, SMERGI
0236 51 01 D2 618 .CASE Ox51, QUITI
0239 53 00 CD 619 .CASE 0Ox53, LLISTI
023C 56 01 D5 620 .CASE 0x56, VERI
023F 01 D1 621 .DEFAULT CONT9

AF.4 61860 INSTRUCTION SET

The Tfollowing tables list all 61860 family mnemonics recog-
nized by the AS61860 assembler. Most of the mnemonics are con-
verted into 8 bit machine iInstructions with no argument or a
one- or two-byte argument. There are some exceptions for this:

Mnemonic Description

Jjp 2 bit instruction, 6 bit argument
cal 3 bit instruction, 13 bit argument
ptc *) 1 byte instruction, 3 byte argument
dtc *) 1 byte iInstruction, n bytes argument

*) Not mentioned in the CPU specification from Sharp

AS61860 ASSEMBLER PAGE AF-3
61860 INSTRUCTION SET

AF_.4.1 Load Immediate Register

LIl n (n --> 1

L1J n

LIA n

LIB n

LIP n

LIQ n

LIDP nm

LIDL n (DL is the low byte of DP)
LP (One byte version of LIP)
RA (Same as LIA 0, but only one byte)
CLRA (synonym for RA)

AF_.4_.2 Load Accumulator

LDP P --> A)
LDQ

LDR

LDM ((P) --> A)
LDD ((DP) --> A)

AF_.4_.3 Store Accumulator

STP (A --> P)
STQ

STR

STD (A --> (DP))

AF.4.4 Move Data

MVDM (P) -—> (©P))
MVMD «oP) --> (P))

AS61860 ASSEMBLER

61860

AF_.4.5

AF_.4.6

AF_4.7

AF_.4.8

INSTRUCTION SET

Exchange Data

EXAB
EXAM

Stack Operations

PUSH
POP
LEAVE

Block Move Data

MVW
MVB
MVWD
MVBD
DATA

(A <—-> B)
(A <> (P))

(R-1-->R, A-->((R)
((R) --=>A, R+1 -->R)
© --> (R))

Q) --> (P), 1+1 bytes)
Q) --> (P), J+1 bytes)
((bP) --> (P), I1+1 bytes)
((OP) --> (P), J+1 bytes)
((B,A) --> (P), I+1 bytes,
reads CPU ROM also)

Block Exchange Data

EXW
EXB
EXWD
EXBD

((Q <--> (P), 1+1 bytes)
((Q) <--> (P), J+1 bytes)
((OP) <--> (P), I1+1 bytes)
((DP) <--> (P), J+1 bytes)

PAGE AF-4

AS61860 ASSEMBLER PAGE AF-5
61860 INSTRUCTION SET

AF_.4.9 Increment and Decrement

INCP P+1-->P)
DECP
INCI
DECI
INCJ
DECJ
INCA
DECA
INCB
DECB
INCK
DECK
INCL
DECL

X X+ 1 -->X, X -->DP)
DX

Yy

DY

INCM *)
DECM *)
INCN *)
DECN *)

*) Not mentioned in the CPU specification from Sharp

AF_.4.10 Increment/Decrement with Load/Store

IXL (Same as IX plus LDD)
DXL
1YS (Same as 1Y plus STD)

DYS

AS61860 ASSEMBLER PAGE AF-6
61860 INSTRUCTION SET

AF.4_.11 Fill

FILM (A -=> (P), I+1 bytes)
FILD (A ——> (DP), I+1 bytes)

AF.4_.12 Addition and Subtraction

ADIA n (A+n-->A)

SBIA n

ADIM n (P +n-->(P))

SBIM n

ADM n (@ +A-—->(P)

SBM n

ADCM n ((P) + A -—-—> (P), with carry)

SBCM

ADB (like ADM, but 16 bit)

SBB

ADN (like ADM, BCD addition, 1+1 bytes)
SBN

ADW (P + (@ --> (P), BCD, I+1 bytes)
SBW

AF_.4_.13 Shift Operations

SRW (shift I+1 bytes in (P) 4 bits right)
SLW

SR (shift A 1 bit, with carry)

SL

SWP (exchange low and high nibble of A)

AF_.4.14 Boolean Operations

ANIA n (A& n -->A)

ORIA n

ANIM n (P &n--—>((P))
ORIM n

ANID n ((DP) & n --> (DP))
ORID n

ANMA (P & A -—> (P
ORMA

AS61860 ASSEMBLER PAGE AF-7
61860 INSTRUCTION SET

AF_.4.15 Compare

CPIA n (A-n-->2c¢,2)

CPIM n (P -n-->c,2)

CPMA (P - A-->2c¢,2)

TSIA n (A& n -->2)

TSIM n (P &n -->2)

TSID n ((DP) & n -—> 2)

TSIP ((P) & A --> 2)
AF.4.16 CPU Control

SC (Set carry)

RC

NOPW (no op)

NOPT

WAIT n (wait 6+n cycles)

WAITJ (wait 5+4*1 cycles)

CUP (synonym for WAITJ)
AF_4_.17 Absolute Jumps

JP nm

JPZ nm (on zero)

JPNZ nm

JPC nm

JPNC nm

PTC/DTC (see "Processor Specific Directives®)

PTJ/DTJ (synonym for PTD/DTC)

CPCAL/DTLRA (synonym for PTC/DTC)

CASE1/CASE?2 (synonym for PTC/DTC)

SETT/JST (synonym for PTC/DTC)

AS61860 ASSEMBLER PAGE AF-8
61860 INSTRUCTION SET

AF_.4.18 Relative Jumps

These operations handle a jump relative to PC forward and
back with a maximum distance of 255 byte. The assembler
resolves 16 bit addresses to to 8 bit relative adresses. If the
target address is to far away, an error will be generated. Note
that relative jumps need 1 byte less than absolute jumps.

JRP nm

JRZP nm

JRNZP nm (Jump relative non zero plus direction)
JRCP nm

JRNCP nm

JRM nm

JRZM nm

JRNZM nm

JRCM nm Qump relative on carry minus direction)
JRNCM nm

LOOP nm (decrements (R) and makes a JRNCM)

AF.4.19 Calls

CALL nm
CAL nm (nm must be <= Ox1fff,

1 byte less code than CALL)
RTN

AF_.4_.20 Input and output

INA (1A --> A)

INB

OUTA

ouTB

OUTF (A --> FO)
OUTC (control port)

TEST n (timers, pins & n --> z)

AS61860 ASSEMBLER
61860 INSTRUCTION SET

AF_4.21 Unknown Commands

READ ((PC+1) -> A)
READM ((PC+1) -> (P))
WRIT (?7?)

PAGE AF-9

APPENDIX AG

AS6500 ASSEMBLER

AG.1 ACKNOWLEDGMENT

Thanks to Marko Makela for his contribution of the AS6500
cross assembler.

Marko Makela

Sillitie 10 A

01480 Vantaa

Finland

Internet: Marko dot Makela at Helsinki dot Fi
EARN/BitNet: msmakela at finuh

Several additions and modifications were made to his code to
support the following families of 6500 processors:

(@D 650X and 651X processor family

2 65F11 and 65F12 processor family

A 65C00/21 and 65C29 processor family

(¢)) 65C02, 65C102, and 65C112 processor family

The instruction syntax of this cross assembler contains two
peculiarities: (1) the addressing indirection is denoted by the
square brackets [] and (2) the “bbrx® and “bbsx® iInstructions
are written "bbrO memory, label”.

AS6500 ASSEMBLER PAGE AG-2
6500 REGISTER SET

AG.2 6500 REGISTER SET
The following is a list of the 6500 registers used by AS6500:

a - 8-bit accumulator
X,y - index registers

AG.3 6500 INSTRUCTION SET

The following tables [list all 6500 family mnemonics recog-
nized by the AS6500 assembler. The designation [] refers to a
required addressing mode argument. The following list specifies
the format for each addressing mode supported by AS6500:

#data immediate data
byte or word data

*dir direct page addressing
(see .setdp directive)
0 <= dir <= 255

offset,x indexed addressing
offset,y indexed addressing
address = (offset + (X or y))

[offset,X] pre-indexed indirect addressing
0 <= offset <= 255
address = contents of location
(offset + (x or y)) mod 256

[offset],y post-indexed indirect addressing
address = contents of location at offset
plus the value of the y register

[address] indirect addressing
ext extended addressing
label branch label

address, label direct page memory location
branch label
bbrx and bbsx instruction addressing

The terms data, dir, offset, address, ext, and label may all be
expressions.

AS6500 ASSEMBLER PAGE AG-3
6500 INSTRUCTION SET

Note that not all addressing modes are valid with every in-
struction, refer to the 65xx technical data for valid modes.

AG.3.1 Processor Specific Directives

The AS6500 cross assembler has four (4) processor specific
assembler directives which define the target 65xx processor
family:

.r6500 Core 650X and 651X family (default)
.r65f11 Core plus 65F11 and 65F12

.r65c00 Core plus 65C00/21 and 65C29
.r65c02 Core plus 65C02, 65C102, and 65C112

AG.3.2 65xx Core Inherent Instructions

brk clc
cld cli
clv dex
dey inx
iny nop
pha php
pla plp
rti rts
sec sed
sei tax
tay tsx
txa txs
tya

AG.3.3 65xx Core Branch Instructions

bcc label bhs label
bcs label blo label
beq label bmi label
bne label bpl label

bvc label bvs label

AS6500 ASSEMBLER PAGE AG-4
6500 INSTRUCTION SET

AG.3.4 65xx Core Single Operand Instructions

asl [1
dec L1
inc L1
Isr [1
rol [1
ror L1

AG.3.5 65xx Core Double Operand Instructions

adc L1
and [1
bit [1
cmp 1
eor [1
Ida L1
ora [1
sbc L1
sta L1

AG.3.6 65xx Core Jump and Jump to Subroutine Instructions

Jmp L1 Jsr 1

AG.3.7 65xx Core Miscellaneous X and Y Register Instructions

cpx [l
cpy [l
1dx 1
stXx [1
Idy [l

sty [l

AS6500 ASSEMBLER PAGE AG-5
6500 INSTRUCTION SET

AG.3.8

AG.3.9

65F11 and 65F12 Specific Instructions

bbro [1.1abel bbrl [1.1abel
bbr2 [1.1abel bbr3 [1.,1abel
bbr4 [1.1abel bbr5 [1,1abel
bbré [1.1abel bbr7 [1.1abel
bbsO [1.1abel bbsl [1,1abel
bbs2 [1.,1abel bbs3 [1.,1abel
bbs4 [1.1abel bbs5 [1.,1abel
bbs6 [1.1abel bbs7 [1.1abel
rmbO L1 rmbl 1
rmb2 [1 rmb3 [1
rmb4 [1 rmb5 [1
rmb6 [1 rmb7 [1
smbO [1 smbl [1
smb2 [1 smb3 [1
smb4 [1 smb5 [1
smb6 [1 smb7 [1

65C00/21 and 65C29 Specific Instructions

bbro [1.1abel bbril [1.,1abel
bbr2 [1.1abel bbr3 [1.1abel
bbr4 [1.1abel bbr5 [1,1abel
bbré [1.,1abel bbr7 [1.,1abel
bbsO [1.1abel bbsl [1.1abel
bbs2 [1.1abel bbs3 [1.,1abel
bbs4 [1.,1abel bbs5 [1.,1abel
bbs6 [1.1abel bbs7 [1.,1abel
bra label

phx phy

pIx ply

rmbO [1 rmbl [1

rmb2 [1 rmb3 1

rmb4 [1 rmb5 [1

rmb6 L1 rmb7 [1

smbO L1 smbl [1

smb2 [1 smb3 [1

smb4 L1 smb5 [1

smb6 [1 smb7 [1

AS6500 ASSEMBLER PAGE AG-6
6500 INSTRUCTION SET

AG.3.10 65C02, 65C102, and 65C112 Specific Instructions

bbro [1.1abel bbrl [1.1abel
bbr2 [1.1abel bbr3 [1.,1abel
bbra [1.,1abel bbr5 [1.,1abel
bbré [1.1abel bbr7 [1.1abel
bbsO [1.1abel bbsl [1,1abel
bbs2 [1.,1abel bbs3 [1.,1abel
bbs4 [1.1abel bbs5 [1.1abel
bbs6 [1.1abel bbs7 [1.1abel
bra label

phx phy

pIx ply

rmbO 1 rmbl L1

rmb2 1 rmb3 1

rmb4 L1 rmb5 1

rmb6 0 rmb7 1

smb0 1 smbl 1

smb2 [1 smb3 [1

smb4 1 smb5 L1

smb6 1 smb7 1

stz [1

trb [1

tsb L1

Additional addressing modes for the following core instruc-
tions are also available with the 65C02, 65C102, and 65C112 pro-
Cessors.

adc 1 and L1
cmp 1 eor L1
Ida 1 ora L1
sbc 1 sta L1
bit 1 imp 1

dec inc

APPENDIX AH

AS6800 ASSEMBLER

AH.1 6800 REGISTER SET

The following is a list of the 6800 registers used by AS6800:
a,b - 8-bit accumulators
X - index register

AH.2 6800 INSTRUCTION SET

The following tables list all 6800/6802/6808 mnemonics recog-
nized by the AS6800 assembler. The designation [] refers to a
required addressing mode argument. The following list specifies
the format for each addressing mode supported by AS6800:

#data immediate data
byte or word data

*dir direct page addressing
(see .setdp directive)
0 <= dir <= 255

» X register indirect addressing
zero offset

offset,x register indirect addressing
0 <= offset <= 255

ext extended addressing

label branch label

AS6800 ASSEMBLER PAGE AH-2
6800 INSTRUCTION SET

The terms data, dir, offset, ext, and label may all be expres-
sions.

Note that not all addressing modes are valid with every in-
struction, refer to the 6800 technical data for valid modes.

AH.2_.1 Inherent Instructions

aba cba
clc cli
clv daa
des dex
ins inx
nop rti
rts sba
sec sei
sev swi
tab tap
tba tpa
tsx txs
wai

psha pshb
psh a psh b
pula pulb
pul a pul b

AH.2.2 Branch Instructions

bra label bhi label
bls label bcc label
bhs label bcs label
blo label bne label
beq label bvc label
bvs label bpl label
bmi label bge label
blt label bgt label

ble label bsr label

AS6800 ASSEMBLER
6800 INSTRUCTION SET

AH.2.3

Single Operand Instructions

asla
asl a
asl

asra
asr a
asr

clra
clr a
clr

coma
com a
com

deca
dec a
dec

inca
inc a
inc

Isla
Isl a
Isl

Isra
Isr a
Isr

nega
neg a
neg

rola
rol a
rol

rora
ror a
ror

tsta
tst a
tst

[1

[1

[1

[1

[1

[1

[1

[1

[1

[1

[1

[1

aslb
asl b

asrb
asr b

clrb
clr b

comb
com b

decb
dec b

incb
inc b

Islb
Isl b

Isrb
Isr b

negb
neg b

rolb
rol b

rorb
ror b

tstb
tst b

PAGE AH-3

AS6800 ASSEMBLER
6800 INSTRUCTION SET

AH.2 .4

AH.2.5

Double Operand Instructions

adca
adc a

adda
add a

anda
and a

bita
bit a

cmpa
cmp a

eora
eor a

ldaa
Ida a

Ooraa
Oora a

sbca
sbc a

staa
sta a

suba
sub a

Jump and Jump to Subroutine Instructions

Jmp

[l
[l

[l
[

[
[

L]
[1

[l
[l

[l
[

[
[

L]
[1

[l
[l

[l
[

[
[

[

adcb
adc b

addb
add b

andb
and b

bitb
bit b

cmpb
cmp b

eorb
eor b

Idab
Ida b

orab
ora b

sbcb
sbc b

stab
sta b

subb
sub b

jsr

L1
1

L1
1

1
1

L1
1

L1
1

L1
1

1
1

L1
1

L1
1

L1
1

1
1

1

PAGE AH-4

AS6800 ASSEMBLER

PAGE AH-5
6800 INSTRUCTION SET

AH.2.6 Long Register Instructions

Cpx [1
Ids 1 sts L1
1dx 1 stx 1

APPENDIX Al

AS6801 ASSEMBLER

Al.1 _hd6303 DIRECTIVE
Format:
-hd6303
The .hd6303 directive enables processing of the HD6303 specific
mnemonics not included Iin the 6801 instruction set. HD6303

mnemonics encountered without the _.hd6303 directive will be
flagged with an <o> error.

Al_.2 6801 REGISTER SET

The following is a list of the 6801 registers used by AS6801:

a,b - 8-bit accumulators
d - 16-bit accumulator <a:b>
X - index register

Al1.3 6801 INSTRUCTION SET

The following tables list all 6801/6803/6303 mnemonics recog-
nized by the AS6801 assembler. The designation [] refers to a
required addressing mode argument. The following list specifies
the format for each addressing mode supported by AS6801:

#data immediate data
byte or word data

*dir direct page addressing

AS6801 ASSEMBLER
6801 INSTRUCTION SET

» X

offset,x

ext

label

PAGE Al-2

(see .setdp directive)
0 <= dir <= 255

register indirect addressing
zero offset

register indirect addressing
0 <= offset <= 255

extended addressing

branch label

The terms data, dir, offset, ext, and label may all be expres-

sions.

Note that not all addressing modes are valid with every in-
struction, refer to the 6801/6303 technical data for valid

modes.

Al.3.1 Inherent Instructions

aba
cba
cli
daa
dex
inx
nop
rts
sec
sev
tab
tba
tsx
wai

abx
clc
clv
des
ins
mul
rti
sba
sei
SWi
tap
tpa
txs

AS6801 ASSEMBLER
6801 INSTRUCTION SET

Al _3.2 Branch

Al.3.3

bra
bhi
bcc
bcs
bne
bvc
bpl
bge
bgt
bsr

Instructions

label
label
label
label
label
label
label
label
label
label

brn
bls
bhs
blo
beq
bvs
bmi
blt
ble

Single Operand Instructions

asla
asl a
asl

asra
asr a
asr

clra
clr a
clr

coma
com a
com

deca
dec a
dec

eora
eor a
eor

inca
inc a
inc

Isla

Isl a
Isl

Isra

[

[

[

[

[

[

[

[

aslb
asl b

asrb
asr b

clrb
clr b

comb
com b

decb
dec b

eorb
eor b

inch
inc b

Islb
Isl b

Isrb

label
label
label
label
label
label
label
label
label

aslid
asl d

Isld
Isl d

Isrd

PAGE Al-3

AS6801 ASSEMBLER
6801 INSTRUCTION SET

Isr a
Isr

nega
neg a
neg

psha
psh a

pula
pul a

rola
rol a
rol

rora
ror a
ror

tsta
tst a
tst

L1

L1

[l

[l

[l

Isr b

negb
neg b

pshb
psh b

pulb
pul b

rolb
rol b

rorb
ror b

tsth
tst b

Isr d

pshx
psh x

pulx
pul x

PAGE Al-4

AS6801 ASSEMBLER
6801 INSTRUCTION SET

Al1.3.4 Double Operand Instructions

Al.3.5

adca
adc a

adda
add a

anda
and a

bita
bit a

cmpa
cmp a

ldaa
Ida a

Ooraa
Oora a

sbca
sbc a

staa
sta a

suba
sub a

[l
[l

[l
[

[
[

L]
[1

[l
[l

[l
[

[
[

L]
[1

[l
[l

[l
[

adcb
adc b

addb
add b

andb
and b

bitb
bit b

cmpb
cmp b

lIdab
Ida b

orab
ora b

sbcb
sbc b

stab
sta b

subb
sub b

L1
1

L1
L1

1
1

L1
1

L1
1

L1
L1

1
1

L1
1

L1
1

L1
L1

PAGE Al-5

addd 1
add d [1
subd 1
sub d [1

Jump and Jump to Subroutine Instructions

Jmp

[l

jsr

1

AS6801 ASSEMBLER
6801 INSTRUCTION SET

Al.3.6

Al_.3.7

Long Register Instructions

CpX L1
Ids L1
std L1
stx [1

1dd [1
1dx [1
sts [1

6303 Specific Instructions

aim #data, [] eim #data, []
oim #data, [] tim #data, []

slp

PAGE Al-6

APPENDIX AJ

AS6804 ASSEMBLER

Requires the .setdp directive to specify the ram area.

AJ.1 6804 REGISTER SET

The following is a list of the 6804 registers used by AS6804:

X,y - index registers

AJ.2 6804 INSTRUCTION SET

The TfTollowing tables list all 6804 mnemonics recognized by
the AS6804 assembler. The designation [] refers to a required
addressing mode argument. The following list specifies the
format for each addressing mode supported by AS6804:

#data immediate data

byte or word data
» X register indirect addressing
dir direct addressing

(see .setdp directive)
0 <= dir <= 255

ext extended addressing
label branch label

The terms data, dir, and ext may be expressions. The label for
the short branchs beq, bne, bcc, and bcs must not be external.

AS6804 ASSEMBLER PAGE AJ-2
6804 INSTRUCTION SET

Note that not all addressing modes are valid with every in-
struction, refer to the 6804 technical data for valid modes.

AJ.2.1 Inherent Instructions

coma decx
decy Incx
incy rola
rti rts
stop tax
tay txa
tya wait

AJ.2.2 Branch Instructions

bne label beq label
bcc label bcs label

AJ.2.3 Single Operand Instructions

add [1
and [1
cmp 1
dec [1
inc [1
Ida L1
sta [1
sub [1

AJ.2.4 Jump and Jump to Subroutine Instructions

Jsr L1
Jmp [1

AS6804 ASSEMBLER PAGE AJ-3
6804 INSTRUCTION SET
AJ.2.5 Bit Test Instructions

brclr #data,[],label
brset #data,[],label

bclr #label ,[]
bset #label,[]

AJ.2.6 Load Immediate data Instruction

mv i [1.#data

AJ.2.7 6804 Derived Instructions

asla

bam label
bap label
bxmi label

bxpl label
bymi label
bypl label
clra

clrx

clry

deca

decx

decy

inca

incx

incy

Idxi #data
Idy1i #data
nop

tax

tay

txa

tya

APPENDIX AK

AS68(HC)05 ASSEMBLER

AK_.1 _6805 DIRECTIVE
Format:
.6805
The .6805 directive selects the MC6805 specific cycles count to
be output.
AK.2 _hcO5 DIRECTIVE
Format:
-hc05
The _hcO5 directive selects the MC68HC05/146805 specific cycles
count to be output.

AK.3 THE .__ .CPU. VARIABLE

The value of the pre-defined symbol *". _CPU." corresponds to
the selected processor type. The default value is O which cor-
responds to the default processor type. The following table
lists the processor types and associated values for the ASZ80
assembler:

Processor Type .___.CPU. Value

AS68(HC)05 ASSEMBLER PAGE AK-2
THE . .CPU. VARIABLE

The variable ". _CPU." is by default defined as local and
will not be output to the created .rel file. The assembler com-
mand line options -g or -a will not cause the local symbol to be
output to the created .rel fTile.

The assembler .globl directive may be used to change the
variable type to global causing i1ts definition to be output to
the _.rel file. The inclusion of the definition of the variable
"._ .CPU." might be a useful means of validating that separately
assembled TfTiles have been compiled for the same processor type.
The linker will report an error for variables with multiple non
equal definitions.

AK.4 6805 REGISTER SET

The following is a list of the 6805 registers used by AS6805:
a - 8-bit accumulator
X - index register

AK.5 6805 INSTRUCTION SET

The Tfollowing tables list all 6805 mnemonics recognized by
the AS6805 assembler. The designation [] refers to a required
addressing mode argument. The TfTollowing list specifies the
format for each addressing mode supported by AS6805:

#data immediate data
byte or word data

*dir direct page addressing
(see .setdp directive)
0 <= dir <= 255

» X register indirect addressing
zero offset

offset,x register indirect addressing
0 <= offset <= 255 --- byte mode
256 <= offset <= 65535 --- word mode

(an externally defined offset uses the
word mode)

ext extended addressing

AS68(HC)05 ASSEMBLER
6805 INSTRUCTION SET

label

branch label

PAGE AK-3

The terms data, dir, offset, and ext may all be expressions.

Note that

struction,

AK.5.1 Control

AK.5.2

AK.5.3

clc
nop
rti
sec
stop
tax
wailt

Bit Manipulation Instructions

brset
brclr

bset
bclr

Branch

bra
bhi
bcc
bne
bhcc
bpl
bmc
bil
bsr

not all addressing modes are valid with every in-

Instructions

#data,*dir, label
#data,*dir, label

cli
rsp
rts
sei
SwWi
t™>a

#data,*dir
#data,*dir

Instructions

label
label
label
label
label
label
label
label
label

brn
bls
bcs
beq
bhcs
bmi
bms
bih

label
label
label
label
label
label
label
label

refer to the 6805 technical data for valid modes.

AS68(HC)05 ASSEMBLER
6805 INSTRUCTION SET

AK.5.4

AK.5.5

Read-Modify-Write Instructions

nega
neg

coma
com

Isra
Isr

rora
ror

asra
asr

Isla
Isl

rola
rol

deca
dec

inca
inc
tsta
tst

clra
clr

Register\Memory Instructions

sub
sbc
and
lda
eor
ora
1dx

[l

[

L1

[1

[l

[

L1

[1

[l

[

L1

[l

L]

[

L1

[l

L]
[1

negx

comx

Isrx

rorx

asrx

Islx

rolx

decx

incx

Tstx

clrx

cmp
CpX
bit
sta
adc
add
StX

PAGE AK-4

AS68(HC)05 ASSEMBLER PAGE AK-5
6805 INSTRUCTION SET

AK.5.6 Jump and Jump to Subroutine Instructions

Jmp [Jsr 1

APPENDIX AL

AS68(HC[S])08 ASSEMBLER

AL.1 PROCESSOR SPECIFIC DIRECTIVES

The MC68HC(S)08 processor is a superset of the MC6805 proces-
sors. The AS6808 assembler supports the HC08, HCS08, 6805, and
HCO5 cores.

AL.1.1 _hcO8 Directive
Format:
-hc08
The .hc08 directive enables processing of only the HCO8 specific
mnemonics. 6805/HCO5/HCSO8 mnemonics encountered without the

-hc08 directive will be flagged with an <o> error.

The .hc08 directive also selects the HCO8 specific cycles
count to be output.

AS68(HC[S])08 ASSEMBLER PAGE AL-2
PROCESSOR SPECIFIC DIRECTIVES
AL.1.2 _hcs08 Directive
Format:
-hcs08

The _.hcs08 directive enables processing of the HCS08 specific
mnemonics.

The .hcs08 directive also selects the HCSO8 specific cycles
count to be output.
AL.1.3 .6805 Directive
Format:
.6805
The .6805 directive enables processing of only the 6805/HCO5
specific mnemonics. HCO8/HCSO8 mnemonics encountered without
the .hc08/.hcs08 directives will be flagged with an <o> error.
The .6805 directive also selects the MC6805 specific cycles
count to be output.
AL.1.4 _hc05 Directive
Format:
-hc05
The .hc0O5 directive enables processing of only the 6805/HCO5
specific mnemonics. HCO08/HCSO8 mnemonics encountered without

the .hc08/.hcs08 directives will be flagged with an <o> error.

The _.hcO5 directive also selects the MC68HC05/146805 specific
cycles count to be output.

AS68(HC[S])08 ASSEMBLER PAGE AL-3
PROCESSOR SPECIFIC DIRECTIVES

AL.1.5 The .___.CPU. Variable

The value of the pre-defined symbol *". _CPU." corresponds to
the selected processor type. The default value is O which cor-
responds to the default processor type. The following table
lists the processor types and associated values for the AS6808
assembler:

Processor Type .___.CPU. Value

The wvariable ~"._ _CPU." 1is by default defined as local and
will not be output to the created .rel file. The assembler com-
mand line options -g or -a will not cause the local symbol to be
output to the created .rel fTile.

The assembler .globl directive may be used to change the
variable type to global causing its definition to be output to
the _.rel file. The inclusion of the definition of the variable
"._ .CPU." might be a useful means of validating that separately
assembled files have been compiled for the same processor type.
The linker will report an error for variables with multiple non
equal definitions.

AL.2 68HC(S)08 REGISTER SET

The Tfollowing 1is a list of the 68HC(S)08 registers used by
AS6808:

a - 8-bit accumulator
index register <H:X>
s - stack pointer

X
I

AS68(HC[S])08 ASSEMBLER PAGE AL-4
68HC(S)08 INSTRUCTION SET

AL.3 68HC(S)08 INSTRUCTION SET

The Tfollowing tables list all 68HC(S)08 mnemonics recognized
by the AS6808 assembler. The designation [] refers to a re-
quired addressing mode argument. The following list specifies
the format for each addressing mode supported by AS6808:

#data immediate data
byte or word data

*dir direct page addressing
(see .setdp directive)
0 <= dir <= 255

» X register indexed addressing
zero offset

offset,x register indexed addressing
0 <= offset <= 255 --- byte mode
256 <= offset <= 65535 --- word mode

(an externally defined offset uses the
word mode)

, X+ register indexed addressing
zero offset with post increment

offset,x+ register indexed addressing
unsigned byte offset with post increment

offset,s stack pointer indexed addressing
0 <= offset <= 255 --- byte mode
256 <= offset <= 65535 --- word mode

(an externally defined offset uses the
word mode)

ext extended addressing
label branch label
The terms data, dir, offset, and ext may all be expressions.
Note that not all addressing modes are valid with every in-

struction, refer to the 68HC(S)08 technical data for valid
modes.

AS68(HC[S])08 ASSEMBLER
68HC(S)08 INSTRUCTION SET

AL_3.1 Control

AL.3.2

AL.3.3

AL.3.4

clc
mul
pshh
pulx
sec
tap
txa

Bit Manipulation Instructions

brset
brclr

bset
bclr

Branch

bra
bhi
bcc
bne
bhcc
bpl
bmc
bil
bsr
blt
ble

Instructions

label
label
label
label
label
label
label
label
label
label
label

cli
nop
pshx
rsp
sei
tax
txs

#data,*dir, label
#data,*dir, label

#data,*dir
#data,*dir

Instructions

brn
bls
bcs
beq
bhcs
bmi
bms
bih
bge
bgt

Complex Branch Instructions

cbeqa
cbeqgx
cbeq
dbnza
dbnzx
dbnz

[1.1abel
[1.1abel
[1.1abel
label
label
[1.1abel

daa
nsa
pula
rti
stop
tpa
wait

label
label
label
label
label
label
label
label
label
label

PAGE AL-5

div
psha
pulh
rts
SWi
tsx

AS68(HC[S])08 ASSEMBLER
68HC(S)08 INSTRUCTION SET

AL.3.5

Read-Modify-Write Instructions

nega
neg

coma
com

Isra
Isr

rora
ror

asra
asr

asla
asl

Isla
Isl

rola
rol

deca
dec

inca
inc

tsta
tst

[l

[

L1

[1

[l

[

L1

[1

[l

[

L1

[1

#data

#data

negx

comx

Isrx

rorx

asrx

aslx

Islx

rolx

decx

incx

tstx

clrx
clrh

PAGE AL-6

AS68(HC[S])08 ASSEMBLER
68HC(S)08 INSTRUCTION SET

AL.3.6 Register\Memory Instructions

AL.3.7

AL.3.8

AL.3.9

sub
sbc
and
lda
eor
ora
1dx

Double Operand Move Instruction

[1.01

mov

16-Bit <H:X> Index Register Instructions

cphx
1dhx
sthx

Jump and Jump to Subroutine Instructions

Jmp

[l
L]
[
[l
[l
L]
[1

[l
L]
[1

L1

cmp
CpX
bit
sta
adc
add
StX

JSsr

1

PAGE AL-7

APPENDIX AM

AS6809 ASSEMBLER

AM.1 6809 REGISTER SET

The following is a list of the 6809 registers used by AS6809:

a,b - 8-bit accumulators

d - 16-bit accumulator <a:b>
X,y - index registers

s,u - stack pointers

pc - program counter

cc - condition code

o
©
|

direct page

AM_2 6809 INSTRUCTION SET

The TfTollowing tables list all 6809 mnemonics recognized by
the AS6809 assembler. The designation [] refers to a required
addressing mode argument. The following list specifies the
format for each addressing mode supported by AS6809:

#data immediate data
byte or word data

*dir direct page addressing
(see .setdp directive)
0 <= dir <= 255

label branch label

r,rl,r2 registers
cc,a,b,d,dp,x,y,s,u,pc

AS6809 ASSEMBLER

INSTRUCTION SET

offset,x

ext
ext,pc

ext,pcr

[! __X]

[.x++]

[.x]

[offset,X]

[a.x]

[ext]

[ext,pc]

PAGE AM-2
register indexed
autodecrement
register indexed
autoincrement
register indexed addressing
zero offset
register indexed addressing
-16 <= offset <= 15 --- b-bit
-128 <= offset <= -17 --- 8-bit
16 <= offset <= 127 -—- 8-hit
-32768 <= offset <= -129 --- 16-bit
128 <= offset <= 32767 --- 16-bit

(external definition of offset
uses 16-bit mode)

accumulator offset iIndexed addressing
extended addressing

pc addressing (pc <- pc + ext)

pc relative addressing

register indexed indirect
autodecrement

register indexed indirect
autoincrement

register indexed indirect addressing
zero offset

register indexed indirect addressing
-128 <= offset <= 127 -—- 8-bhit

-32768 <= offset <= -129 --- 16-bit
128 <= offset <= 32767 --- 16-bit

(external definition of offset

uses 16-bit mode)

accumulator offset indexed
indirect addressing

extended indirect addressing

pc indirect addressing
([pc <- pc + ext])

AS6809 ASSEMBLER PAGE AM-3
6809 INSTRUCTION SET

[ext,pcr] pc relative indirect addressing

The terms data, dir, label, offset, and ext may all be expres-
sions.

Note that not all addressing modes are valid with every in-
struction, refer to the 6809 technical data for valid modes.

AM_.2_.1 Inherent Instructions

abx daa
mul nop
rti rts
sex swi
swil swi2
swi3 sync

AM_.2_.2 Short Branch Instructions

bcc label bcs label
beq label bge label
bgt label bhi label
bhis label bhs label
ble label blo label
blos label bls label
blt label bmi label
bne label bpl label
bra label brn label
bvc label bvs label

bsr label

AS6809 ASSEMBLER
6809 INSTRUCTION

AM.2_.3 Long Branch Instructions

Ibcc
Ibeq
Ibgt
Ibhis
Ible
Iblos
Iblt
Ibne
Ibra
Ibvc
Ibsr

SET

label
label
label
label
label
label
label
label
label
label
label

Ibcs
Ibge
Ibhi
Ibhs
Iblo
Ibls
Ibmi
1bpl
Ibrn
Ibvs

label
label
label
label
label
label
label
label
label
label

PAGE AM-4

AS6809 ASSEMBLER
6809 INSTRUCTION SET

AM_2_4

Single Operand Instructions

asla
asl

asra
asr

clra
clr

coma
com

deca
dec

inca
inc
Isla
Isl

Isra
Isr

nega
neg

rola
rol

rora
ror

tsta
tst

[l

[

L1

[1

[l

[

L1

[1

[l

[

L1

[1

aslb

asrb

clrb

comb

decb

incb

Islb

Isrb

negb

rolb

rorb

tstb

PAGE AM-5

AS6809 ASSEMBLER
6809 INSTRUCTION SET

AM_2.5

AM_.2.6

Double Operand Instructions

adca

adda

anda

bita

cmpa

eora

lda

ora

sbca

sta

suba

D-register Instructions

addd
cmpd
std

[
[1
[
[1
[
[1
[
[1
[
[1
[

L]
[
[

adcb
addb
andb
bitb
cmpb
eorb
Idb

orb

sbcb
stb

subb

subd
1dd

1
1
1
1
1
1
1
1
1
1
1

L1
1

PAGE AM-6

AS6809 ASSEMBLER
6809 INSTRUCTION SET

AM_2_.7

AM_2.8

AM_.2.9

AM_.2.10

Index/Stack Register Instructions

cmps 1 cmpu L1
cmpx 1 cmpy 1
Ids [1 Idu 1
1dx [1 1dy 1
leas [1 leau [1
leax 0 leay 1
sts [1 stu [1
stx [sty L]
pshs r pshu r
puls r pulu r

Jump and Jump to Subroutine Instructions

Jmp [1 Jsr 1

Register - Register Instructions

exg ri,r2 tfr ri,r2

Condition Code Register Instructions

andcc #data orcc #data
cwai #data

PAGE AM-7

AS6809 ASSEMBLER

6809 INSTRUCTION SET

AM.2_.11 6800 Compatibility Instructions

aba
clc
clv
dex
inx
ldaa
oraa
psha
pula
sba
sei
staa
tab
tbha
tsx
wai

L]
[1

L1

cba
cli
des
ins

Idab
orab
pshb
pulb
sec
sev
stab
tap
tpa
txs

L1
1

1

PAGE AM-8

APPENDIX AN

AS6811 ASSEMBLER

AN_.1 68HC11 REGISTER SET

The following is a list of the 68HC11 registers used by AS6811:

a,b - 8-bit accumulators
d - 16-bit accumulator <a:b>
X,y - index registers

AN.2 68HC11 INSTRUCTION SET

The TfTollowing tables list all 68HC11 mnemonics recognized by
the AS6811 assembler. The designation [] refers to a required
addressing mode argument. The following list specifies the
format for each addressing mode supported by AS6811:

#data immediate data
byte or word data

*dir direct page addressing
(see .setdp directive)
0 <= dir <= 255

» X register indirect addressing
zero offset

offset,x register indirect addressing
0 <= offset <= 255

ext extended addressing

label branch label

AS6811 ASSEMBLER PAGE AN-2
68HC11 INSTRUCTION SET

The terms data, dir, offset, and ext may all be expressions.

Note that not all addressing modes are valid with every in-
struction, refer to the 68HC11 technical data for valid modes.

AN_.2_.1 Inherent Instructions

aba abx
aby cba
clc cli
clv daa
des dex
dey fdiv
idiv ins
Inx iny
mul nop
rei rts
sba sec
sel sev
stop sSwi
tab tap
tba tpa
tsx txs
wal xgdx
xgdy

psha pshb
psh a psh b
pshx pshy
psh x psh y
pula pulb
pul a pul b
pulx puly

pul x pul y

AS6811 ASSEMBLER
68HC11 INSTRUCTION SET

AN_.2.2 Branch

bra
bhi
bcc
bcs
bne
bvc
bpl
bge
bgt
bsr

Instructions

label
label
label
label
label
label
label
label
label
label

brn
bls
bhs
blo
beq
bvs
bmi
blt
ble

label
label
label
label
label
label
label
label
label

PAGE AN-3

AS6811 ASSEMBLER

68HC11

AN.2.3

INSTRUCTION SET

Single Operand Instructions

asla aslb aslid
asl a asl b asl d
asl [1

asra asrb

asr a asr b

asr [1

clra clrb

clr a clr b

clr label

coma comb

com a com b

com [1

deca decb

dec a dec b

dec L1

inca incb

inc a inc b

inc L1

Isla Islb Isld
Isl a Isl b Isl d
Isl L1

Isra Isrb Isrd
Isr a Isr b Isr d
Isr [1

nega negb

neg a neg b

neg L1

rola rolb

rol a rol b

rol L1

rora rorb

ror a ror b

ror L1

tsta tstb

tst a tst b

tst L1

PAGE AN-4

AS6811 ASSEMBLER PAGE AN-5
68HC11 INSTRUCTION SET

AN.2.4 Double Operand Instructions

adca [1 adcb [1
adc a [] adc b []
adda L1 addb (N addd 1
add a [1 add b [1 add d [1
anda [1 andb [1
and a [] and b []
bita [1 bitb 1
bit a [] bit b []
cmpa 1 cmpb L1
cmp a [] cmp b []
eora 1 eorb L]
eor a [1 eor b [1
Idaa 1 Idab L1
Ida a [] Ida b []
oraa 1 orab L1
ora a [1 ora b [1
sbca 1 sbcb L1
sbc a [1 sbc b [1
staa 1 stab L1
sta a [1 sta b [1
suba L1 subb 1 subd 1
sub a L1 sub b (N sub d 1

AN.2.5 Bit Manupulation Instructions

bclr [1.#data
bset [1.#data

brclr [1.#data, label
brset [1.#data, label

AS6811 ASSEMBLER
INSTRUCTION SET

68HC11

AN.2.6

AN.2.7

Jump and Jump to Subroutine Instructions

Jmp

[

jsr

Long Register Instructions

Ccpx

Idd
1dx

std
sStX

[l

[l
[

[
[

Ccpy

Ids
Idy

sts
sty

1

1

L1
1

1
1

PAGE AN-6

APPENDIX AO

AS68(HC[S])12 ASSEMBLER

AO.1 PROCESSOR SPECIFIC DIRECTIVES

The AS6812 assembler supports the 68HC(S)12 series of
microprocessors which includes the 68HC(S)8xx and 68HC(S)9xx
series.

AO.1.1 _.hcl2 Directive
Format:
-hc12
The _hcl2 directive selects the HC12 core specific cycles count
to be output.
AO.1.2 _hcsl2 Directive
Format:

-hcs12

The _.hcsl2 directive selects the HCS12 core specific cycles
count to be output.

AS68(HC[S])12 ASSEMBLER PAGE AO-2
PROCESSOR SPECIFIC DIRECTIVES

A0O.1.3 The .___.CPU. Variable

The value of the pre-defined symbol *". _CPU." corresponds to
the selected processor type. The default value is O which cor-
responds to the default processor type. The following table
lists the processor types and associated values for the AS6812
assembler:

Processor Type .___.CPU. Value
hcl2 0
hcs12 1

The variable ~". _CPU." 1is by default defined as local and
will not be output to the created .rel file. The assembler com-
mand line options -g or -a will not cause the local symbol to be
output to the created .rel file.

The assembler .globl directive may be used to change the
variable type to global causing its definition to be output to
the _rel file. The inclusion of the definition of the variable
*.__.CPU." might be a useful means of validating that separately
assembled Tiles have been compiled for the same processor type.
The linker will report an error for variables with multiple non
equal definitions.

AO.2 68HC(S)12 REGISTER SET

The Tfollowing 1is a list of the 68HC(S)12 registers used by
AS6812:

a,b - 8-bit accumulators

d - 16-bit accumulator <a:b>
X,Y - index registers

sp,S - stack pointer

pc - program counter

ccr,cc - condition code register

AS68(HC[S])12 ASSEMBLER
68HC(S)12 INSTRUCTION SET

PAGE AO-3

AO.3 68HC(S)12 INSTRUCTION SET

The Tfollowing tables list all 68HC(S)12 mnemonics recognized
by the AS6812 assembler. The designation [] refers to a re-
quired addressing mode argument. The following list specifies
the format for each addressing mode supported by AS6812:

#data immediate data
byte or word data

ext extended addressing

Pg

*dir

memory page

direct page
(see .setdp
0 <= dir <=

number

addressing
directive)
255

label branch label

r,rl,r2 registers

ccr,a,b,d,x,y,sp,pc

register indexed, pre or
post autodecrement by 1

register indexed, pre or
post autodecrement by 1 - 8

+X X+
, X , X+

register indexed, pre or
post autoincrement by 1
n,+x

n,x+ register indexed, pre or

post autoincrement by 1 - 8

offset,Xx register indexed addressing
-16 <= offset <= 15 -—
-256 <= offset <= -17 -—-
16 <= offset <= 255 -———
-32768 <= offset <= -257
256 <= offset <= 32767 --- 1
(external definition of offset

uses 16-bit mode)

5-bit
9-bit
9-bit
6-bit
6-bit

[offset,Xx] register indexed indirect addressing

-32768 <= offset <= 32767 --- 16-bit

[.x]

register indexed indirect addressing

AS68(HC[S])12 ASSEMBLER PAGE AO-4
68HC(S)12 INSTRUCTION SET
zero offset
a,Xx accumulator offset iIndexed addressing

[d,x] d accumulator offset iIndexed
indirect addressing

The terms data, dir, label, offset, and ext may all be expres-
sions.

Note that not all addressing modes are valid with every in-

struction, refer to the 68HC(S)12 technical data for valid
modes.

AO.3.1 Inherent Instructions

aba bgnd cba
daa dex dey
ediv edivs emul
emuls fdiv idiv
1divs Inx iny
mem mul nop
psha pshb pshc
pshd pshx pshy
pula pulb pulc
puld pulx puly
rev revw rtc
rei rts sba
stop sSwi tab
tba wali wav

wavr

AS68(HC[S])12 ASSEMBLER
68HC(S)12 INSTRUCTION SET

AO.3.2

AO0.3.3

AO.3.4

AO.3.5

Short Branch Instructions

bcc label bcs label
beq label bge label
bgt label bhi label
bhis label bhs label
ble label blo label
blos label bls label
blt label bmi label
bne label bpl label
bra label brn label
bvc label bvs label
bsr label

Long Branch Instructions

Ibcc label Ibcs label
Ibeq label Ibge label
Ibgt label Ibhi label
Ibhis label Ibhs label
Ible label Iblo label
Iblos label Ibls label
Iblt label Ibmi label
Ibne label 1bpl label
Ibra label Ibrn label
Ibvc label Ibvs label

Branch on Decrement, Test, or Increment

dbeq r, label dbne r, label
1beq r, label ibne r, label
tbeq r, label tbne r, label

Bit Clear and Set Instructions

bclr [1.#data
bset [1.#data

PAGE AO-5

AS68(HC[S])12 ASSEMBLER

68HC(S)12 INSTRUCTION SET

AO.3.6

AO0.3.7

Branch on Bit Clear or Set

brclr
brset

Single Operand Instructions

asla
asl

asra
asr

clra
clr

coma
com

deca
dec

inca
inc
Isla
Isl

Isra
Isr

nega
neg

rola
rol

rora
ror

tsta
tst

[1.#data, label
[1.#data, label

L1

[1

[l

[

L1

[1

[l

[

L1

[1

[l

[

aslb

asrb

clrb

comb

decb

incb

Islb

Isrb

negb

rolb

rorb

tstb

PAGE AO-6

AS68(HC[S])12 ASSEMBLER
68HC(S)12 INSTRUCTION SET

AO.3.8

AO0.3.9

AO.3.10

Double Operand Instructions

adca [1 adcb
adda [1 addb
anda [1 andb
bita 1 bitb
cmpa 1 cmpb
eora [1 eorb
ldaa [] <=> Ida
Idab 1 <=> Idb
oraa [1 <=> ora
orab [1 <=> orb
sbca [1 sbcb
staa [1 <=> sta
stab [1 <=> stb
suba [1 subb

Move Instructions

movb [1.11 movw

D-register Instructions
addd [1 subd
cpd [1 <=> cmpd

1dd [1 std

1
1
1
1
1
1
1
1
1
1
1
1
1
1

1

L1
L1
1

.[1

PAGE AO-7

AS68(HC[S])12 ASSEMBLER
68HC(S)12 INSTRUCTION SET

AO.3.11

AO.3.12

AO0.3.13

AO.3.14

Index/Stack Register Instructions

cps [1 <=> cmps 1
CpX [] <=> cmpx []
cpy 1 <=> cmpy L]
Ids [1
Idx 1 Idy 1
leas [1
leax 1 leay L1
sts L1
stx [1 sty L1

Jump and Jump/Call to Subroutine Instructions

call [1.pg
Jmp [l Jsr 1

Other Special Instructions

emacs L1

emaxd [1 emaxm [1
emind [1 eminm 1
etbl L1

maxa L1 maxm [1
mina [1 minm [1
tbl [1 trap #data

Register - Register Instructions

exg ri,r2 sex ri,r2
tfr ril,r2

PAGE AO-8

AS68(HC[S])12 ASSEMBLER

68HC(S)12 INSTRUCTION SET

A0.3.15 Condition Code Register Instructions

andcc

#data

A0.3.16 M68HC11 Compatibility Mode Instructions

abx
cli
ins
sev
tsx
tys

aby
clv
sec
tap
tsy
xgdx

clc
des
sei
tpa
txs
xgdy

PAGE AO-9

APPENDIX AP

AS6816 ASSEMBLER

AP_.1 68HC16 REGISTER SET

The following is a list of the 68HC16 registers used by AS6816:

8-bit accumulators

16-bit accumulator <a:b>
16-bit accumulator

index registers

address extension register
stack pointer

condition code

AP_.2 68HC16 INSTRUCTION SET

The TfTollowing tables list all 68HC16 mnemonics recognized by

the AS6816 assembler.

The designation [] refers to a required

addressing mode argument. The following list specifies the
format for each addressing mode supported by AS6816:

#data

#X0 ,#yo

label

immediate data
byte or word data

local immediate data (mac / rmac)
branch label

register
ccr,a,b,d,e,x,y,z,s

zero offset register iIndexed addressing

AS6816 ASSEMBLER PAGE AP-2
68HC16 INSTRUCTION SET

,X16
offset,x register indexed addressing
0 <= offset <= 255 --—- 8-bit
-32768 <= offset <= -1 --- 16-bit
256 <= offset <= 32767 --- 16-bit
(external definition of offset
uses 16-bit mode)
offset,x8 unsigned 8-bit offset indexed addressing
offset,x16 signed 16-bit offset iIndexed addressing
e,X accumulator offset indexed addressing
ext extended addressing
bank 64K bank number (Jmp / jsr)

The terms data, label, offset, bank, and ext may all be expres-
sions.

Note that not all addressing modes are valid with every in-
struction, refer to the 6816 technical data for valid modes.

AP_.2.1 Instruction Notes

Several instructions have argument conditions that can be
confusing to the uninitiated. The AIS, AIX, AlY, AlZ, ADDD, and
ADDE instructions have 8 and 16 bit immediate forms:

AlS i and
AlS Jikk

Where each argument 1is sign extended to 20 bits. This means
that the 8 bit value i1s between -128 and +127 and the 16 bit
value 1s between -32768 and +32765. The assembler checks for a
constant argument with a value from -128 to +127 and emits the
8 bit opcode and signed 8 bit value. This implies that that an
argument OxFC, often used to specify a value of -4 when dealing
with 8 bit arguments, 1is not -4 but +252. The assembler will
emit the 16 bit opcode and the value OxOOFC, not what was ex-
pected.

AS6816 ASSEMBLER
INSTRUCTION SET

68HC16

AP_.2.2

AP.2.3

AP.2.4

Inherent Instructions

aba
ace
ady
aez
ediv
fdiv
Ipstop
pshb
pulmac
sde
tab
tbsk
tde
tedm
thmet
tskb
txkb
tykb
tzkb
wal
xgdy
xgez

Push/Pull Multiple Register Instructions

pshm

r,...

Short Branch

bcc
beq
bgt
bhis
ble
blos
blt
bne
bra
bvc
bsr

label
label
label
label
label
label
label
label
label
label
label

abx
aced
adz
bgnd
edivs
fmuls
mul
pshmac
rtr
sted
tap
tbxk
tdmsk
tekb
tmxed
tsx
txs
tys
tzs
xgab
xgdz

pulm

Instructions

bcs
bge
bhi
bhs
blo
bls
bmi
bpl
brn
bvs

aby
ade
aex
cba
emul
idiv
nop
pula
rts
swi
tha
tbyk
tdp
tem
tpa
tsy
txy
tyXx
tzx
xgde
Xgex

r,...

label
label
label
label
label
label
label
label
label
label

PAGE AP-3

abz
adx
aey
daa
emuls
Idhi
psha
pulb
sba
sxt
thek
tbzk
ted
tmer
tpd
tsz
txz
tyz
tzy
xgdx
xgey

AS6816 ASSEMBLER
INSTRUCTION SET

68HC16

AP.2.5 Long Branch Instructions

AP.2.6

Ibcc
Ibeq
Ibgt
Ibhis
Ible
Iblos
Iblt
Ibne
Ibra
Ibvc
Ibsr

Bit Manipulation Instructions

bclr
bset

brclr

brset

label
label
label
label
label
label
label
label
label
label
label

[]1.#data
[1.#data

[1.#data, label
[1.#data, label

Ibcs
Ibge
Ibhi
Ibhs
Iblo
Ibls
Ibmi
1bpl
Ibrn
Ibvs

label
label
label
label
label
label
label
label
label
label

PAGE AP-4

AS6816 ASSEMBLER
INSTRUCTION SET

68HC16

AP_.2.7

Single Operand Instructions

asla
asld
aslim
asl

asra
asrd
asrm
asr

clra
clrd

clr

coma
comd
com

deca
dec

inca
inc

Isla
Isld
Isim
Isl

Isra
Isrd
Isr

nega
negd
neg

rola
rold
rol

rora
rord
ror

tsta

L1

[

[l

[l

[

L1

[

[

[

[

[

aslb
asle

aslw

asrb
asre

asrw

clrb
clre
clrm
clrw

comb
come
comw

decb
decw

incb
incw

Islb
Isle

Islw

Isrb
Isre
Isrw

negb
nege
negw

rolb
role
rolw

rorb
rore
rorw

tstb

1

1

1

1

1

1

1

1

1

1

1

PAGE AP-5

AS6816 ASSEMBLER
INSTRUCTION SET

68HC16

AP_.2.8

tsta
tst

L1

tste
tstw

Double Operand Instructions

adca
adcd

adda
addd

ais
aiy

anda
andd

bita

cmpa
cpd

eora
eord

ldaa
1dd

oraa
ord

sbca
sbcd

staa
std

suba
subd

[l
[l

[l
[

[
[

L]
[1

[

[
[

L]
[1

[l
[l

[l
[

[
[

L]
[1

[l
[l

adcb
adce

addb
adde

aix
aiz

andb
ande

bitb

cmpb
cpe

eorb
eore

Idab
lde

orab
ore

sbcb
sbce

stab
ste

subb
sube

1

L1
1

L1
1

1
1

L1
1

1

1
1

L1
1

L1
1

L1
1

1
1

L1
1

L1
1

PAGE AP-6

AS6816 ASSEMBLER

68HC16

AP_.2.9

AP_.2.10

AP.2.11

AP.2.12

INSTRUCTION SET

Index/Stack Register Instructions

cps [1 CpXx L1
cpy [] cpz]
Ids [] 1dx 1
Idy 1 1dz L1
sts 1 stx L1
sty 1 stz L1

Jump and Jump to Subroutine Instructions

Jjmp bank, [] jsr bank, []

Condition Code Register Instructions

andp #data orp #data

Multiply and Accumulate Instructions

mac #data rmac #data
mac #X0 ,#yO0 rmac #X0 ,#YyO

PAGE AP-7

APPENDIX AQ

AS740 ASSEMBLER

AQ.1 ACKNOWLEDGMENT
Thanks to Uwe Steller for his contribution of the AS740 cross
assembler.

Uwe Stellar
Uwe dot Steller at t-online dot de

The 1instruction syntax of this cross assembler uses the
square brackets [] to denote addressing indirection.
AQ.2 740 REGISTER SET
The following is a list of the 740 registers used by AS740:

a - 8-bit accumulator
X,Y - index registers

AS740 ASSEMBLER
740 INSTRUCTION SET

PAGE AQ-2

AQ.3 740 INSTRUCTION SET

The Tfollowing tables list all 740 family mnemonics recog-
nized by the AS740 assembler. The designation [] refers to a
required addressing mode argument. The following list specifies
the format for each addressing mode supported by AS740:

#data immediate data byte
#data,*zp immediate data to zero page
a accumulator addressing

*Zp zero page addressing

(see .setdp directive)
0 <= dir <= 255

*Zp,X zero page X addressing
*zZp,y zero page y addressing
address = (offset + (x or y))

[*zp,X] indirect x addressing
0 <= offset <= 255
address = 2 bytes at location
[(offset + (x or y)) mod 256]

[*zp].y indirect y addressing
address = 2 byte value at offset
plus the value of the y register

abs absolute addressing (2 byte)

abs,x absolute x addressing (2 byte + x)
abs,y absolute y addressing (2 byte + y)
[abs] indirect addressing (2 byte)

label branch label

\special low order byte of address OxFFnn
BIT#,*zp bit set/clear zero page

BIT#,A bit set/clear accumulator

BIT#,*zp,label branch on bit set/clear In zero page
BIT#,A, label branch on bit set/clear in accumulator

The terms data, zp, abs, BIT , special, and label may all be ex-
pressions.

AS740 ASSEMBLER
740 INSTRUCTION SET

Note that

struction,

AQ.3.1

AQ.3.2

AQ.3.3

Inherent Instructions

brk
cld
clt
dex
inx
nop
php
plp
rts
sed
set
tax
tsx
txs
wit

Branch Instructions

bcc
bcs
beq
bne
bvc
bra

label
label
label
label
label
label

clc
cli
clv
dey
iny
pha
pla
rti
sec
sei
stp
tay
txa
tya

bhs
blo
bmi
bpl
bvs

Single Operand Instructions

asl
dec
inc
Isr
rol
ror

L]
[
[l
[l
L]
[1

PAGE AQ-3

not all addressing modes are valid with every in-
refer to the 740 technical

data for valid modes.

label
label
label
label
label

AS740 ASSEMBLER
740 INSTRUCTION SET

AQ.3.4 Double Operand Instructions

AQ.3.5

AQ.3.6

AQ.3.7

AQ.3.8

adc [1
and [1
bit L1
cmp 1
eor [1
Ida [1
ora [1
sbc [1
sta [1

Jump and Jump to Subroutine Instructions

Jmp [l

1

PAGE AQ-4

Miscellaneous X and Y Register Instructions

cpX []
cpy [l
1dx [1
stx [1
Idy []
sty [l

Bit Instructions

bit [1
bbc BIT#,[],1abel
clb BIT#,[1

Other Instructions

div [1
Idm #imm, []
tst [1

bbs
seb

mul
com
rrf

BIT#,[], 1abel
BIT#, [1

L1
L1
1

APPENDIX AR

AS78KO ASSEMBLER

AR.1 PROCESSOR SPECIFIC DIRECTIVES

AR.1.1 _setdp Directive
Format:
.setdp [base [,area]l]

The set direct page directive has a common format in all the as-
semblers supporting a paged mode. The .setdp directive is used
to inform the AS78KO assembler of the current SFR page region
and the offset address within the selected area. The normal In-
vocation methods are:

.area SFR (PAG)
.setdp

or

.setdp OxFFO0O0,SFR

The directives specify that the direct page is in area SFR and
its offset address i1s OxFFOO (the only valid value for all r78k0
microprocessor variations). Be sure to place the SFR area at
address OxFFOO during linking. When the base address and area
are not specified, then OxFFOO and the current area are the
defaults. |If a .setdp directive 1s not 1issued the assembler
defaults the direct page to the area "CODE"™ at offset OxFFOO.

AS78KO ASSEMBLER PAGE AR-2
PROCESSOR SPECIFIC DIRECTIVES

The assembler verifies that any local variable used In an SFR
variable reference i1s located In this area. Local variable and
constant value direct access addresses are checked to be within
the address range from OxFFOO to OXFFFF.

External SFR references are assumed by the assembler to be in
the correct area and have valid offsets. The linker will check
all SFR page relocations to verify that they are within the cor-
rect area.

AR.2 78K/0 REGISTER SET
The following is a list of the 78K/0 registers used by AS78KO0:

x(r0), a(rl), 8-bit registers
c(r2), b(r3),
e(rd), d(rb),
1(r6), h(r7)

ax(rp0), 16-bit registers
bc(rpl),

de(rp2),

h1(rp3)

rbO, rbl, register bank selection
rb2, rb3

sp Stack pointer

psw Program status word

cy Carry flag

Register names are NOT case sensitive.

AR.3 78K/0 INSTRUCTION SET

The Tfollowing tables list all 78K/0 mnemonics recognized by
the AS78K0 assembler. The designation [] refers to a required
addressing mode argument. The first list specifies the format
for each addressing mode supported by AS78KO0:

addrl6 direct addressing
via a 16-bit address

laddrl6 immediate addressing
only required for the

AS78KO ASSEMBLER

78K/0

INSTRUCTION SET

addril

[addr5]

@saddr

@saddr.bit
@saddr,bit

*sfr

*sfr._bit
*sfr,bit

label

#byte
#word

rn

rpn

rbn

sp
psw

cy

[DE]. [HL]

long br instruction

direct addressing
via an 11-bit address

indirect addressing
via a 5-bit address

short direct addressing
OXFE20 <= saddr <= OxFF1F

short direct addressing
with bit addressing (0-7)
OXFE20 <= saddr <= OxFF1F

special function registers
OXFFOO <= sfr <= OxFFCF or
OXFFEO <= sfr <= OxFFFF

special function registers
wiht bit addressing (0-7)
OXFFOO <= sfr <= OxXFFCF or
OXFFEO <= sfr <= OxFFFF

branch label
(pc relative addressing)

immediate data (8 bit)
immediate data (16 bit)

registers (8 bit)

X, a, ¢, b, e, d, I, h
ro-r7

registers (16 bit)

ax, bc, de, hl

rpO-rp3

register bank
rbO-rb3

stack pointer
program status register
carry flag

register indirect addressing

PAGE AR-3

AS78KO ASSEMBLER PAGE AR-4
78K/0 INSTRUCTION SET

[HL+byte] based register indirect addressing
[HL,byte]

[HL+B]

[HL.B]

[HL+C]

[HL.C]

[HL].-bit register indirect addressing
with bit addressing

The terms addrl6, addrll, addr5, saddr, sfr, bit, label,
byte, and word may all be expressions.

Absolute addresses (CONSTANTS) will be checked as being iIn
the "saddr® range first and then as being in the "sfr® range if
no explicit @ or * is specified.

The bit addressing modes *sfr.bit and @saddr.bit use the ".*
as a separator from the address and the bit value. The bit
value can be a numeric constant, a named constant, an expres-
sion, or a combination of these. Because the "_." i1s also a le-
gal character in a name or label the assembler may not be able
to resolve the address and bit value. The optional method of
using a ", to separate the address and bit value may be used iIn
this case.

IT the "sfr” or "saddr® address is external then the user is
responsible to ensure the addresses are In the proper ranges.
Paging ERRORS for "sfr® may be reported by the linker.

Note that not all addressing modes are valid with every in-
struction, refer to the 78K/0 technical data for valid modes.

AR.3.1 Inherent Instructions

nop halt stop
ret retb reti
di ei brk

adjba adjbs

AS78KO ASSEMBLER

78K/0

AR.3.2

AR.3.3

INSTRUCTION SET

Branch

bc
bz

br

bt
btclr

Single Operand Instructions

inc
incw

setl

setl
notl

ror4

call
callf

mullu

push

Instructions

label
label

L1

[1.,addrl16
[1.addr16

L1

rpn
[1

Cy
Cy

[HL]

addril6
addril

X

[1

bnc
bnz

dbnz

bf

dec
dec

clirl

clirl

rol4

callt

divuw

pop

PAGE AR-5

label
label

[1,addri16

[1,addrl16

1

rpn
1
cy

[HL]
[addr5]

1

AS78KO ASSEMBLER

78K/0

AR.3.4

INSTRUCTION SET

Double Operand Instructions

movw
movw

add
addc
sub
subc
and
or
Xor
cmp

mov1l
andl
orl

xorl

adddw
cmpw

ror
rorc

Sp,ax

1.1

a,[1
a,[1
a,[1
a,[1
a,[1
a,[1
a,[1
a,[1

cy,[]
cy,[]
cy,[]
cy.[1

ax,#word
ax ,#word
a,l
a,l

movw
xchw

add
addc
sub
subc
and
or
Xor
cmp

mov1l
andl
orl

xorl

subw

rol
rolc

PAGE AR-6

ax,sp
ax, rpn

saddr,#byte
saddr,#byte
saddr,#byte
saddr,#byte
saddr ,#byte
saddr,#byte
saddr,#byte
saddr,#byte

[1.cy
[1.cy
[1.cy
[1.cy

ax,#word

e

APPENDIX AS

AS78KOS ASSEMBLER

AS.1 78K/0S REGISTER SET
The following is a list of the 78K/0S registers used by AS78K0S:

x(r0), a(rl), 8-bit registers
c(r2), b(r3),
e(rd), d(rb),
1(r6), h(r7)

ax(rp0), 16-bit registers
bc(rpl),

de(rp2),

h1(rp3)

sp Stack pointer

psw Program status word
cy Carry flag

Register names are NOT case sensitive.

AS.2 T78K/0S INSTRUCTION SET

The TfTollowing tables list all 78K/0S mnemonics recognized by
the AS78K0S assembler. The designation [] refers to a required
addressing mode argument. The first list specifies the format
for each addressing mode supported by AS78KO0S:

addri6 direct addressing
via 16-bit address

laddrl6 immediate addressing

AS78K0S ASSEMBLER PAGE AS-2
78K/0S INSTRUCTION SET
only required for the
long br instruction
@saddr short direct addressing
OXFE20 <= saddr <= OxFF1F
@saddr.bit short direct addressing
@saddr,bit with bit addressing (0-7)
OXFE20 <= saddr <= OxFF1F
*sfr special function registers
OXFFOO0 <= sfr <= OxFFCF or
OXFFEO <= sfr <= OxFFFF
*sfr.bit special function registers
*sfr,bit wiht bit addressing (0-7)
OXFFOO <= sfr <= OxFFCF or
OXFFEO <= sfr <= OxFFFF
label branch label
(pc relative addressing)
#byte immediate data (8 bit)
#word immediate data (16 bit)
rn registers (8 bit)
X, a, ¢, b, e, d, I, h
ro-r7
rpn registers (16 bit)
ax, bc, de, hl
rpO-rp3
sp stack pointer
psw program status register
cy carry flag
[DE], [HL] register indirect addressing
[HL+byte] based register indirect addressing

The terms addrl6, saddr, sfr, bit,
be expressions.

label, byte, and word may all

Absolute addresses (CONSTANTS) will be checked as being iIn
the "saddr® range first and then as being in the "sfr® range if

no explicit @ or * is specified.

AS78K0OS ASSEMBLER PAGE AS-3
78K/0S INSTRUCTION SET

The bit addressing modes *sfr.bit and @saddr.bit use the ".*
as a separator from the address and the bit value. The bit
value can be a numeric constant, a named constant, an expres-
sion, or a combination of these. Because the "." is also a le-
gal character in a name or label the assembler may not be able
to resolve the address and bit value. The optional method of
using a ", to separate the address and bit value may be used iIn
this case.

IT the "sfr” or "saddr® address i1s external then the user is
responsible to ensure the addresses are in the proper ranges.
NO ERRORS will be reported by the linker.

Note that not all addressing modes are valid with every in-
struction, refer to the 78K/0S technical data for valid modes.

AS_.2.1 Inherent Instructions

nop halt stop
ret reti
di el

AS_.2.2 Branch Instructions

bc label bnc label
bz label bnz label
br 1 dbnz [1.addri16
bt [1.addr16 bf [1.addr16

AS.2.3 Single Operand Instructions

inc [1 dec 1

incw rpn dec rpn
setl [1 cirl [1

setl cy cirl cy

notl cy

call addrl16 callt [1

push [l pop L1

AS78K0OS ASSEMBLER
INSTRUCTION SET

78K/0S

AS.2.4

Double Operand Instructions

movw
movw

add
addc
sub
subc
and
or
Xor
cmp

adddw
cmpw

ror
rorc

Sp,ax

1.1

a,[1
a,[1
a,[1
a,[1
a,[1
a,[1
a,[1
a,[1

ax,#word
ax,#word

a,l
a,l

movw
xchw

add
addc
sub
subc
and
or
Xor
cmp

subw

rol
rolc

PAGE AS-4

ax,sp
ax, rpn

saddr,#byte
saddr,#byte
saddr,#byte
saddr,#byte
saddr ,#byte
saddr,#byte
saddr,#byte
saddr,#byte

ax,#word

APPENDIX AT

AS8008 ASSEMBLER

The AS8008 assembler supports the 8008 microprocessor using
the traditional MCS-8 assembly language syntax.
AT.1 8008 REGISTER SET
The following is a list of the 8008 registers used by AS8008:

a - 8-bit accumulator
b,c,d,e,h,l - 8-bit registers

AS8008 ASSEMBLER PAGE AT-2
8008 REGISTER SET

AT.2 8008 INSTRUCTION SET

The TfTollowing tables list all 8008 mnemonics recognized by
the AS8008 assembler. The following list specifies the fTormat
for each addressing mode supported by AS8008:

Instruction Argument Syntax:

REGM register a,b,c,d,e,h,l
or Memory (address is HL)

SRC REGM source
DST REGM destination
#data immediate byte data
addr call or jump address or label
port input/output port
n reset number

The terms data, addr, port, and n may all be expressions.

Note that not all addressing modes may be valid with every

instruction. Refer to the 8008 technical data for valid modes.

AT.2.1 Instruction Listing

Single Register Instructions REGM = a or M
inr REGM dcr REGM
Mov Instructions SRC and DST not both = M
mov DST,SRC
Register or Memory to Accumulator Instructions
add REGM adc REGM
sub REGM sbb REGM
ana REGM Xra REGM
ora REGM cmp REGM
Rotate Accumulator Instructions
ric rrc
ral rar

Immediate Instructions

AS80
8008

08 ASSEMBLER
INSTRUCTION SET

mov i REGM, #data

adi #data aci
sui #data sbi
ani #data Xri
ori #data cpi

Jump Instructions

Jjmp addr

jc addr jnc

jz addr jnz

Jjp addr Jjm

jpe addr jpo
Call Instructions

call addr

cc addr cnc

cz addr cnz

cp addr cm

cpe addr cpo

Return Instructions

rte

rc rnc
rz rnz
rp rm
rpe rpo

Reset Instruction
rst n O<=n<=7Y7

Input/Output Instructions
in port 0 <= port <=7
out port 8 <= port <= 31

Halt and No-Operation Instruction
hlt
nop

#data
#data
#data
#data

addr
addr
addr
addr

addr
addr
addr
addr

PAGE AT-3

APPENDIX AU

AS8008S ASSEMBLER

The AS8008S assembler supports the 8008 microprocessor using
the early MCS-8 assembly language syntax of a Fortan based as-
sembler/simulator (SIM-8) which had minimal lexical analysis.
The iInstruction set contains a mnemonic for every variation of
the basic instruction types. As an example the load accumulator
operation has a mnemonic for load a with a (laa), load a with b
(lab), load a with ¢ (lac), load a with d (lad), load a with e
(lae), load a with h (lah), and load a with I (lal).

AU.1 8008 REGISTER SET

The following is a list of the 8008 registers used by AS8008S:

a - 8-bi1t accumulator
b,c,d,e,h,l - 8-bit registers
c,Z,S,p - status word bits

AS8008S ASSEMBLER PAGE AU-2
8008 REGISTER SET

AU.2 8008 INSTRUCTION SET

The TfTollowing tables list all 8008 mnemonics recognized by
the AS8008S assembler. The following list specifies the fTormat
for each addressing mode supported by AS8008S:

Instruction Mnemonic Syntax:

r register a,b,c,d,e,h,l
C status bits c,z,s,p

M memory access

I immediate access

Instruction Argument Syntax:

#data immediate data
byte or word data

label call or jump label
MMM input/output port
The terms data, label, and MMM may all be expressions.

Note that not all addressing modes may be valid with every
instruction. Refer to the 8008 technical data for valid modes.

AS8008S ASSEMBLER
8008 INSTRUCTION SET

AU.2.1 Instruction Listing

Register Instructions

Lrr
LrM
Lrl
INr

#data

Accumulator Group

ADr
SUr
NDr
ORr

ADM
SUM
NDM
ORM

ADI
Sul
NDI
ORI

Rotate
RLC
RAL

Progarm
JMP
JFc

CAL
CFc

RET
RFc

RST

Input/Outpu Instructions

INP

Machine
HLT

#data
#data
#data
#data

Instructions

Counter and Stack Control

label
label

label
label

MMM

Instruction

Combo Instruction
#data (load H and L with word #data)

SHL

LMr
LMI
DCr

ACr
SBr
XRr
CPr

ACM
SBM
XRM
CPM
ACI
SBI

XR1
CP1

RRC
RAR

JTc

CTc

RTc

ouT

#data

#data
#data
#data
#data

Instructions

label

label

MMM

PAGE AU-3

APPENDIX AV

AS8048 ASSEMBLER

AS8048 supports the 8048, 8041, 8022, and 8021 variations of
the 8048 microprocessor family.
Av.1 .8048 DIRECTIVE
Format:
.8048
The .8048 directive enables processing of only the 8048 specific
mnemonics. 8041/8022/8021 mnemonics encountered will be flagged
with an <o> error.
AV.2 .8041 DIRECTIVE
Format:
.8041
The .8041 directive enables processing of the 8041 specific

mnemonics. 8041 mnemonics encountered without the .8041 direc-
tive will be flagged with an <o> error.

AS8048 ASSEMBLER PAGE AV-2
.8022 DIRECTIVE

AV.3 .8022 DIRECTIVE
Format:
.8022

The .8022 directive enables processing of the 8022 specific
mnemonics. 8022 mnemonics encountered without the .8022 direc-
tive will be flagged with an <o> error.

AV_.4 _.8021 DIRECTIVE
Format:
.8021

The .8021 directive enables processing of the 8021 specific
mnemonics. 8021 mnemonics encountered without the .8021 direc-
tive will be flagged with an <o> error.

AV.5 THE .__ .CPU. VARIABLE

The value of the pre-defined symbol ". _CPU." corresponds to
the selected processor type. The default value is 0 which cor-
responds to the default processor type. The following table
lists the processor types and associated values for the AS8048
assembler:

Processor Type .___.CPU. Value

The variable ~". _CPU." 1is by default defined as local and
will not be output to the created .rel file. The assembler com-
mand line options -g or -a will not cause the local symbol to be
output to the created .rel file.

The assembler .globl directive may be used to change the
variable type to global causing its definition to be output to
the .rel file. The inclusion of the definition of the variable
*.__.CPU." might be a useful means of validating that separately
assembled Tiles have been compiled for the same processor type.

AS8048 ASSEMBLER

THE .

.CPU.

VARIABLE

PAGE AV-3

The linker will report an error for variables with multiple non
equal definitions.

AV.6 8048 REGISTER SET

The following is a list

a
ro,rl1,r2,r3
r4,r5,r6,r7
bus,pl,p2
p4,p5,p6,p7
anO,anl
rb0O,rbl
mbO,mb1

C

clk

cnt

dbb

0

Tl

i

psw

t

tcent

tenti

of the 8048 registers used by AS8048:

8-bit
8-bit

accumulator
registers

- bus and ports

- analog input select
- register bank select
- memory bank select

- carry (bit in status word)

- timer

- counter

- data bus buffer
- O bit 1n psw

- Tl bit 1n psw

- interrupt

- program status word

- timer
- timer
- timer

register
counter
interrupt

AS8048 ASSEMBLER PAGE AV-4
8048 REGISTER SET

AV_.7 8048 INSTRUCTION SET

The Tfollowing tables list all 8048 mnemonics recognized by
the AS8048 assembler. The following list specifies the fTormat
for each addressing mode supported by AS8048:

#data immediate data
byte or word data

r register r0,rl

rn register r0,rl1,r2,r3,r4,r5,r6, or r7
@r indirect on register rO or rl
@a indirect on accumulator

addr direct memory address

addr8 current page 8-bit jmp address
#data immediate data

pn ports pl or p2

port ports pl,p2 or bus

ep ports p4,p5,p6, or p7

bus 1/0 bus

s O or f1 bits in psw

bitaddr bit address

label call or jump label

The terms data, addr, and label may all be expressions.

Note that not all addressing modes are valid with every in-
struction. Refer to the 8048, 8041, 8022, and 8021 technical
data for valid modes.

AS8048 ASSEMBLER
8048 INSTRUCTION

AV.7.1 Alphabet

add
add
add

addc
addc
addc

anl
anl
anl
anl
anld
call
clr
clr
clr
cpl
cpl
cpl
daa

dec
dec

entO

SET

ical Instruction Listing

a,or
a,#data
a,rn

a,or
a,#data
a,rn

port,#data
bus,#data
a,or

a,rn

ep,a
addr

a
C
S

a
C
S

a

rn
a

tenti

rn,addr8

tcenti

clk

8021
X
X
X

X
X
X

PAGE AV-5

X X X X

X

AS8048 ASSEMBLER PAGE AV-6
8048 INSTRUCTION SET

8021 8022 8041 8048

in a,dbb X

in a,pn X X X X
inc a X X X X
inc a,or X X
inc rn X X X X
ins a,bus X
Jjmp addr X X X X
Jmpp @a X X X X
Jjbo addr8 X X
jbl addr8 X X
Jjb2 addr8 X X
Jb3 addr8 X X
Jjba addr8 X X
Jjb5 addr8 X X
Jjb6 addr8 X X
Jb7 addr8 X X
jc addr8 X X X X
JfTo addr8 X X
Jjfl addr8 X X
jnc addr8 X X X X
Jjni addr8 X
jnibf addr8 X

Jnto addr8 X X
Jjntl addr8 X X
jnz addr8 X X X X
jobf addr8 X
jtf addr8 X X X X
Jjto addr8 X X
jtl addr8 X X X X
Jjz addr8 X X X X

AS8048 ASSEMBLER

8048 INSTRUCTION SET

mov
mov
mov
mov
mov
mov
mov
mov
mov
mov
mov

movd
movd

movp
movp3

movx
movx

nop
orl
orl
orl
orl
orl
orld
out

outl
outl

rad
ret

retr

a,#data
a,psw
a,or
a,rn

a,t
psw,a
rn,a
@r,a
rn,#data
@r,#data
t,a

a,ep
ep,a

a,@a
a,0a

a,or
@r,a

a,#data
a,rn

a,or
bus,#data
port,#data

ep,a
dbb,a

bus,a
port,a

a

8021

X X

X X X X X

X X

X

8022

X X

X X X X X

X

X

XXX XX X X X X X X g
N
=

X X

PAGE AV-7

XXX XX X X X X X X %
N
(oe]

X X

X

X X X X X X

X

AS8048 ASSEMBLER PAGE AV-8
8048 INSTRUCTION SET

8021 8022 8041 8048

ri a X X X X
ric a X X X X
rr a X X X X
rrc a X X X X
sel an0 X

sel anl X

sel mbO X
sel mb1 X
sel rbo X
sel rbl X
swap a X X X X
stop tcnt X X X X
strt cnt X X X X
strt t X X X X
Xch a,or X X X X
xchd a,or X X X X
xrl a,or X X X X
xrl a,#data X X X X
xch a,rn X X X X

xrl a,rn X X X X

APPENDIX AW

AS8051 ASSEMBLER

AW.1 ACKNOWLEDGMENT
Thanks to John Hartman for his contribution of the AS8051
cross assembler.
John L. Hartman
Jjhartman at compuserve dot com
noice at noicedebugger dot com

AW.2 8051 REGISTER SET

The following i1s a list of the 8051 registers used by AS8051:

a,b - 8-bit accumulators
ro,rl,r2,r3 - 8-bit registers
r4,r5,r6,r7

dptr - data pointer

sp - stack pointer

pc - program counter
psw - status word

c - carry (bit in status word)

AS8051 ASSEMBLER PAGE AW-2
8051 REGISTER SET

AW.3 8051 INSTRUCTION SET

The Tfollowing tables list all 8051 mnemonics recognized by
the AS8051 assembler. The following list specifies the fTormat
for each addressing mode supported by AS8051:

#data immediate data
byte or word data

r,rl,r2 register r0,rl1,r2,r3,r4,r5,r6, or r7
@r indirect on register r0O or rl
@dptr indirect on data pointer
@a+dptr indirect on accumulator
plus data pointer
@a+pc indirect on accumulator
plus program counter
addr direct memory address
bitaddr bit address
label call or jump label

The terms data, addr, bitaddr, and label may all be expressions.

Note that not all addressing modes are valid with every in-
struction. Refer to the 8051 technical data for valid modes.
AW.3.1 Inherent Instructions

nop

AS8051 ASSEMBLER

8051 INSTRUCTION SET

AW_3.2

AW.3.3

Move

mov
mov

mov
mov

mov
mov
mov

mov
mov

mov
mov

movc
movx
movx

Instructions

a,#data
a,r

r,#data
r,a

addr,a
addr,r
addrl,addr2

@r ,#data
@r,a

c,bitaddr
dptr,#data

a,@a+dptr
a,@dptr
@dptr,a

mov
mov

mov

mov

mov

mov

mov

movc
movx
movx

Single Operand Instructions

clr
clr
cpl
cpl
setb

da
rr
ri
swap

dec
dec
inc
inc

a
bitaddr
a

bitaddr

addr

clr
cpl
setb

rrc
ric

a,addr
a,or

r,addr
addr ,#data
addr,@r
bitaddr,c

@r,addr

a,@atpc
a,or
@r,a

(&
C

bitaddr

Qr
ab

addr

PAGE AW-3

AS8051 ASSEMBLER
INSTRUCTION SET

8051

AW_.3.4

AW.3.5

AW.3.6

Two Operand Instructions

add
add
addc
addc
subb
subb
orl
orl
orl
orl
anl
anl
anl
anl
xrl
xrl
xrl
xrl
Xch
Xch

a,#data

c,bitaddr
a,#data
a,r
addr,a
c,bitaddr
a,#data
a,r
addr,a
c,bitaddr
a,addr
a,or

add
add
addc
addc
subb
subb
orl
orl
orl
orl
anl
anl
anl
anl
xrl
xrl
xrl
xrl
Xch
xchd

Call and Return Instructions

acall

ret
in

out
rst

label

data
data
data

Jump Instructions

ajmp
cjne
cjne
djnz
Jbc
jb
jcC
Jjz
amp
Limp

label
a,#data, label
r ,#data, label
r, label
bitadr, label
bitadr, label
label

label

@a+dptr

label

Icall
reti

cjne
cjne
djnz
jnb
jnc
jnz

simp

a,addr
a,or
a,addr
a,or
a,addr
a,or
a,addr
a,or

addr ,#data
c,/bitaddr
a,addr
a,or

addr ,#data
c,/bitaddr
a,addr
a,or

addr ,#data
c,/bitaddr
a,r

a,or

label

a,addr, label
@r ,#data, label
addr, label

bitadr, label
label
label

label

PAGE AW-4

AS8051 ASSEMBLER

8051 INSTRUCTION SET

AW.3.7 Predefined Symbols: SFR Map

FC
F8
F4
FO
EC
E8
E4
EO
DC
D8
D4
DO
CcC
C8
c4
co
BC
B8
B4
BO
AC
A8
A4
AO
9C
98
94
90
8C
88
84
80

[---1

o L

ACC

PSW
TL2
T2CON

1P
P3
IE
P2
SCON
P1
THO
TCON

PO

-- 4 Bytes -----
TH2

RCAP2L
SBUF
TH1
TMOD TLO
SP DPL

Indicates Resident 1in 8052,

1
RCAP2H 1]
TL1
PCON
DPH
not 8051

A is an allowed alternate for ACC.

FF
FB
F7
F3
EF
EB
E7
E3
DF
DB
D7
D3
CF
CB
c7
c3
BF
BB
B7
B3
AF
AB
A7
A3
oF
9B
97
93
8F
8B
87
83

PAGE AW-5

AS8051 ASSEMBLER

8051 INSTRUCTION SET

AW.3.8 Predefined Symbols:

FC
F8
F4
FO
EC
E8
E4
EO
DC
D8
D4
DO
CcC
C8
c4
co
BC
B8
B4
BO
AC
A8
A4
AO
9C
98
94
90
8C
88
84
80

[---1

o L

ACC.4
ACC.0O

PSW.4
PSW.0
T2CON. 4
T2CON.O

IP.
IP.
P3.
P3.
IE.
IE.
P2.
P2.
SCON.4
SCON.O
P1.4

P1.0

TCON.4
TCON.O
PO.4

PO.0O

O~A,OPL,POPLMOPM

-- 4 BITS ————--
B.5 B.6

B.1 B.2
ACC.5 ACC.6
ACC.1 ACC.2
PSW.5 PSW.6
PSW.1 PSW.2
T2CON.5 T2CON.6
T2CON.1 T2CON.2
IP.5 IP.6
IP.1 IP.2
P3.5 P3.6
P3.1 P3.2
IE.S5 El.6
IE.1 IE.2
P2.5 P2.6
P2.1 P2.2
SCON.5 SCON.6
SCON.1 SCON.Z2
P1.5 P1.6
P1.1 P1.2
TCON.5 TCON.6
TCON.1 TCON.2
PO.5 PO.6
PO.1 PO.2

SFR Bit Addresses

Indicates Resident 1in 8052,

ACC.7
ACC.3

PSW.7
PSW.3

T2CON.7]
T2CON.3]

IP.
IP.
P3.
P3.
IE.
IE.
P2.
P2.
SCON.7
SCON.3
P1.7

P1.3

TCON.7
TCON.3
PO.7

PO.3

WNW~NWNWAN

A is an allowed alternate for ACC.

not 8051

FF
FB
F7
F3
EF
EB
E7
E3
DF
DB
D7
D3
CF
CB
c7
c3
BF
BB
B7
B3
AF
AB
A7
A3
oF
9B
97
93
8F
8B
87
83

PAGE AW-6

AS8051 ASSEMBLER
8051 INSTRUCTION SET

AW.3.9 Predefined Symbols:

FC
F8
F4
FO
EC
E8
E4
EO
DC
D8
D4
DO
CcC
C8
c4
co
BC
B8
B4
BO
AC
A8
A4
AO
9C
98
94
90
8C
88
84
80

[--

RS1

TLCK
CPRL2

o L

PS
PX0

RXD
ES
EXO

REN
RI1

TRO
ITO

FO

RCLK
CT2

PT2
PTO

TXD
ET2
ETO

SM2
Tl

TFO
1EO

Control

AC
oV
EXF2
TR2

PX1

INTO

EX1

SM1
RB8

TR1
IT1

-] Indicates Resident in

Bits

CcY
RSO
TF2
EXEN2

b L

PT1
INT1

EA
ET1

SMO
TB8

TF1
IE1

8052, not 8051

FF
FB
F7
F3
EF
EB
E7
E3
DF
DB
D7
D3
CF
CB
c7
c3
BF
BB
B7
B3
AF
AB
A7
A3
oF
9B
97
93
8F
8B
87
83

PAGE AW-7

APPENDIX AX

AS8085 ASSEMBLER

AX.1 PROCESSOR SPECIFIC DIRECTIVES

AX.1.1 .8085 Directive
Format:
.8085

The .8085 directive enables processing of the standard 8085
specific mnemonics. Unspecified 8085 instructions will be
flagged with an <o0> er