
C++ Object Persistence with ODB

 

 

 

 

 

 

 

 
Copyright © 2009-2010 Code Synthesis Tools CC

Permission is granted to copy, distribute and/or modify this document under the terms of the 
GNU Free Documentation License, version 1.3; with no Invariant Sections, no Front-Cover Texts
and no Back-Cover Texts. 

Revision 1.0, September 2010

This revision of the manual describes ODB 1.0.0 and is available in the following formats: 
XHTML, PDF, and PostScript.

http://www.codesynthesis.com/licenses/fdl-1.3.txt
http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/




Table of Contents
................... 1Preface
............... 1About This Document
................ 2More Information
.................. 21 Introduction
............. 31.1 Architecture and Workflow
................. 61.2 Benefits
............... 72 Hello World Example
............. 72.1 Declaring a Persistent Class
........... 102.2 Generating Database Support Code
............. 112.3 Compiling and Running
............. 122.4 Making Objects Persistent
........... 152.5 Querying the Database for Objects
............. 172.6 Updating Persistent Objects
............. 192.7 Deleting Persistent Objects
................. 202.8 Summary
............. 203 Working with Persistent Objects
............. 213.1 Concepts and Terminology
................. 233.2 Database
................ 243.3 Transactions
............. 283.4 Making Objects Persistent
............. 293.5 Loading Persistent Objects
............. 303.6 Updating Persistent Objects
............. 313.7 Deleting Persistent Objects
............... 323.8 ODB Exceptions
............... 344 Querying the Database
.............. 354.1 ODB Query Language
............... 374.2 Parameter Binding
............... 374.3 Executing a Query
................ 394.4 Query Result
............... 425 ODB Pragma Language
............. 445.1 C++ Compiler Warnings
............... 455.1.1 GNU C++
............... 465.1.2 Visual C++
............... 465.1.3 Sun C++
.............. 465.1.4 IBM XL C++
.............. 475.2 Object Type Pragmas
................ 475.2.1 table
.............. 475.3 Value Type Pragmas
................ 475.3.1 type
.............. 485.4 Data Member Pragmas

iRevision 1.0, September 2010 C++ Object Persistence with ODB

Table of Contents



.................. 485.4.1 id

................. 495.4.2 auto

................. 495.4.3 type

................ 505.4.4 column

............... 505.4.5 transient

................. 516 Database Systems

................ 516.1 MySQL Database

............. 516.1.1 MySQL Type Mapping

............. 526.1.2 MySQL Database Class

.............. 556.1.3 Connection Factory

.............. 576.1.4 MySQL Exceptions

Revision 1.0, September 2010ii C++ Object Persistence with ODB

Table of Contents



Preface
As more critical aspects of our lives become dependant on software systems, more and more 
applications are required to save the data they work on in persistent and reliable storage. Database 
management systems and, in particular, relational database management systems (RDBMS) are
commonly used for such storage. However, while the application development techniques and 
programming languages have evolved significantly over the past decades, the relational database 
technology in this area stayed relatively unchanged. In particular, this led to the now infamous
mismatch between the object-oriented model used by many modern applications and the rela-
tional model still used by RDBMS.

While relational databases may be inconvenient to use from modern programming languages,
they are still the main choice for many applications due to their maturity, reliability, as well as the 
availability of tools and alternative implementations.

To allow application developers to utilize relational databases from their object-oriented applica-
tions, a technique called object-relational mapping (ORM) is often used. It involves a conversion
layer that maps between objects in the application’s memory and their relational representation in
the database. While the object-relational mapping code can be written manually, automated ORM
systems are available for most object-oriented programming languages in use today.

ODB is an ORM system for the C++ programming language. It was designed and implemented
with the following main goals:

Provide a fully-automatic ORM system. In particular, the application developer should not
have to manually write any mapping code, neither for persistent classes nor for their data
member. 
Provide clean and easy to use object-oriented persistence model and database APIs that
support the development of realistic applications for a wide variety of domains. 
Provide a portable and thread-safe implementation. ODB should be written in standard C++
and capable of persisting any standard C++ classes. 
Provide profiles that integrate ODB with type systems of widely-used frameworks and
libraries such as Qt and Boost. 
Provide a high-performance and low overhead implementation. ODB should make efficient
use of database and application resources. 

About This Document

The goal of this manual is to provide you with an understanding of the object persistence model
and APIs which are implemented by ODB. As such, this document is intended for C++ applica-
tion developers and software architects who are looking for a C++ object persistence solution.
Prior experience with C++ is required to understand this document. A basic understanding of 

1Revision 1.0, September 2010 C++ Object Persistence with ODB

Preface



relational database systems is advantageous but not expected or required.

More Information

Beyond this manual, you may also find the following sources of information useful:

ODB Compiler Command Line Manual. 
The INSTALL  files in the ODB source packages provide build instructions for various plat-
forms. 
The odb-examples  package contains a collection of examples and a README file with
an overview of each example. 
The odb-users mailing list is the place to ask technical questions about ODB. Furthermore,
the searchable archives may already have answers to some of your questions. 

1 Introduction
ODB is an object-relational mapping (ORM) system for C++. It provides tools, APIs, and library
support that allow you to persist C++ objects to a relational database (RDBMS) without having to
deal with tables, columns, or SQL and without manually writing any of the mapping code.

ODB is highly flexible and customizable. It can either completely hide the relational nature of the 
underlying database or expose some of the details as required. For example, you can automati-
cally map basic C++ types to suitable SQL types, generate the relational database schema for
your persistent classes, and use simple, safe, and yet powerful object query language instead of
SQL. Or you can assign SQL types to individual data members, use the existing database schema,
and run native SQL SELECT queries.

ODB is not a framework. It does not dictate how you should write your application. Rather, it is
designed to fit into your style and architecture by only handling object persistence and not inter-
fering with any other functionality. There is no common base type that all persistent classes
should derive from nor are there any restrictions on the data member types in persistent classes. 
Existing classes can be made persistent with a few or no modifications.

ODB has been designed for high performance and low memory overhead. Prepared statements
are used to send and receive object state in binary format instead of text which reduces the load
on the application and the database server. Extensive caching of connections, prepared state-
ments, and buffers saves time and resources on connection establishment, statement parsing and
memory allocations. For each supported database system the native C API is used instead of
ODBC or higher-level wrapper APIs to reduce overhead and provide the most efficient imple-
mentation for each database operation. Finally, persistent classes have zero memory overhead.
There are no hidden "database" members that each class must have nor are there per-object data 
structures allocated by ODB.

Revision 1.0, September 20102 C++ Object Persistence with ODB

1 Introduction

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/mailman/listinfo/odb-users
http://www.codesynthesis.com/pipermail/odb-users/


In this chapter we present a high-level overview of ODB. We will start with the ODB architecture
and then outline the workflow of building an application that uses ODB. We will conclude the
chapter by contrasting the drawbacks of the traditional way of saving C++ objects to relational
databases with the benefits of using ODB for object persistence. The next chapter takes a more
hands-on approach and shows the concrete steps necessary to implement object persistence in a
simple "Hello World" application.

1.1 Architecture and Workflow

From the application developer’s perspective, ODB consists of three main components: the ODB
compiler, the common runtime library, called libodb , and the database-specific runtime
libraries, called libodb-<database> , where <database> is the name of the database system
this runtime is for, for example, libodb-mysql . For instance, if the application is going to use
the MySQL database for object persistence, then the three ODB components that this application
will use are the ODB compiler, libodb  and libodb-mysql .

The ODB compiler generates the database support code for persistent classes in your application.
The input to the ODB compiler is one or more C++ header files defining C++ classes that you
want to make persistent. For each input header file the ODB compiler generates a set of C++
source files implementing conversion between persistent C++ classes defined in this header and
their database representation. The ODB compiler can also generate a database schema file that
creates tables necessary to store the persistent classes.

The ODB compiler is a real C++ compiler except that it produces C++ instead of assembly or
machine code. In particular, it is not an ad-hoc header pre-processor that is only capable of recog-
nizing a subset of C++. ODB is capable of parsing any standard C++ code.

The common runtime library defines database system-independent interfaces that your applica-
tion can use to manipulate persistent objects. The database-specific runtime library provides 
implementations of these interfaces for a concrete database as well as other database-specific util-
ities that are used by the generated code. Normally, the application does not use the
database-specific runtime library directly but rather works with it via the common interfaces from 
libodb . The following diagram shows the object persistence architecture of an application that
uses MySQL as the underlying database system:

3Revision 1.0, September 2010 C++ Object Persistence with ODB

1.1 Architecture and Workflow



The ODB system also defines two special-purpose languages: the ODB Pragma Language and
ODB Query Language. The ODB Pragma Language is used to communicate various properties of 
persistent classes to the ODB compiler by means of special #pragma  directives embedded in the
C++ header files. It controls aspects of the object-relational mapping such as names of tables and
columns that are used for persistent classes and their members or mapping between C++ types
and database types.

The ODB Query Language is an object-oriented database query language that can be used to
search for objects matching certain criteria. It is modeled after and is integrated into C++ allow-
ing you to write expressive and safe queries that look and feel like ordinary C++.

The use of the ODB compiler to generate database support code adds an additional step to your 
application build sequence. The following diagram outlines the typical build workflow of an 
application that uses ODB:

Revision 1.0, September 20104 C++ Object Persistence with ODB

1.1 Architecture and Workflow



5Revision 1.0, September 2010 C++ Object Persistence with ODB

1.1 Architecture and Workflow



1.2 Benefits

The traditional way of saving C++ objects to relational databases requires that you manually
write code which converts between the database and C++ representations of each persistent class.
The actions that such code usually performs include conversion between C++ values and strings
or database types, preparation and execution of SQL queries, as well as handling the result sets.
Writing this code manually has the following drawbacks:

Difficult and time consuming. Writing database conversion code for any non-trivial appli-
cation requires extensive knowledge of the specific database system and its APIs. It can also
take a considerable amount of time to write and maintain. Supporting multi-threaded appli-
cations can complicate this task even further. 
Suboptimal performance. Optimal conversion often requires writing large amounts of extra
code, such as parameter binding for prepared statements and caching of connections, state-
ments, and buffers. Writing code like this in an ad-hoc manner is often too difficult and time 
consuming. 
Database vendor lock-in. The conversion code is written for a specific database which
makes it hard to switch to another database vendor. 
Lack of type safety. It is easy to misspell column names or pass incompatible values in
SQL queries. Such errors will only be detected at runtime. 
Complicates the application. The database conversion code often ends up interspersed 
throughout the application making it hard to debug, change, and maintain. 

In contrast, using ODB for C++ object persistence has the following benefits:

Ease of use. ODB automatically generates database conversion code from your C++ class 
declarations and allows you to manipulate persistent objects using simple and thread-safe
object-oriented database APIs. 
Concise code. With ODB hiding the details of the underlying database, the application logic
is written using the natural object vocabulary instead of tables, columns and SQL. The 
resulting code is simpler and thus easier to read and understand. 
Optimal performance. ODB has been designed for high performance and low memory 
overhead. All the available optimization techniques, such as prepared statements and exten-
sive connection, statement, and buffer caching, are used to provide the most efficient imple-
mentation for each database operation. 
Database portability. Because the database conversion code is automatically generated, it is
easy to switch from one database vendor to another. In fact, it is possible to test your appli-
cation on several database systems before making a choice. 
Safety. The ODB object persistence and query APIs are statically typed. You use C++ iden-
tifiers instead of strings to refer to object members and the generated code makes sure
database and C++ types are compatible. All this helps catch programming errors at
compile-time rather than at runtime. 

Revision 1.0, September 20106 C++ Object Persistence with ODB

1.2 Benefits



Maintainability.  Automatic code generation minimizes the effort needed to adapt the appli-
cation to changes in persistent classes. The database support code is kept separately from the
class declarations and application logic. This makes the application easier to debug and 
maintain. 

Overall, ODB provides an easy to use yet flexible and powerful object-relational mapping (ORM)
system for C++. Unlike other ORM implementations for C++ that still require you to write
database conversion or member registration code for each persistent class, ODB keeps persistent
classes purely declarative. The functional part, the database conversion code, is automatically 
generated by the ODB compiler from these declarations.

2 Hello World Example
In this chapter we will show how to create a simple C++ application that relies on ODB for object 
persistence using the traditional "Hello World" example. In particular, we will discuss how to
declare persistent classes, generate database support code, as well as compile and run our applica-
tion. We will also learn how to make objects persistent, load, update and delete persistent objects,
as well as query the database for persistent objects that match certain criteria.

The code presented in this chapter is based on the hello  example which can be found in the 
odb-examples  package of the ODB distribution.

2.1 Declaring a Persistent Class

In our "Hello World" example we will depart slightly from the norm and say hello to people
instead of the world. People in our application will be represented as objects of C++ class 
person  which is saved in person.hxx :

// person.hxx
//

#include <string>

class person
{
public:
  person (const std::string& first,
          const std::string& last,
          unsigned short age);

  const std::string&
  first () const;

  const std::string&
  last () const;

7Revision 1.0, September 2010 C++ Object Persistence with ODB

2 Hello World Example



  unsigned short
  age () const;

  void
  age (unsigned short);

private:
  std::string first_;
  std::string last_;
  unsigned short age_;
};

In order not to miss anyone whom we need to greet, we would like to save the person  objects in
a database. To achieve this we declare the person  class as persistent:

// person.hxx
//

#include <string>

#include <odb/core.hxx>     // (1)

#pragma db object           // (2)
class person
{
  ...

private:
  person () {}              // (3)

  friend class odb::access; // (4)

  #pragma db id auto        // (5)
  unsigned long id_;        // (5)

  std::string first_;
  std::string last_;
  unsigned short age_;
};

To be able to save the person  objects in the database we had to make five changes, marked with
(1) to (5), to the original class definition. The first change is the inclusion of the ODB header 
<odb/core.hxx> . This header provides a number of core ODB declarations, such as 
odb::access , that are used to define persistent classes.

The second change is the addition of db object  pragma just before the class definition. This
pragma tells the ODB compiler that the class that follows is persistent. Note that making a class 
persistent does not mean that all objects of this class will automatically be stored in the database.

Revision 1.0, September 20108 C++ Object Persistence with ODB

2.1 Declaring a Persistent Class



You would still create ordinary or transient instances of this class just as you would before. The 
difference is that now you can make such transient instances persistent, as we will see shortly.

The third change is the addition of the default constructor. The ODB-generated database support
code will use this constructor when instantiating an object from the persistent state. Just as we
have done for the person  class, you can make the default constructor private or protected if you
don’t want to make it available to the users of your class.

With the fourth change we make the odb::access  class a friend of our person  class. This is 
necessary to make the default constructor and the data members accessible to the ODB support
code. If your class has public default constructor and public data members, then the friend  
declaration is unnecessary.

The final change adds a data member called id_  which is preceded by another pragma. In ODB
every persistent object must have a unique, within its class, identifier. Or, in other words, no two 
persistent instances of the same type have equal identifiers. For our class we use an integer id.
The db id auto  pragma that precedes the id_  member tells the ODB compiler that the 
following member is the object’s identifier. The auto  specifier indicates that it is a
database-assigned id. A unique id will be automatically generated by the database and assigned to
the object when it is made persistent.

In this example we chose to add an identifier because none of the existing members could serve
the same purpose. However, if a class already has a member with suitable properties, then it is
natural to use that member as an identifier. For example, if our person  class contained some
form of personal identification (SSN in the United States or ID/passport number in other coun-
tries), then we could use that as an id. Or, if we stored an email associated with each person, then
we could have used that since each person is presumed to have a unique email address, for 
example:

class person
{
  ...

  #pragma db id
  std::string email_;

  std::string first_;
  std::string last_;
  unsigned short age_;
};

Now that we have the header file with the persistent class, let’s see how we can generate that
database support code.

9Revision 1.0, September 2010 C++ Object Persistence with ODB

2.1 Declaring a Persistent Class



2.2 Generating Database Support Code

The persistent class definition that we created in the previous section was particularly light on any
code that could actually do the job and store the person’s data to a database. There was no serial-
ization or deserialization code, not even data member registration, that you would normally have
to write by hand in other ORM libraries for C++. This is because in ODB code that translates
between the database and C++ representations of an object is automatically generated by the
ODB compiler.

To compile the person.hxx  header we created in the previous section and generate the support
code for the MySQL database, we invoke the ODB compiler from a terminal (UNIX) or a
command prompt (Windows):

odb -d mysql --generate-query person.hxx

We will use MySQL as the database of choice in the remainder of this chapter, though other
supported database systems can be used instead.

If you haven’t installed the common ODB runtime library (libodb ) or installed it into a direc-
tory where C++ compilers don’t search for headers by default, then you may get the following 
error:

person.hxx:10:24: fatal error: odb/core.hxx: No such file or directory

To resolve this you will need to specify the libodb  headers location with the -I  preprocessor
option, for example:

odb -I.../libodb -d mysql --generate-query person.hxx

Here .../libodb  represents the path to the libodb  directory.

The above invocation of the ODB compiler produces three C++ files: person-odb.hxx , 
person-odb.ixx , person-odb.cxx . You normally don’t use types or functions contained
in these files directly. Rather, all you have to do is include person-odb.hxx  in C++ files
where you are performing database operations with classes from person.hxx  as well as
compile person-odb.cxx  and link the resulting object file to your application.

You may be wondering what the --generate-query  option is for. It instructs the ODB
compiler to generate optional query support code that we will use later in our "Hello World"
example. Another option that we will find useful is --generate-schema . This option makes
the ODB compiler generate a fourth file, person.sql , which is the database schema for the 
persistent classes defined in person.hxx :

Revision 1.0, September 201010 C++ Object Persistence with ODB

2.2 Generating Database Support Code



odb -d mysql --generate-query --generate-schema person.hxx

The database schema file contains SQL statements that creates tables necessary to store the 
persistent classes. We will learn how to use it in the next section.

If you would like to see a list of all the available ODB compiler options, refer to the ODB
Compiler Command Line Manual.

Now that we have the persistent class and the database support code, the only part that is left is
the application code that does something useful with all of this. But before we move on to the fun
part, let’s first learn how to build and run an application that uses ODB. This way when we have
some application code to try, there are no more delays before we can run it.

2.3 Compiling and Running

Assuming that the main()  function with the application code is saved in driver.cxx  and the
database support code and schema are generated as described in the previous section, to build our 
application we will first need to compile all the C++ source files and then link them with two
ODB runtime libraries.

On UNIX, the compilation part can be done with the following commands (substitute c++  with
your C++ compiler name; for Microsoft Visual Studio setup, see the odb-examples  package):

c++ -c driver.cxx
c++ -c person-odb.cxx

Similar to the ODB compilation, if you get an error stating that a header in odb/  or odb/mysql  
directory is not found, you will need to use the -I  preprocessor option to specify the location of
the common ODB runtime library (libodb ) and MySQL ODB runtime library 
(libodb-mysql ).

Once the compilation is done, we can link the application with the following command:

c++ -o driver driver.o person-odb.o -lodb-mysql -lodb

Notice that we link our application with two ODB libraries: libodb  which is a common runtime
library and libodb-mysql  which is a MySQL runtime library (if you use another database,
then the name of this library will change accordingly). If you get an error saying that one of these
libraries could not be found, then you will need to use the -L  linker option to specify their loca-
tions.

Before we can run our application we need to create a database schema using the generated 
person.sql  file. For MySQL we can use the mysql  client program, for example:

11Revision 1.0, September 2010 C++ Object Persistence with ODB

2.3 Compiling and Running

http://www.codesynthesis.com/products/odb/doc/odb.xhtml
http://www.codesynthesis.com/products/odb/doc/odb.xhtml


mysql --user=odb_test --database=odb_test < person.sql

The above command will log in to a local MySQL server as user odb_test  without a password
and use the database named odb_test . Note that after executing this command, all the data
stored in the odb_test  database will be deleted.

Once the database schema is ready, we run our application using the same login and database 
name:

./driver --user odb_test --database odb_test

2.4 Making Objects Persistent

Now that we have the infrastructure work out of the way, it is time to see our first code fragment
that interacts with the database. In this section we will learn how to make person  objects persis-
tent:

// driver.cxx
//

#include <memory>   // std::auto_ptr
#include <iostream>

#include <odb/database.hxx>
#include <odb/transaction.hxx>

#include <odb/mysql/database.hxx>

#include "person.hxx"
#include "person-odb.hxx"

using namespace std;
using namespace odb;

int
main (int argc, char* argv[])
{
  try
  {
    auto_ptr<database> db (new mysql::database (argc, argv));

    unsigned long john_id, jane_id, joe_id;

    // Create a few persistent person objects.
    //
    {
      person john ("John", "Doe", 33);
      person jane ("Jane", "Doe", 32);
      person joe ("Joe", "Dirt", 30);

Revision 1.0, September 201012 C++ Object Persistence with ODB

2.4 Making Objects Persistent



      transaction t (db->begin ());

      db->persist (john);
      db->persist (jane);
      db->persist (joe);

      t.commit ();

      // Save object ids for later use.
      //
      john_id = john.id ();
      jane_id = jane.id ();
      joe_id = joe.id ();
    }
  }
  catch (const odb::exception& e)
  {
    cerr << e.what () << endl;
    return 1;
  }
}

Let’s examine this code piece by piece. At the beginning we include a bunch of headers. After the 
standard C++ headers we include <odb/database.hxx>  and <odb/transaction.hxx>
which define database system-independent odb::database  and odb::transaction  inter-
faces. Then we include <odb/mysql/database.hxx>  which defines the MySQL imple-
mentation of the database  interface. Finally, we include person.hxx  and 
person-odb.hxx  which define our persistent person  class.

Once we are in main() , the first thing we do is create the MySQL database object. Notice that
this is the last line in driver.cxx  that mentions MySQL explicitly; the rest of the code works
through the common interfaces and is database system-independent. We use the argc /argv  
mysql::database  constructor which automatically extract the database parameters, such as
login name, password, database name, etc., from the command line. In your own applications you
may prefer to use other mysql::database  constructors which allow you to pass this informa-
tion directly (see Section 6.1.2, "MySQL Database Class").

Next, we create three person  objects. Right now they are transient objects, which means that if
we terminate the application at this point, they will be gone without any evidence of them ever 
existing. The next line starts a database transaction. We discuss transactions in detail later in this
manual. For now, all we need to know is that all ODB database operations must be performed
within a transaction and that a transaction is an atomic unit of work; all database operations
performed within a transaction either succeed (committed) together or are automatically undone
(rolled back).

13Revision 1.0, September 2010 C++ Object Persistence with ODB

2.4 Making Objects Persistent



Once we are in a transaction, we call the persist()  database function on each of our person
objects. At this point the state of each object is saved in the database. However, note that this
state is not permanent until and unless the transaction is committed. If, for example, our applica-
tion crashes at this point, there will still be no evidence of our objects ever existing.

In our case, one more thing happens when we call persist() . Remember that we decided to
use database-assigned identifiers for our person  objects. The call to persist()  is where this 
assignment happens. Once this function returns, the id_  member contains this object’s unique 
identifier.

After we have persisted our objects, it is time to commit the transaction and make the changes 
permanent. Only after the commit()  function returns successfully, are we guaranteed that the
objects are made persistent. Continuing with the crash example, if our application terminates after
the commit for whatever reason, the objects’ state in the database will remain intact. In fact, as
we will discover shortly, our application can be restarted and load the original objects from the
database. Note also that a transaction must be committed explicitly with the commit()  call. If
the transaction  object leaves scope without the transaction being explicitly committed or
rolled back, it will automatically be rolled back. This behavior allows you not to worry about 
exceptions being thrown within a transaction; if they cross the transaction boundary, the transac-
tion will automatically be rolled back and all the changes made to the database undone.

After the transaction has been committed, we save the objects’ identifiers in local variables. We
will use them later in this chapter to perform other database operations on our persistent objects.
You might have noticed that our person  class doesn’t have the id()  function that we use here.
To make our code compile we need to add a simple accessor with this name that returns the value
of the id_  data member.

The final bit of code in our example is the catch  block that handles the database exceptions. We
do this by catching the base ODB exception (see Section 3.8, "ODB Exceptions") and printing the 
diagnostics.

Let’s now compile (see Section 2.3, "Compiling and Running") and then run our first ODB appli-
cation:

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Our first application doesn’t print anything except for error messages so we can’t really tell
whether it actually stored the objects’ state in the database. While we will make our application
more entertaining shortly, for now we can use the mysql  client to examine the database content.
It will also give us a feel for how the objects are stored:

Revision 1.0, September 201014 C++ Object Persistence with ODB

2.4 Making Objects Persistent



mysql --user=odb_test --database=odb_test

Welcome to the MySQL monitor.

mysql> select * from person;

+----+-------+------+-----+
| id | first | last | age |
+----+-------+------+-----+
|  1 | John  | Doe  |  33 |
|  2 | Jane  | Doe  |  32 |
|  3 | Joe   | Dirt |  30 |
+----+-------+------+-----+
3 rows in set (0.00 sec)

mysql> quit

In the next section we will see how to access persistent objects from our application.

2.5 Querying the Database for Objects

So far our application doesn’t resemble a typical "Hello World" example. It doesn’t print
anything except for error messages. Let’s change that and teach our application to say hello to
people from our database. To make it a bit more interesting, let’s say hello only to people over 
30:

// driver.cxx
//

...

int
main (int argc, char* argv[])
{
  try
  {
    ...

    // Create a few persistent person objects.
    //
    {
      ...
    }

    typedef odb::query<person> query;
    typedef odb::result<person> result;

    // Say hello to those over 30.
    //

15Revision 1.0, September 2010 C++ Object Persistence with ODB

2.5 Querying the Database for Objects



    {
      transaction t (db->begin ());

      result r (db->query<person> (query::age > 30));

      for (result::iterator i (r.begin ()); i != r.end (); ++i)
      {
        cout << "Hello, " << i->first () << "!" << endl;
      }

      t.commit ();
    }
  }
  catch (const odb::exception& e)
  {
    cerr << e.what () << endl;
    return 1;
  }
}

The first half of our application is the same as before and is replaced with "..." in the above listing
for brevity. Again, let’s examine the rest of it piece by piece.

The two typedef s create convenient aliases for two template instantiations that will be used a
lot in our application. The first is the query type for the person  objects and the second is the
result type for that query.

Then we begin a new transaction and call the query()  database function. We pass a query 
expression (query::age > 30 ) which limits the returned objects only to those with the age
greater than 30. We also save the result of the query in a local variable.

The next few lines perform a standard for-loop iteration over the result sequence printing hello
for every returned person. Then we commit the transaction and that’s it. Let’s see what this appli-
cation will print:

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!

That looks about right, but how do we know that the query actually used the database instead of
just using some in-memory artifacts of the earlier persist()  calls? One way to test this would
be to comment out the first transaction in our application and re-run it without re-creating the
database schema. This way the objects that were persisted during the previous run will be
returned. Alternatively, we can just re-run the same application without re-creating the schema
and notice that we now show duplicate objects:

Revision 1.0, September 201016 C++ Object Persistence with ODB

2.5 Querying the Database for Objects



./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, John!
Hello, Jane!

What happens here is that the previous run of our application persisted a set of person  objects
and when we re-run the application, we persist another set with the same names but with different
ids. When we later run the query, matches from both sets are returned. We can change the line
where we print the "Hello" string as follows to illustrate this point:

cout << "Hello, " << i->first () << " (" << i->id () << ")!" << endl;

If we now re-run this modified program, again without re-creating the database schema, we will
get the following output:

./driver --user odb_test --database odb_test

Hello, John (1)!
Hello, Jane (2)!
Hello, John (4)!
Hello, Jane (5)!
Hello, John (7)!
Hello, Jane (8)!

The identifiers 3, 6, and 9 that are missing from the above list belong to the "Joe Dirt" objects
which are not selected by this query.

2.6 Updating Persistent Objects

While making objects persistent and then selecting some of them using queries are two useful 
operations, most applications will also need to change the object’s state and then make these
changes persistent. Let’s illustrate this by updating Joe’s age who just had a birthday:

// driver.cxx
//

...

int
main (int argc, char* argv[])
{
  try
  {
    ...

    unsigned long john_id, jane_id, joe_id;

17Revision 1.0, September 2010 C++ Object Persistence with ODB

2.6 Updating Persistent Objects



    // Create a few persistent person objects.
    //
    {
      ...

      // Save object ids for later use.
      //
      john_id = john.id ();
      jane_id = jane.id ();
      joe_id = joe.id ();
    }

    // Joe Dirt just had a birthday, so update his age.
    //
    {
      transaction t (db->begin ());

      auto_ptr<person> joe (db->load<person> (joe_id));
      joe->age (joe->age () + 1);
      db->update (*joe);

      t.commit ();
    }

    // Say hello to those over 30.
    //
    {
      ...
    }
  }
  catch (const odb::exception& e)
  {
    cerr << e.what () << endl;
    return 1;
  }
}

The beginning and the end of the new transaction are the same as the previous two. Once within a 
transaction, we call the load()  database function to instantiate a person  object with Joe’s 
persistent state. We pass Joe’s object identifier that we stored earlier when we made this object 
persistent.

With the instantiated object in hand we increment the age and call the update()  function to
update the object’s state in the database. Once the transaction is committed, the changes are made 
permanent.

Revision 1.0, September 201018 C++ Object Persistence with ODB

2.6 Updating Persistent Objects



If we now run this application, we will see Joe in the output since he is now over 30:

mysql --user=odb_test --database=odb_test < person.sql
./driver --user odb_test --database odb_test

Hello, John!
Hello, Jane!
Hello, Joe!

What if we didn’t have an identifier for Joe? Maybe this object was made persistent in another
run of our application or by another application altogether. Provided that we only have one Joe
Dirt in the database, we can use the query facility to come up with an alternative implementation
of the above transaction:

    // Joe Dirt just had a birthday, so update his age. An
    // alternative implementation without using the object id.
    //
    {
      transaction t (db->begin ());

      result r (db->query<person> (query::first == "Joe" &&
                                   query::last == "Dirt"));

      result::iterator i (r.begin ());

      if (i != r.end ())
      {
        auto_ptr<person> joe (i.load ());
        joe->age (joe->age () + 1);
        db->update (*joe);
      }

      t.commit ();
    }

2.7 Deleting Persistent Objects

The last operation that we will discuss in this chapter is deleting the persistent object from the
database. The following code fragment shows how we can delete an object given its identifier:

    // John Doe is no longer in our database.
    //
    {
      transaction t (db->begin ());
      db->erase<person> (john_id);
      t.commit ();
    }

19Revision 1.0, September 2010 C++ Object Persistence with ODB

2.7 Deleting Persistent Objects



To delete John from the database we start a transaction, call the erase()  database function with
John’s object id, and commit the transaction. After the transaction is committed, the erased object
is no longer persistent.

If we don’t have an object id handy, we can use queries to find and delete the object:

    // John Doe is no longer in our database. An alternative
    // implementation without using the object id.
    //
    {
      transaction t (db->begin ());

      result r (db->query<person> (query::first == "John" &&
                                   query::last == "Doe"));

      result::iterator i (r.begin ());

      if (i != r.end ())
      {
        auto_ptr<person> john (i.load ());
        db->erase (*john);
      }

      t.commit ();
    }

2.8 Summary

This chapter presented a very simple application which, nevertheless, exercised all of the core
database functions: persist() , query() , load() , update() , and erase() . We also
saw that writing an application that uses ODB involves the following steps:

1.  Declare persistent classes in header files. 
2.  Compile these headers to generate database support code. 
3.  Link the application with the generated code and two ODB runtime libraries. 

Do not be concerned if, at this point, much appears unclear. The intent of this chapter is to give
you only a general idea of how to persist C++ objects with ODB. We will cover all the details 
throughout the remainder of this manual.

3 Working with Persistent Objects
The previous chapters gave us a high-level overview of ODB and showed how to use it to store
C++ objects in a database. In this chapter we will examine the ODB object persistence model as
well as the core database APIs in greater detail. We will start with basic concepts and terminol-
ogy in Section 3.1 and continue with the discussion of the odb::database  class in Section 3.2

Revision 1.0, September 201020 C++ Object Persistence with ODB

3 Working with Persistent Objects



and transactions in Section 3.3. The remainder of this chapter deals with the core database opera-
tions and concludes with the discussion of ODB exceptions.

In this chapter we will continue to use and expand the person  persistent class that we have 
developed in the previous chapter.

3.1 Concepts and Terminology

The term database can refer to three distinct things: a general notion of a place where an applica-
tion stores its data, a software implementation for managing this data (for example MySQL), and,
finally, some database software implementations may manage several data stores which are
usually distinguished by name. This name is also commonly referred to as a database.

In this manual, when we use the word database, we refer to the first meaning above, for example,
"The update()  function saves the object’s state to the database." The term Database Manage-
ment System (DBMS) is often used to refer to the second meaning of the word database. In this
manual we will use the term database system for short, for example, "Database system-indepen-
dent application code." Finally, to distinguish the third meaning from the other two, we will use
the term database name, for example, "The second option specifies the database name that the 
application should use to store its data."

In C++ there is only one notion of a type and an instance of a type. For example, a fundamental
type, such as int , is, for the most part, treated the same as a user defined class type. However,
when it comes to persistence, we have to place certain restrictions and requirements on certain
C++ types that can be stored in the database. As a result, we divide persistent C++ types into two
groups: object types and value types. An instance of an object type is called an object and an
instance of a value type — a value.

An object is an independent entity. It can be stored, updated, and deleted in the database indepen-
dent of other objects or values. An object has an identifier, called object id, that is unique among
all instances of an object type within a database. An object consists of data members which are
either values or references to other objects. In contrast, a value can only be stored in the database
as part of an object and doesn’t have its own unique identifier.

An object type is a C++ class. Because of this one-to-one relationship, we will use terms object 
type and object class interchangeably. In contrast, a value type can be a fundamental C++ type,
such as int  or a class type, such as std::string . If a value consists of other values, then it is
called a composite value and its type — a composite value type. Otherwise, the value is called 
simple value and its type — a simple value type. Note that the distinction between simple and 
composite values is conceptual rather than representational. For example, std::string  is a
simple value type because conceptually string is a single value even though the representation of
the string class may contain several data members each of which could be considered a value. In
fact, the same value type can be viewed (and mapped) as both simple and composite by different 

21Revision 1.0, September 2010 C++ Object Persistence with ODB

3.1 Concepts and Terminology



applications.

Seeing how all these concepts map to the relational model will hopefully make these distinctions
clearer. In a relational database an object type is mapped to a table and a value type is mapped to
one or more columns. A simple value type is mapped to a single column while a composite value
type is mapped to several columns. An object is stored as a row in this table and a value is stored
as one or more cells in this row. A simple value is stored in a single cell while a composite value 
occupies several cells.

Going back to the distinction between simple and composite values, consider a date type which
has three integer members: year, month, and day. In one application it can be considered a 
composite value and each member will get its own column in a relational database. In another 
application it can be considered a simple value and stored in a single column as a number of days
from some predefined date.

Until now, we have been using the term persistent class to refer to object classes. We will
continue to do so even though a value type can also be a class. The reason for this asymmetry is
the subordinate nature of value types when it comes to database operations. Remember that
values are never stored directly but rather as part of an object that contains them. As a result,
when we say that we want to make a C++ class persistent or persist an instance of a class in the
database, we invariably refer to an object class rather than a value class.

To make a C++ class a persistent object class we declare it as such using the db object
pragma, for example:

    #pragma db object
    class person
    {
      ...
    };

The other pragma that we often use is db id  which designates one of the data members as an
object id, for example:

    #pragma db object
    class person
    {

    private:
      #pragma db id
      unsigned long id_;
    };

These two pragmas are the minimum required to declare a persistent class. Other pragmas can be
used to fine-tune the database-related properties of a class and its members (see Chapter 5, "ODB
Pragma Language").

Revision 1.0, September 201022 C++ Object Persistence with ODB

3.1 Concepts and Terminology



You may be wondering whether we also have to declare value types as persistent. We don’t need
to do anything special for simple value types such as int  or std::string  since the ODB
compiler knows how to map them to suitable database system types and how to convert between
the two. On the other hand, if a simple value is unknown to the ODB compiler then you will need
to provide the mapping to the database system type and, possibly, the code to convert between the
two. For more information on this refer to Section 5.3, "Value Type Pragmas". Composite value
types are not yet supported by ODB and we will not discuss them further in this revision of the 
manual.

Normally, you would use object types to model real-world entities, things that have their own 
identity. For example, in the previous chapter we created a person  class to model a person,
which is a real-world entity. Name and age, which we used as data members in our person  class
are clearly values. It is hard to think of age 31 or name "Joe" as having their own identities.

A good test to determine whether something is an object or a value, is to consider if other objects
might reference it. A person is clearly an object because it can be referred to by other objects such
as a spouse, an employer, or a bank. On the other hand, a person’s age or name is not something
that other objects would normally refer to.

Also, when an object represents a real entity, it is easy to choose a suitable object id. For
example, for a person there is an established notion of an identifier (SSN, student id, passport
number, etc). Another alternative is to use a person’s email address as an identifier.

Note, however, that these are only guidelines. There could be good reasons to make something
that would normally be a value an object. Consider, for example, a database that stores a vast
number of people. Many of the person  objects in this database have the same names and
surnames and the overhead of storing them in every object may negatively affect the perfor-
mance. In this case, we could make the first name and last name each an object and only store 
references to these objects in the person  class.

An instance of a persistent class can be in one of two states: transient and persistent. A transient
instance only has a representation in the application’s memory and will cease to exist when the 
application terminates, unless it is explicitly made persistent. In other words, a transient instance
of a persistent class behaves just like an instance of any ordinary C++ class. A persistent instance
has a representation in both the application’s memory and the database. A persistent instance will
remain even after the application terminates unless and until it is explicitly deleted from the 
database.

3.2 Database

Before an application can make use of persistence services offered by ODB, it has to create a
database class instance. A database instance is the representation of the place where the applica-
tion stores its persistent objects. You create a database instance by instantiating one of the

23Revision 1.0, September 2010 C++ Object Persistence with ODB

3.2 Database



database system-specific classes. For example, odb::mysql::database  would be such a
class for the MySQL database system. You will also normally pass a database name as an argu-
ment to the class’ constructor. The following code fragment shows how we can create a database
instance for the MySQL database system:

  #include <odb/database.hxx>
  #include <odb/mysql/database.hxx>

  auto_ptr<odb::database> db (
    new odb::mysql::database (
      "test_user"     // database login name
      "test_password" // database password
      "test_database" // database name
      ));

The odb::database  class is a common interface for all database system-specific classes
provided by ODB. You would normally work with the database instance via this interface unless
there is a specific functionality that your application depends on and which is only exposed by a 
particular system’s database  class. You will need to include the <odb/database.hxx>
header file to make this class available in your application.

The odb::database  interface defines functions for starting transactions and manipulating 
persistent objects. These are discussed in detail in the remainder of this chapter as well as the next
chapter which is dedicated to the topic of querying the database for persistent objects. For details
on the system-specific database  classes, refer to Chapter 6, "Database Systems".

3.3 Transactions

A transaction is an atomic, consistent, isolated and durable (ACID) unit of work. Database opera-
tions can only be performed within a transaction and each thread of execution in an application
can have only one active transaction at a time.

By atomicity we mean that when it comes to making changes to the database state within a trans-
action, either all the changes are applied or none at all. Consider, for example, a transaction that 
transfers funds between two objects representing bank accounts. If the debit function on the first
object succeeds but the credit function on the second fails, the transaction is rolled back and the
database state of the first object remains unchanged.

By consistency we mean that a transaction must take all the objects stored in the database from
one consistent state to another. For example, if a bank account object must reference a person
object as its owner and we forget to set this reference before making the object persistent, the 
transaction will be rolled back and the database will remain unchanged.

Revision 1.0, September 201024 C++ Object Persistence with ODB

3.3 Transactions



By isolation we mean that the changes made to the database state during a transaction are only
visible inside this transaction until and unless it is committed. Using the above example with the
bank transfer, the results of the debit operation performed on the first object is not visible to other 
transactions until the credit operation is successfully completed and the transaction is committed.

By durability we mean that once the transaction is committed, the changes that it made to the
database state are permanent and will survive failures such as an application crash. From now on
the only way to alter this state is to execute and commit another transaction.

A transaction is started by calling the database::begin()  function. The returned transaction
handle is stored in an instance of the odb::transaction  class. You will need to include the 
<odb/transaction.hxx>  header file to make this class available in your application. The 
odb::transaction  class has the following interface:

namespace odb
{
  class transaction
  {
  public:
    typedef odb::database database_type;

    void
    commit ();

    void
    rollback ();

    database_type&
    database ();

    static transaction&
    current ();

    static bool
    has_current ();
  };
}

The commit()  function commits a transaction and rollback()  rolls it back. Unless the 
transaction has been finalized, that is, explicitly committed or rolled back, the destructor of the 
odb::transaction  class will automatically roll it back when the transaction instance goes
out of scope. If you try to commit or roll back a finalized transaction, the odb::transac-
tion_already_finalized  exception is thrown.

The database()  function returns the database this transaction is working on. The 
current()  static function returns the currently active transaction for this thread. If there is no
active transaction, this function throws the odb::not_in_transaction  exception. You can

25Revision 1.0, September 2010 C++ Object Persistence with ODB

3.3 Transactions



check whether there is a transaction in effect in this thread using the has_current()  static 
function.

If two or more transactions access or modify more than one object and are executed concurrently
by different applications or by different threads within the same application, then it is possible
that these transactions will try to access objects in an incompatible order and deadlock. The 
canonical example of a deadlock are two transactions in which the first has modified object1
and is waiting for the second transaction to commit its changes to object2  so that it can also
update object2 . At the same time the second transaction has modified object2  and is
waiting for the first transaction to commit its changes to object1  because it also needs to
modify object1 . As a result, none of the two transactions can be completed.

The database system detects such situations and automatically aborts the waiting operation in one
of the deadlocked transactions. In ODB this translates to the odb::deadlock  exception being
thrown from one of the database functions. You would normally handle a deadlock by restarting
the transaction, for example:

for (;;)
{
  try
  {
    transaction t (db.begin ());

    ...

    t.commit ();
    break;
  }
  catch (const odb::deadlock&)
  {
    continue;
  }
}

Note that in the above discussion of atomicity, consistency, isolation, and durability, all of those 
guarantees only apply to the object’s state in the database as opposed to the object’s state in the 
application’s memory. It is possible to roll a transaction back but still have changes from this 
transaction in the application’s memory. An easy way to avoid this potential inconsistency is to 
instantiate persistent objects only within the transaction scope. Consider, for example, these two 
implementations of the same transaction:

Revision 1.0, September 201026 C++ Object Persistence with ODB

3.3 Transactions



void
update_age (database& db, person& p)
{
  transaction t (db.begin ());

  p.age (p.age () + 1);
  db.update (p);

  t.commit ();
}

In the above implementation, if the update()  call fails and the transaction is rolled back, the
state of the person  object in the database and the state of the same object in the application’s
memory will differ. Now consider an alternative implementation which only instantiates the 
person  object for the duration of the transaction:

void
update_age (database& db, unsigned long id)
{
  transaction t (db.begin ());

  auto_ptr<person> p (db.load<person> (id));
  p.age (p.age () + 1);
  db.update (p);

  t.commit ();
}

Of course, it may not always be possible to write the application in this style. Oftentimes we need
to access and modify the application’s state of persistent objects out of transactions. In this case it
may make sense to try to roll back the changes made to the application state if the transaction was
rolled back and the database state remains unchanged. One way to do this is to re-load the
object’s state from the database, for example:

void
update_age (database& db, person& p)
{
  try
  {
    transaction t (db.begin ());

    p.age (p.age () + 1);
    db.update (p);

    t.commit ();
  }
  catch (...)
  {
    transaction t (db.begin ());

27Revision 1.0, September 2010 C++ Object Persistence with ODB

3.3 Transactions



    db.load (p.id (), p);
    t.commit ();

    throw;
  }
}

3.4 Making Objects Persistent

A newly created instance of a persistent class is transient. We use the 
database::persist()  function template to make a transient instance persistent. This func-
tion has two overloaded versions with the following signatures:

  template <typename T>
  typename object_traits<T>::id_type
  persist (const T& object);

  template <typename T>
  typename object_traits<T>::id_type
  persist (T& object);

The first persist()  function expects a constant reference to an instance being persisted and is
used on objects with application-assigned object ids (see Section 5.4, "Data Member Pragmas").
The second function expects an unrestricted reference and, if the object id is assigned by the
database, it updates the id member of the passed instance with the assigned value. Both functions
return the object id of the newly persistent object.

If the database already contains an object of this type with this identifier, the persist()  func-
tions throw the odb::object_already_persistent  exception. This should never happen
for database-assigned object ids as long as the number of objects persisted does not exceed the
value space of the id type.

When calling the persist()  functions, we don’t need to explicitly specify the template type
since it will be automatically deduced from the argument being passed. The 
odb::object_traits  template used in the signature above is part of the database support
code generated by the ODB compiler.

The following example shows how we can call these functions:

person john ("John", "Doe", 33);
person jane ("Jane", "Doe", 32);

transaction t (db->begin ());

db->persist (john);
unsigned long jane_id (db->persist (jane));

Revision 1.0, September 201028 C++ Object Persistence with ODB

3.4 Making Objects Persistent



t.commit ();

cerr << "Jane’s id: " << jane_id << endl;

Notice that in the above code fragment we have created instances that we were planning to make 
persistent before starting the transaction. Likewise, we printed Jane’s id after we have committed
the transaction. As a general rule, you should avoid performing operations within the transaction
scope that can be performed before the transaction starts or after it terminates. An active transac-
tion consumes both your application’s resources, such as a database connection, as well as the
database server’s resources, such as object locks. By following the above rule you make sure
these resources are made available to other threads in your application and to other applications
as soon as possible.

3.5 Loading Persistent Objects

Once an object is made persistent, and you know its object id, it can be loaded by the application
using the database::load()  function template. This function has two overloaded versions
with the following signatures:

  template <typename T>
  typename object_traits<T>::pointer_type
  load (const typename object_traits<T>::id_type& id);

  template <typename T>
  void
  load (const typename object_traits<T>::id_type& id, T& object);

Given an object id, the first function allocates a new instance of the object class in the dynamic
memory, loads its state from the database, and returns the pointer to the new instance. The second 
function loads the object’s state into an existing instance. Both functions throw 
odb::object_not_persistent  if there is no object of this type with this id in the 
database.

When we call the first load()  function, we need to explicitly specify the object type. We don’t
need to do this for the second function because the object type will be automatically deduced
from the second argument, for example:

transaction t (db->begin ());

auto_ptr<person> jane (db->load<person> (jane_id));

db->load (jane_id, *jane);

t.commit ();

29Revision 1.0, September 2010 C++ Object Persistence with ODB

3.5 Loading Persistent Objects



If we don’t know for sure whether an object with a given id is persistent, we can use the find()  
function instead of load() , for example:

  template <typename T>
  typename object_traits<T>::pointer_type
  find (const typename object_traits<T>::id_type& id);

  template <typename T>
  bool
  find (const typename object_traits<T>::id_type& id, T& object);

If an object with this id is not found in the database, the first find()  function returns a NULL
pointer while the second function leaves the passed instance unmodified and returns false .

If we don’t know the object id, then we can use queries to find the object (or objects) matching
some criteria (see Chapter 4, "Querying the Database"). Note, however, that loading an object’s
state using its identifier can be significantly faster than executing a query.

3.6 Updating Persistent Objects

If a persistent object has been modified, we can store the updated state in the database using the 
database::update()  function template:

  template <typename T>
  void
  update (const T& object);

If the object passed to this function does not exist in the database, update()  throws the 
odb::object_not_persistent  exception.

Below is an example of the funds transfer that we talked about in the earlier section on transac-
tions. It uses the hypothetical bank_account  persistent class:

void
transfer (database& db,
          unsigned long from_acc,
          unsigned long to_acc,
          unsigned int amount)
{
  bank_account from, to;

  transaction t (db.begin ());

  db.load (from_acc, from);

  if (from.balance () < amount)
    throw insufficient_funds ();

Revision 1.0, September 201030 C++ Object Persistence with ODB

3.6 Updating Persistent Objects



  db.load (to_acc, to);

  to.balance (to.balance () + amount);
  from.balance (from.balance () - amount);

  db.update (to);
  db.update (from);

  t.commit ();
}

3.7 Deleting Persistent Objects

To delete a persistent object’s state from the database we use the database::erase()  func-
tion template. If the application still has an instance of the erased object, this instance becomes 
transient. The erase()  function has the following overloaded versions:

  template <typename T>
  void
  erase (const T& object);

  template <typename T>
  void
  erase (const typename object_traits<T>::id_type& id);

The first erase()  function uses an object itself to delete its state from the database. Note that
the passed object is unchanged. It simply becomes transient. The second function uses the object
id to identify the object to be deleted. If the object does not exist in the database, both functions
throw the odb::object_not_persistent  exception.

We have to specify the object type when calling the second erase()  function. The same is 
unnecessary for the first function because the object type will be automatically deduced from its 
argument. The following example shows how we can call these functions:

const person& john = ...

transaction t (db->begin ());

db->erase (john);
db->erase<person> (jane_id);

t.commit ();

31Revision 1.0, September 2010 C++ Object Persistence with ODB

3.7 Deleting Persistent Objects



3.8 ODB Exceptions

In the previous sections we have already mentioned some of the exceptions that can be thrown by
the database functions. In this section we will discuss the ODB exception hierarchy and document
all the exceptions that can be thrown by the common ODB runtime.

The root of the ODB exception hierarchy is the abstract odb::exception  class. This class 
inherits from std::exception  and has the following interface:

namespace odb
{
  struct exception: std::exception
  {
    virtual const char*
    what () const throw () = 0;
  };
}

Catching this exception guarantees that you will catch all the exceptions thrown by ODB. The 
what()  function returns a human-readable description of the condition that triggered the excep-
tion.

The concrete exceptions that can be thrown by ODB are presented in the following listing:

namespace odb
{
  struct already_in_transaction: odb::exception
  {
    virtual const char*
    what () const throw ();
  };

  struct not_in_transaction: odb::exception
  {
    virtual const char*
    what () const throw ();
  };

  struct transaction_already_finalized: odb::exception
  {
    virtual const char*
    what () const throw ();
  };

  struct deadlock: odb::exception
  {
    virtual const char*
    what () const throw ();
  };

Revision 1.0, September 201032 C++ Object Persistence with ODB

3.8 ODB Exceptions



  struct object_not_persistent: odb::exception
  {
    virtual const char*
    what () const throw ();
  };

  struct object_already_persistent: odb::exception
  {
    virtual const char*
    what () const throw ();
  };

  struct result_not_cached: odb::exception
  {
    virtual const char*
    what () const throw ();
  };

  struct database_exception: odb::exception
  {
  };
}

The first four exceptions (already_in_transaction , not_in_transaction , trans-
action_already_finalized , and deadlock ) are thrown by the odb::transaction
class and are discussed in Section 3.3, "Transactions".

The object_already_persistent  exception is thrown by the persist()  database 
function. See Section 3.4, "Making Objects Persistent" for details.

The object_not_persistent  exception is thrown by the load()  and update()
database functions. Refer to Section 3.5, "Loading Persistent Objects" and Section 3.6, "Updating 
Persistent Objects" for more information.

The result_not_cached  exception is thrown by the query result class. Refer to Section 4.4,
"Query Result" for details.

The database_exception  is a base class for all database system-specific exceptions that are
thrown by the database system-specific runtime library. See Chapter 6, "Database Systems" for
more information.

The odb::exception  class is defined in the <odb/exception.hxx>  header file. All the
concrete ODB exceptions are defined in <odb/exceptions.hxx>  which also includes 
<odb/exception.hxx> . Normally you don’t need to include either of these two headers
because they are automatically included by <odb/database.hxx> . However, if the source
file that handles ODB exceptions does not include <odb/database.hxx> , then you will need

33Revision 1.0, September 2010 C++ Object Persistence with ODB

3.8 ODB Exceptions



to explicitly include one of these headers.

4 Querying the Database
If you don’t know the identifiers of the objects that you are looking for, you can use queries to
search the database for objects matching certain criteria. The ODB query facility is optional and
you need to explicitly request the generation of the necessary database support code with the 
--generate-query  ODB compiler option.

ODB provides a flexible query API that offers two distinct levels of abstraction from the database
system query language such as SQL. At the high level you are presented with an easy to use yet 
powerful object-oriented query language, called ODB Query Language. This query language is
modeled after and is integrated into C++ allowing you to write expressive and safe queries that
look and feel like ordinary C++. We have already seen examples of these queries in the introduc-
tory chapters. Below is another, more interesting, example:

  typedef odb::query<person> query;
  typedef odb::result<person> result;

  unsigned short age;
  query q (query::first == "John" && query::age < query::_ref (age));

  for (age = 10; age < 100; age += 10)
  {
    result r (db->query<person> (q));
    ...
  }

At the low level, queries can be written as predicates using the database system-native query
language such as the WHERE predicate from the SQL SELECT statement. This language will be
referred to as native query language. At this level ODB still takes care of converting query 
parameters from C++ to the database system format. Below is the re-implementation of the above
example using SQL as the native query language:

  query q ("first = ’John’ AND age = " + query::_ref (age));

Note that at this level you lose the static typing of query expressions. For example, if we wrote 
something like this:

  query q (query::first == 123 && query::agee < query::_ref (age));

We would get two errors during the C++ compilation. The first would indicate that we cannot
compare query::first  to an integer and the second would pick the misspelling in 
query::agee . On the other hand, if we wrote something like this:

Revision 1.0, September 201034 C++ Object Persistence with ODB

4 Querying the Database



  query q ("first = 123 AND agee = " + query::_ref (age));

It would compile fine and would trigger an error only when executed by the database system.

You can also combine the two query languages in a single query, for example:

  query q ("first = ’John’" + (query::age < query::_ref (age)));

4.1 ODB Query Language

An ODB query is an expression that tells the database system whether any given object matches
the desired criteria. As such, a query expression always evaluates as true  or false . At the
higher level, an expression consists of other expressions combined with logical operators such as 
&& (AND), ||  (OR), and !  (NOT). For example:

  typedef odb::query<person> query;

  query q (query::first == "John" || query::age == 31);

At the core of every query expression lie simple expressions which involve one or more object
members, values, or parameters. To refer to an object member you use an expression such as 
query::first  above. The names of members in the query  class are derived from the names
of data members in the object class by removing the common member name decorations, such as
leading and trailing underscores, the m_ prefix, etc.

In a simple expression an object member can be compared to a value, parameter, or another
member using a number of predefined operators and functions. The following table gives an
overview of the available expressions:

35Revision 1.0, September 2010 C++ Object Persistence with ODB

4.1 ODB Query Language



Operator Description Example 

== equal query::age == 31  

!= unequal query::age != 31  

< less than query::age < 31  

> greater than query::age > 31  

<= less than or equal query::age <= 31  

>= greater than or equal query::age >= 31  

in() one of the values query::age.in (30, 32, 34)  

in_range()
one of the values in 
range

query::age.in_range (begin, 
end)  

is_null() value is NULL query::age.is_null ()  

is_not_null() value is not NULL query::age.is_not_null ()  

The in()  function accepts a maximum of five arguments. Use the in_range()  function if
you need to compare to more than five values. This function accepts a pair of standard C++ itera-
tors and compares to all the values from the begin  position inclusive and until and excluding the 
end  position. The following code fragment shows how we can use these functions:

  std::vector<string> names;

  names.push_back ("John");
  names.push_back ("Jack");
  names.push_back ("Jane");

  query q1 (query::first.in ("John", "Jack", "Jane"));
  query q2 (query::first.in_range (names.begin (), names.end ()));

The operator precedence in the query expressions are the same as for equivalent C++ operators.
You can use parentheses to make sure the expression is evaluated in the desired order. For 
example:

  query q ((query::first == "John" || query::first == "Jane") &&
           query::age < 31);

Revision 1.0, September 201036 C++ Object Persistence with ODB

4.1 ODB Query Language



4.2 Parameter Binding

An instance of the odb::query  class encapsulates two parts of information about the query:
the query expression and the query parameters. Parameters can be bound to C++ variables either
by value or by reference.

If a parameter is bound by value, then the value for this parameter is copied from the C++ vari-
able to the query instance at the query construction time. On the other hand, if a parameter is
bound by reference, then the query instance stores a reference to the bound variable. The actual
value of the parameter is only extracted at the query execution time. Consider, for example, the 
following two queries:

  string name ("John");

  query q1 (query::first == query::_val (name));
  query q2 (query::first == query::_ref (name));

  name = "Jane";

  db->query<person> (q1); // Find John.
  db->query<person> (q2); // Find Jane.

The odb::query  class provides two special functions, _val()  and _ref() , that allow you
to bind the parameter either by value or by reference, respectively. In the ODB query language, if
the binding is not specified explicitly, the value semantic is used by default. In the native query
language, binding must always be specified explicitly. For example:

  query q1 (query::age < age);                // By value.
  query q2 (query::age < query::_val (age));  // By value.
  query q3 (query::age < query::_ref (age));  // By reference.

  query q4 ("age < " + age);                  // Error.
  query q5 ("age < " + query::_val (age));    // By value.
  query q6 ("age < " + query::_ref (age));    // By reference.

A query that only has by-value parameters does not depend on any other variables and is 
self-sufficient once constructed. A query that has one or more by-reference parameters depends
on the bound variables until the query is executed. If one such variable goes out of scope and you
execute the query, the behavior is undefined.

4.3 Executing a Query

Once we have the query instance ready and by-reference parameters initialized, we can execute
the query using the database::query()  function template. It has two overloaded versions:

37Revision 1.0, September 2010 C++ Object Persistence with ODB

4.2 Parameter Binding



  template <typename T>
  result<T>
  query (bool cache = true);

  template <typename T>
  result<T>
  query (const odb::query<T>&, bool cache = true);

The first query()  function is used to return all the persistent objects of a given type stored in
the database. The second function uses the passed query instance to only return objects matching
the query criteria. The cache  argument determines whether the objects’ states should be cached
in the application’s memory or if they should be returned by the database system one by one as
the iteration over the result progresses. The result caching is discussed in detail in the next 
section.

When calling the query()  function, we have to explicitly specify the object type we are query-
ing. For example:

  typedef odb::query<person> query;
  typedef odb::result<person> result;

  result all (db->query<person> ());
  result johns (db->query<person> (query::first == "John"));

Note that it is not required to explicitly create a named query variable before executing it. For
example, the following two queries are equivalent:

  query q (query::first == "John");

  result r1 (db->query<person> (q));
  result r1 (db->query<person> (query::first == "John"));

Normally you would create a named query instance if you are planning to run the same query 
multiple times and would use the in-line version for those that are executed only once.

It is also possible to create queries from other queries by combining them using logical operators.
For example:

result
find_minors (database& db, const query& name_query)
{
  return db.query<person> (name_query && query::age < 18);
}

result r (find_underage (db, query::first == "John"));

Revision 1.0, September 201038 C++ Object Persistence with ODB

4.3 Executing a Query



4.4 Query Result

The result of executing a query is zero, one, or more objects matching the query criteria. The
result is returned as an instance of the odb::result  class template, for example:

  typedef odb::query<person> query;
  typedef odb::result<person> result;

  result johns (db->query<person> (query::first == "John"));

It is best to view an instance of odb::result  as a handle to a stream, such as a file stream.
While you can make a copy of a result or assign one result to another, the two instances will refer
to the same result stream. Advancing the current position in one instance will also advance it in
another. The result instance is only usable within the transaction it was created in. Trying to 
manipulate the result after the transaction has terminated leads to undefined behavior.

The odb::result  class template conforms to the standard C++ sequence requirements and has
the following interface:

namespace odb
{
  template <typename T>
  class result
  {
  public:
    typedef odb::result_iterator<T> iterator;

  public:
    result ();

    result (const result&);

    result&
    operator= (const result&);

    void
    swap (result&)

  public:
    iterator
    begin ();

    iterator
    end ();

  public:
    void
    cache ();

39Revision 1.0, September 2010 C++ Object Persistence with ODB

4.4 Query Result



    bool
    empty () const;

    std::size_t
    size () const;
  };
}

The default constructor creates an empty result set. The cache()  function caches the returned
objects’ state in the application’s memory. We have already mentioned result caching when we
talked about query execution. As you may remember the database::query()  function
caches the result unless instructed not to by the caller. The cache()  function allows you to
cache the result at a later stage if it wasn’t already cached during query execution.

If the result is cached, the database state of all the returned objects is stored in the application’s
memory. Note that the actual objects are still only instantiated on demand during result iteration.
It is the raw database state that is cached in memory. In contrast, for uncached results the object’s
state is sent by the database system one object at a time as the iteration progresses.

Uncached results can improve the performance of both the application and the database system in 
situations where you have a large number of objects in the result or if you will only examine a
small portion of the returned objects. However, uncached results have a number of limitations.
There can only be one uncached result in a transaction. Creating another result (cached or
uncached) by calling database::query()  will invalidate the existing uncached result. 
Furthermore, calling any other database functions, such as update()  or erase()  will also 
invalidate the uncached result.

The empty()  function returns true  if there are no objects in the result and false  otherwise.
The size()  function can only be called for cached results. It returns the number of objects in
the result. If you call this function on an uncached result, the odb::result_not_cached  
exception is thrown.

To iterate over the objects in a result we use the begin()  and end()  functions together with
the odb::result<T>::iterator  type, for example:

  result r (db->query<person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    ...
  }

The result iterator is an input iterator which means that the only two position operations that it
supports are to move to the next object and to determine whether the end of the result stream has
been reached. In fact, the result iterator can only be in two states: the current position and the end 
position. If you have two iterators pointing to the current position and then you advance one of

Revision 1.0, September 201040 C++ Object Persistence with ODB

4.4 Query Result



them, the other will advance as well. This, for example, means that it doesn’t make sense to store
an iterator that points to some object of interest in the result stream with the intent of dereferenc-
ing it after the iteration is over. Instead, you would need to store the object itself.

The result iterator has the following dereference functions that can be used to access the
pointed-to object:

namespace odb
{
  template <typename T>
  class result_iterator
  {
  public:
    T*
    operator-> () const;

    T&
    operator* () const;

    typename object_traits<T>::pointer_type
    load ();

    void
    load (T& x);
  };
}

When you call the *  or ->  operator, the iterator will allocate a new instance of the object class in
the dynamic memory, load its state from the database state, and return a reference or pointer to
the new instance. The iterator maintains the ownership of the returned object and will return the
same pointer for subsequent calls to either of these operators until it is advanced to the next object
or you call the first load()  function (see below). For example:

  result r (db->query<person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end ();)
  {
    cout << i->last () << endl; // Create an object.
    person& p (*i);             // Reference to the same object.
    cout << p.age () << endl;
    ++i;                        // Free the object.
  }

The overloaded result_iterator::load()  functions are similar to 
database::load() . The first function returns a dynamically allocated instance of the current
object. As an optimization, if the iterator already owns an object as a result of an earlier call to the 
*  or ->  operator, then it relinquishes the ownership of this object and returns it instead. This
allows you to write code like this without worrying about a double allocation:

41Revision 1.0, September 2010 C++ Object Persistence with ODB

4.4 Query Result



  result r (db->query<person> (query::first == "John"));

  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    if (i->last == "Doe")
    {
      auto_ptr p (i.load ());
      ...
    }
  }

Note, however, that because of this optimization, a subsequent to load()  call to the *  or ->  
operator results in the allocation of a new object.

The second load()  function allows you to load the current object’s state into an existing
instance. For example:

  result r (db->query<person> (query::first == "John"));

  person p;
  for (result::iterator i (r.begin ()); i != r.end (); ++i)
  {
    i.load (p);
    cout << p.last () << endl;
    cout << i.age () << endl;
  }

5 ODB Pragma Language
As we have already seen in previous chapters, ODB uses a pragma-based language to capture
database-specific information about C++ types. This chapter describes the ODB pragma language
in more detail. It can be read together with other chapters in the manual to get a sense of what
kind of configurations and mapping fine-tuning are possible. You can also use this chapter as a 
reference at a later stage.

An ODB pragma has the following syntax:

#pragma db qualifier [ specifier specifier ...]

The qualifier tells the ODB compiler what kind of C++ construct this pragma describes. Valid 
qualifiers are object , value , and member. Pragmas with the object  qualifier describe 
persistent object types. It tells the ODB compiler that the C++ class it describes is a persistent
class. Similarly, pragmas with the value  qualifier describes value types and the member quali-
fier is used to describe data members of persistent object and value types.

Revision 1.0, September 201042 C++ Object Persistence with ODB

5 ODB Pragma Language



The specifier informs the ODB compiler about a particular database-related property of the C++ 
declaration. For example, the id  member specifier tells the ODB compiler that this member
contains this object’s identifier. Below is the declaration of the person  class that shows how we
can use ODB pragmas:

#pragma db object
class person
{
  ...
private:
  #pragma db member id
  unsigned long id_;
  ...
};

In the above example we don’t explicitly specify which C++ class or data member the pragma
belongs to. Rather, the pragma applies to a C++ declaration that immediately follows the pragma.
Such pragmas are called positioned pragmas. In positioned pragmas that apply to data members,
the member qualifier can be omitted for brevity, for example:

  #pragma db id
  unsigned long id_;

Note also that if the C++ declaration immediately following a position pragma is incompatible
with the pragma qualifier, an error will be issued. For example:

  #pragma db object  // Error: expected class instead of data member.
  unsigned long id_;

While keeping the C++ declarations and database declarations close together eases maintenance
and increases readability, you can also place them in different parts of the same header file or
even factor them to a separate file. To achieve this we use the so called named pragmas. Unlike 
positioned pragmas, named pragmas explicitly specify the C++ declaration to which they apply
by adding the declaration name after the pragma qualifier. For example:

class person
{
  ...
private:
  unsigned long id_;
  ...
};

#pragma db object(person)
#pragma db member(person::id_) id

43Revision 1.0, September 2010 C++ Object Persistence with ODB

5 ODB Pragma Language



Note that in the named pragmas for data members the member qualifier is no longer optional.
The C++ declaration name in the named pragmas is resolved using the standard C++ name reso-
lution rules, for example:

namespace db
{
  class person
  {
    ...
  private:
    unsigned long id_;
    ...
  };
}

namespace db
{
  #pragma db object(person)  // Resolves db::person.
}

#pragma db member(db::person::id_) id

As another example, the following code fragment shows how to use the named value type pragma
to map a C++ type to a native database type:

#pragma db value(bool) type("INT NOT NULL")

#pragma db object
class person
{
  ...
private:
  bool married_; // Mapped to INT NOT NULL database type.
  ...
};

5.1 C++ Compiler Warnings

The C++ header file that defines your persistent classes and normally contains one or more ODB
pragmas is compiled by both the ODB compiler to generate the database support code and the
C++ compiler to build your application. Some C++ compilers issue warnings about pragmas that
they do not recognize. There are several ways to deal with this problem. The easiest is to disable
such warnings using one of the compiler-specific command line options or warning control
pragmas. This method is described in the following sub-section for popular C++ compilers.

Revision 1.0, September 201044 C++ Object Persistence with ODB

5.1 C++ Compiler Warnings



There are also several C++ compiler-independent methods that you can employ. The first is to
use the PRAGMA_DB macro, defined in <odb/core.hxx> , instead of using #pragma db
directly. This macro expands to the ODB pragma when compiled with the ODB compiler and to
an empty declaration when compiled with other compilers. The following example shows how
we can use this macro:

#include <odb/core.hxx>

PRAGMA_DB(object)
class person
{
  ...
private:
  PRAGMA_DB(id)
  unsigned long id_;
  ...
};

An alternative to using the PRAGMA_DB macro is to group the #pragma db  directives in
blocks that are conditionally included into compilation only when compiled with the ODB
compiler. For example:

class person
{
  ...
private:
  unsigned long id_;
  ...
};

#ifdef ODB_COMPILER
#  pragma db object(person)
#  pragma db member(person::id_) id
#endif

The disadvantage of this approach is that it can quickly become overly verbose when positioned
pragmas are used.

5.1.1 GNU C++

GNU g++ does not issue warnings about unknown pragmas unless requested with the -Wall
command line option. To disable only the unknown pragma warning, you can add the 
-Wno-unknown-pragmas  option after -Wall , for example:

g++ -Wall -Wno-unknown-pragmas ...

45Revision 1.0, September 2010 C++ Object Persistence with ODB

5.1.1 GNU C++



5.1.2 Visual C++

Microsoft Visual C++ issues an unknown pragma warning (C4068) at warning level 1 or higher.
This means that unless you have disabled the warnings altogether (level 0), you will see this 
warning.

To disable this warning via the compiler command line, you can add the /wd4068  C++ compiler
option in Visual Studio 2008 and earlier. In Visual Studio 2010 there is now a special GUI field
where you can enter warning numbers that should be disabled. Simply enter 4068 into this field.

You can also disable this warning for only a specific header or a fragment of a header using the
warning control pragma. For example:

#include <odb/core.hxx>

#pragma warning (push)
#pragma warning (disable:4068)

#pragma db object
class person
{
  ...
private:
  #pragma db id
  unsigned long id_;
  ...
};

#pragma warning (pop)

5.1.3 Sun C++

The Sun C++ compiler does not issue warnings about unknown pragmas unless the +w or +w2
option is specified. To disable only the unknown pragma warning you can add the 
-erroff=unknownpragma  option anywhere on the command line, for example:

CC +w -erroff=unknownpragma ...

5.1.4 IBM XL C++

IBM XL C++ issues an unknown pragma warning (1540-1401) by default. To disable this
warning you can add the -qsuppress=1540-1401  command line option, for example:

xlC -qsuppress=1540-1401 ...

Revision 1.0, September 201046 C++ Object Persistence with ODB

5.1.2 Visual C++



5.2 Object Type Pragmas

A pragma with the object  qualifier declares a C++ class as a persistent object type. The quali-
fier can be optionally followed by the table  specifier.

5.2.1 table

The table  specifier specifies the table name that should be used to store objects of this class in
a relational database. For example:

#pragma db object table("people")
class person
{
  ...
};

If the table name is not specified, the class name is used as the table name.

5.3 Value Type Pragmas

A pragma with the value  qualifier describes a value type and can be optionally followed by the 
type  specifier.

5.3.1 type

The type  specifier specifies the native database type that should be used for data members of
this type. For example:

#pragma db value(bool) type("INT NOT NULL")

#pragma db object
class person
{
  ...
private:
  bool married_; // Mapped to INT NOT NULL database type.
  ...
};

The ODB compiler provides the default mapping between common C++ types, such as bool , 
int , and std::string  and the database types for each supported database system. For more 
information on the default mapping, refer to Chapter 6, "Database Systems".

47Revision 1.0, September 2010 C++ Object Persistence with ODB

5.2 Object Type Pragmas



In the above example we changed the mapping for the bool  type which is now mapped to the 
INT  database type. In this case, the value  pragma is all that is necessary since the ODB
compiler will be able to figure out how to store a boolean value as an integer in the database.
However, there could be situations where the ODB compiler will not know how to handle the 
conversion between the C++ and database representations of a value. Consider, as an example, a 
situation where the boolean value is stored in the database as a string:

#pragma db value(bool) type("VARCHAR(5) NOT NULL")

The possible database values for the C++ true  value could be "true" , or "TRUE" , or 
"True" . Or, maybe, all of the above are valid. The ODB compiler has no way of knowing how
your application wants to convert bool  to a string and back. To support such custom value type
mappings, ODB allows you to provide your own database conversion functions by specializing
the value_traits  class template. The mapping  example in the odb-examples  package
shows how to do this for all the supported database systems.

It is also possible to change the database type mapping for individual members, as described in 
Section 5.4, "Data Member Pragmas".

5.4 Data Member Pragmas

A pragma with the member qualifier or a positioned pragma without a qualifier describes a data
member. It can be optionally followed, in any order, by one or more specifiers summarized in the
table below:

Specifier Summary Section 

id the member is an object id 5.4.1 

auto id is assigned by the database 5.4.2 

type the database type for the member 5.4.3 

column the column name for the member 5.4.4 

transient the member is not stored in the database5.4.5 

5.4.1 id

The id  specifier specifies that the data member contains the object id. Every persistent class must
have a member designated as an object’s identifier. For example:

Revision 1.0, September 201048 C++ Object Persistence with ODB

5.4 Data Member Pragmas



#pragma db object
class person
{
  ...
private:
  #pragma db id
  std::string email_;
  ...
};

In a relational database, an identifier member is mapped to a primary key.

5.4.2 auto

The auto  specifier specifies that the object’s identifier is automatically assigned by the database.
Only a member that was designated as an object id can have this specifier. For example:

#pragma db object
class person
{
  ...
private:
  #pragma db id auto
  unsigned long id_;
  ...
};

Note that automatically-assigned object ids are not reused. If you have a high object turnover
(that is, objects are routinely made persistent and then erased), then care must be taken not to run
out of object ids. In such situations, using unsigned long long  as the identifier type is a
safe choice.

For additional information on the automatic identifier assignment, refer to Section 3.4, "Making
Objects Persistent".

5.4.3 type

The type  specifier specifies the native database type that should be used for this data member.
For example:

49Revision 1.0, September 2010 C++ Object Persistence with ODB

5.4.2 auto



#pragma db object
class person
{
  ...
private:
  #pragma db type("INT NOT NULL")
  bool married_;
  ...
};

The behavior of this specifier for members is similar to that for value types. The only difference
is the scope. The value type pragma applies to all members with this value type that don’t have
their own type  specifiers, while the member pragma applies only to a single member. For more 
information on the semantics of this specifier, refer to Section 5.3, "Value Type Pragmas".

5.4.4 column

The column  specifier specifies the column name that should be used to store this member in a 
relational database. For example:

#pragma db object
class person
{
  ...
private:
  #pragma db id column("person_id")
  unsigned long id_;
  ...
};

If the column name is not specified, it is derived from the member name by removing the
common member name decorations, such as leading and trailing underscores, the m_ prefix, etc.

5.4.5 transient

The transient  specifier instructs the ODB compiler not to store the data member in the
database. For example:

#pragma db object
class person
{
  ...
private:
  date born_;

Revision 1.0, September 201050 C++ Object Persistence with ODB

5.4.4 column



  #pragma db transient
  unsigned short age_; // Computed from born_.
  ...
};

This pragma is usually used on computed members, pointers and references that are only mean-
ingful in the application’s memory, as well as utility members such as mutexes, etc.

6 Database Systems
This chapter covers topics specific to the database system implementations and their support in
ODB. In particular, it describes the system-specific database  classes as well as the default
mapping between basic C++ value types and native database types.

6.1 MySQL Database

To generate support code for the MySQL database you will need to pass the 
"--database mysql " (or "-d mysql ") option to the ODB compiler. Your application will
also need to link to the MySQL ODB runtime library (libodb-mysql ). All MySQL-specific
ODB classes are defined in the odb::mysql  namespace.

6.1.1 MySQL Type Mapping

The following table summarizes the default mapping between basic C++ value types and MySQL
database types. This mapping can be customized on the per-type and per-member basis using the
ODB Pragmas Language (see Chapter 5, "ODB Pragma Language").

51Revision 1.0, September 2010 C++ Object Persistence with ODB

6 Database Systems



C++ Type MySQL type 

bool TINYINT(1) NOT NULL  

char TINYINT NOT NULL  

signed char TINYINT NOT NULL  

unsigned char TINYINT UNSIGNED NOT NULL  

short SMALLINT NOT NULL  

unsigned short SMALLINT UNSIGNED NOT NULL 

int INT NOT NULL  

unsigned int INT UNSIGNED NOT NULL  

long BIGINT NOT NULL  

unsigned long BIGINT UNSIGNED NOT NULL  

long long BIGINT NOT NULL  

unsigned long long BIGINT UNSIGNED NOT NULL  

float FLOAT NOT NULL 

double DOUBLE NOT NULL 

std::string TEXT NOT NULL/VARCHAR(255) NOT NULL  

Note that the std::string  type is mapped differently depending on whether the member of
this type is an object id or not. If the member is an object id, then for this member 
std::string  is mapped to VARCHAR(255) NOT NULL  MySQL type. Otherwise, it is
mapped to TEXT NOT NULL.

6.1.2 MySQL Database Class

The MySQL database  class has the following interface:

namespace odb
{
  namespace mysql
  {
    class database: public odb::database
    {
    public:
      database (const char* user,
                const char* passwd,

Revision 1.0, September 201052 C++ Object Persistence with ODB

6.1.2 MySQL Database Class



                const char* db,
                const char* host = 0,
                unsigned int port = 0,
                const char* socket = 0,
                unsigned long client_flags = 0,
                std::auto_ptr<connection_factory> = 0);

      database (const std::string& user,
                const std::string& passwd,
                const std::string& db,
                const std::string& host = "",
                unsigned int port = 0,
                const std::string* socket = 0,
                unsigned long client_flags = 0,
                std::auto_ptr<connection_factory> = 0);

      database (const std::string& user,
                const std::string* passwd,
                const std::string& db,
                const std::string& host = "",
                unsigned int port = 0,
                const std::string* socket = 0,
                unsigned long client_flags = 0,
                std::auto_ptr<connection_factory> = 0);

      database (const std::string& user,
                const std::string& passwd,
                const std::string& db,
                const std::string& host,
                unsigned int port,
                const std::string& socket,
                unsigned long client_flags = 0,
                std::auto_ptr<connection_factory> = 0);

      database (const std::string& user,
                const std::string* passwd,
                const std::string& db,
                const std::string& host,
                unsigned int port,
                const std::string& socket,
                unsigned long client_flags = 0,
                std::auto_ptr<connection_factory> = 0);

      database (int& argc,
                char* argv[],
                bool erase = false,
                unsigned long client_flags = 0,
                std::auto_ptr<connection_factory> = 0);

      static void
      print_usage (std::ostream&);

53Revision 1.0, September 2010 C++ Object Persistence with ODB

6.1.2 MySQL Database Class



    public:
      const char*
      user () const;

      const char*
      password () const;

      const char*
      db () const;

      const char*
      host () const;

      unsigned int
      port () const;

      const char*
      socket () const;

      unsigned long
      client_flags () const;

    public:
      details::shared_ptr<mysql::connection>
      connection ();
    };
  }
}

You will need to include the <odb/mysql/database.hxx>  header file to make this class 
available in your application.

The overloaded database  constructors allow you to specify MySQL database parameters that
should be used when connecting to the database. In MySQL NULL and an empty string are
treated as the same values for all the string parameters except password  and socket . The 
client_flags  argument allows you to specify various MySQL client library flags. For more 
information on the possible values, refer to the MySQL C API documentation. The 
CLIENT_FOUND_ROWS flag is always set by the MySQL ODB runtime regardless of whether it
was passed in the client_flags  argument.

The last constructor extracts the database parameters from the command line. The following
options are recognized:

Revision 1.0, September 201054 C++ Object Persistence with ODB

6.1.2 MySQL Database Class



  --user <login>
  --password <password>
  --database <name>
  --host <host>
  --port <integer>
  --socket <socket>
  --options-file <file>

The --options-file  option allows you to specify some or all of the database options in a file
with each option appearing on a separate line followed by space and an option value.

If the erase  argument to this constructor is true, then the above options are removed from the 
argv  array and the argc  count is updated accordingly. This is primarily useful if your applica-
tion accepts other options or arguments and you would like to get the MySQL options out of the 
argv  array.

This constructor throws the odb::mysql::cli_exception  exception if the MySQL option
values are missing or invalid. See section Section 6.1.4, "MySQL Exceptions" for more informa-
tion on this exception.

The static print_usage()  function prints the list of options with short descriptions that are 
recognized by this constructor.

The last argument to all of the constructors is the pointer to the connection factory. If you pass a 
non-NULL value, the database instance assumes ownership of the factory instance. The connec-
tion factory interface as well as the available implementations are described in the next section.

The set of accessor functions following the constructors allow you to query the parameters of the 
database  instance.

The connection()  function returns the MySQL database connection encapsulated by the 
odb::mysql::connection  class. Normally, you wouldn’t call this function directly and
instead let the ODB runtime manage the database connections. However, if for some reason you
need to access the underlying MySQL connection handle, refer to the MySQL ODB runtime
source code for the interface of the connection  class.

6.1.3 Connection Factory

The connection_factory  abstract class has the following interface:

namespace odb
{
  namespace mysql
  {
    class connection_factory
    {

55Revision 1.0, September 2010 C++ Object Persistence with ODB

6.1.3 Connection Factory



    public:
      virtual void
      database (mysql::database&) = 0;

      virtual details::shared_ptr<mysql::connection>
      connect () = 0;
    };
  }
}

The database()  function is called when a connection factory is associated with a database
instance. This happens in the odb::mysql::database  class constructors. The connect()  
function is called whenever a database connection is requested.

The two implementations of the connection_factory  interface provided by the MySQL
ODB runtime are the new_connection_factory  and connection_pool_factory .
You will need to include the <odb/mysql/connection-factory.hxx>  header file to
make the connection_factory  interface and these implementation classes available in your 
application.

The new_connection_factory  class creates a new connection whenever one is requested.
When a connection is no longer needed, it is released and closed. The connec-
tion_pool_factory  class implements a connection pool. It has the following interface:

namespace odb
{
  namespace mysql
  {
    class connection_pool_factory: public connection_factory
    {
      connection_pool_factory (std::size_t max_connections = 0,
                               std::size_t min_connections = 0)
    };
};

The max_connections  argument specifies the maximum number of concurrent connections
that this pool factory will maintain. Similarly, the min_connections  argument specifies the
minimum number of available connections that should be kept open.

Whenever a connection is requested, the pool factory first checks if there is an unused connection
that can be returned. If there is none, the pool factory checks the max_connections  value to
see if a new connection can be created. If the total number of connections maintained by the pool
is less than this value, then a new connection is created and returned. Otherwise, the calling
thread is blocked until a connection becomes available.

Revision 1.0, September 201056 C++ Object Persistence with ODB

6.1.3 Connection Factory



When a connection is released, the pool factory first checks if there are blocked threads waiting
for a connection. If so, one of them is unblocked and is given the connection. Otherwise, the pool
factory checks whether the total number of connections maintained by the pool is greater than the 
min_connections  value. If that’s the case, the connection is closed. Otherwise, the connec-
tion is added to the pool of available connections to be returned on the next request. In other
words, if the number of connections maintained by the pool exceeds the min_connections
number and there are no threads waiting for a new connection, then the pool will close the excess 
connections.

If the max_connections  value is 0, then the pool will create a new connection whenever all
of the existing connections are in use. If the min_connections  value is 0, then the pool will
never close a connection and instead maintain all the connections that were ever created.

If you pass NULL as the connection factory to one of the database  constructors, then the 
connection_pool_factory  instance will be created by default with the min and max 
connections values set to 0. The following code fragment shows how we can pass our own 
connection factory instance:

#include <odb/database.hxx>

#include <odb/mysql/database.hxx>
#include <odb/mysql/connection-factory.hxx>

int
main (int argc, char* argv[])
{
  auto_ptr<odb::mysql::connection_factory> f (
    new odb::mysql::connection_pool_factory (20));

  auto_ptr<odb::database> db (
    new mysql::database (argc, argv, false, 0, f));
}

6.1.4 MySQL Exceptions

The MySQL ODB runtime library defines the following MySQL-specific exceptions:

namespace odb
{
  namespace mysql
  {
    class database_exception: odb::database_exception
    {
    public:
      unsigned int
      error () const;

      const std::string&

57Revision 1.0, September 2010 C++ Object Persistence with ODB

6.1.4 MySQL Exceptions



      sqlstate () const;

      const std::string&
      message () const;

      virtual const char*
      what () const throw ();
    };

    class cli_exception: odb::exception
    {
    public:
      virtual const char*
      what () const throw ();
    };
  }
}

You will need to include the <odb/mysql/exceptions.hxx>  header file to make these 
exceptions available in your application.

The odb::mysql::database_exception  is thrown if a MySQL database operation fails.
The MySQL-specific error information is accessible via the error() , sqlstate() , and 
message()  functions. All this information is also combined and returned in a human-readable
form by the what()  function.

The odb::mysql::cli_exception  is thrown by the command line parsing constructor of
the odb::mysql::database  class if the MySQL option values are missing or invalid. The 
what()  function returns a human-readable description of an error.

Revision 1.0, September 201058 C++ Object Persistence with ODB

6.1.4 MySQL Exceptions


	Preface
	About This Document
	More Information

	1 Introduction
	1.1 Architecture and Workflow
	1.2 Benefits

	2 Hello World Example
	2.1 Declaring a Persistent Class
	2.2 Generating Database Support Code
	2.3 Compiling and Running
	2.4 Making Objects Persistent
	2.5 Querying the Database for Objects
	2.6 Updating Persistent Objects
	2.7 Deleting Persistent Objects
	2.8 Summary

	3 Working with Persistent Objects
	3.1 Concepts and Terminology
	3.2 Database
	3.3 Transactions
	3.4 Making Objects Persistent
	3.5 Loading Persistent Objects
	3.6 Updating Persistent Objects
	3.7 Deleting Persistent Objects
	3.8 ODB Exceptions

	4 Querying the Database
	4.1 ODB Query Language
	4.2 Parameter Binding
	4.3 Executing a Query
	4.4 Query Result

	5 ODB Pragma Language
	5.1 C++ Compiler Warnings
	5.1.1 GNU C++
	5.1.2 Visual C++
	5.1.3 Sun C++
	5.1.4 IBM XL C++

	5.2 Object Type Pragmas
	5.2.1 table

	5.3 Value Type Pragmas
	5.3.1 type

	5.4 Data Member Pragmas
	5.4.1 id
	5.4.2 auto
	5.4.3 type
	5.4.4 column
	5.4.5 transient


	6 Database Systems
	6.1 MySQL Database
	6.1.1 MySQL Type Mapping
	6.1.2 MySQL Database Class
	6.1.3 Connection Factory
	6.1.4 MySQL Exceptions



