
CoCoALib 0.99 documentation

John Abbott and Anna Bigatti

2011,2013

1

Contents

1 INSTALL (John Abbott and Anna Bigatti) 19

1.1 INSTALLATION guide for CoCoALib . 19

1.1.1 Prerequisites . 19

1.1.2 Compilation of CoCoALib . 19

1.1.3 Documentation & Examples . 19

1.1.4 Microsoft Windows . 19

1.1.5 In Case of Trouble . 20

2 INSTALL-advanced (John Abbott and Anna Bigatti) 20

2.1 Advanced Installation Options . 20

3 INSTALL-MicrosoftWindows (John Abbott and Anna Bigatti) 20

3.1 Guidelines for installing CoCoA on a Microsoft Windows computer 20

3.1.1 Installing Cygwin . 20

3.1.2 In Case of Trouble . 21

4 INTRODUCTION (John Abbott) 21

4.1 Quick Summary: CoCoALib and CoCoA-5 . 21

4.2 Getting Started . 21

4.2.1 Using CoCoALib . 21

4.2.2 Various Forms of Documentation . 21

4.3 Sundry Important Points . 22

5 Coding Conventions (John Abbott) 23

5.1 User and contributor documentation . 23

5.1.1 Names of CoCoA types, functions, variables . 23

5.1.2 Order in function arguments . 24

5.1.3 Abbreviations . 25

5.2 Contributor documentation . 25

5.2.1 Guidelines from Alexandrescu and Sutter . 25

5.2.2 Use of “#define“ . 26

5.2.3 Header Files . 26

5.2.4 Curly brackets and indentation . 26

5.2.5 Inline Functions . 26

5.2.6 Exception Safety . 26

5.2.7 Dumb/Raw Pointers . 26

5.2.8 Preprocessor Symbols for Controlling Debugging . 27

5.2.9 Errors and Exceptions . 27

5.2.10 Functions Returning Complex Values . 27

5.2.11 Spacing and Operators . 27

6 ApproxPts (John Abbott, Anna M. Bigatti) 28

6.1 Examples . 28

6.2 User documentation . 28

6.2.1 Operations . 28

6.3 Maintainer documentation for files ApproxPts.H and ApproxPts.C 28

2

6.4 Bugs, Shortcomings and other ideas . 29

7 assert (John Abbott) 29

7.1 Examples . 29

7.2 User documentation for files assert.H and assert.C . 29

7.2.1 Debugging . 29

7.3 Maintainer documentation for files assert.H and assert.C . 30

7.4 Bugs, Shortcomings, and other ideas . 30

8 BigInt (John Abbott) 30

8.1 Examples . 30

8.2 User documentation . 31

8.2.1 Generalities . 31

8.2.2 The Functions Available For Use . 31

8.3 Maintainer Documentation . 31

8.4 Bugs, shortcomings and other ideas . 32

8.5 Main changes . 32

9 BigRat (John Abbott) 32

9.1 Examples . 32

9.2 User documentation . 32

9.2.1 Generalities . 32

9.2.2 The Functions Available For Use . 33

9.3 Maintainer Documentation . 34

9.4 Bugs, Shortcomings and other ideas . 34

9.5 Main changes . 34

10 bool3 (John Abbott) 35

10.1 User documentation for bool3 . 35

10.1.1 Examples . 35

10.1.2 Constructors . 35

10.1.3 Queries . 35

10.1.4 Operations on bool3 . 35

10.1.5 Comparison with BOOST library . 35

10.2 Maintainer documentation for bool3 . 35

10.3 Bugs, Shortcomings and other ideas . 36

11 BuildInfo (John Abbott) 36

11.1 Examples . 36

11.2 User documentation . 36

11.3 Maintainer documentation . 36

11.4 Bugs, Shortcomings and other ideas . 37

12 BuiltInFunctions (code: Giovanni Lagorio, Anna M Bigatti; doc: Anna M. Bigatti) 37

12.1 Examples . 37

12.2 User documentation . 37

12.3 Bugs, shortcomings and other ideas . 38

12.4 Main changes . 38

3

13 CanonicalHom (John Abbott) 38

13.1 User Documentation for CanonicalHom . 38

13.1.1 Examples . 38

13.1.2 Constructors . 38

13.2 Maintenance notes for CanonicalHom . 38

13.3 Bugs, Shortcomings, etc . 38

14 config (John Abbott) 39

14.1 User documentation for files config.H . 39

14.2 Maintainer documentation for files config.H and config.C . 39

14.3 Bugs, Shortcomings, and other ideas . 39

15 convert (John Abbott) 39

15.1 Examples . 39

15.2 User Documentation . 39

15.3 Maintenance notes for convert . 40

15.4 Bugs, Shortcomings, etc . 40

16 debug-new (John Abbott) 40

16.1 User documentation . 40

16.1.1 Finding memory leaks . 41

16.1.2 Example . 41

16.2 Maintainer documentation . 42

16.3 Shortcomings, bugs, etc . 43

17 degree (John Abbott) 43

17.1 Examples . 43

17.2 User documentation . 43

17.2.1 Constructors . 43

17.2.2 Operations . 44

17.3 Maintainer documentation . 44

17.4 Bugs, Shortcomings and other ideas . 45

18 DenseMatrix (John Abbott) 45

18.1 User documentation for dense matrices (and DenseMatImpl) . 45

18.2 Maintainer documentation for the class DenseMatImpl . 45

18.3 Bugs and Shortcomings . 46

19 DenseUPolyClean (Anna Bigatti) 46

19.1 User documentation . 46

19.2 Maintainer documentation . 46

19.3 Bugs, Shortcomings, and other ideas . 46

20 DenseUPolyRing (Anna Bigatti) 46

20.1 User documentation for DenseUPolyRing . 46

20.1.1 Pseudo-constructors . 46

20.1.2 Query and cast . 47

20.1.3 Operations on a DenseUPolyRing . 47

20.2 Maintainer documentation for DenseUPolyRing . 47

4

20.3 Bugs, Shortcomings and other ideas . 47

21 DistrMPoly (John Abbott) 47

21.1 User documentation . 47

21.2 Maintainer documentation . 47

21.3 Bugs, Shortcomings, and other ideas . 47

22 DistrMPolyInlPP (John Abbott) 47

22.0.1 User documentation for the class DistrMPolyInlPP . 47

22.0.2 Maintainer documentation for the class DistrMPolyInlPP . 47

22.0.3 Bugs and Shortcomings . 48

23 DivMask (John Abbott) 48

23.1 Examples . 48

23.2 User documentation . 48

23.2.1 Constructors and pseudo-constructors . 48

23.2.2 Operations . 49

23.3 Maintainer documentation . 49

23.4 Bugs, Shortcomings, and other ideas . 50

23.5 Main changes . 50

24 DynamicBitset (Anna Bigatti) 50

24.1 Examples . 50

24.2 User documentation . 50

24.2.1 Constructors . 51

24.2.2 Functions . 51

24.2.3 Member functions . 51

24.2.4 output options . 52

24.3 Maintainer documentation . 52

24.4 Bugs, shortcomings and other ideas . 52

24.4.1 boost? . 52

24.4.2 Stretchable? . 52

24.5 Main changes . 52

25 error (John Abbott) 53

25.1 Examples . 53

25.2 User documentation . 53

25.2.1 Debugging . 53

25.2.2 Recommended way of reporting errors . 53

25.2.3 Adding a New Error ID and its Default Message . 53

25.2.4 Information about errors – for the more advanced . 53

25.2.5 Choosing the language for error messages . 54

25.3 Maintainer documentation for files error.H and error.C . 55

25.3.1 To Add a New Error Code and Message . 55

25.3.2 To Add a New Language for Error Messages . 55

25.4 Bugs, Shortcomings, and other ideas . 56

25.4.1 new improved list of errors . 56

25.5 Main changes . 56

5

26 ExternalLibs-frobby (Anna Bigatti, Bjarke Hammersholt Roune) 56

26.1 User documentation . 56

26.1.1 Examples . 57

26.1.2 Download and compile Frobby . 57

26.2 Maintainer documentation . 57

26.3 Bugs, shortcomings and other ideas . 57

26.4 Main changes . 57

27 ExternalLibs-Normaliz (Anna Bigatti, Christof Soeger) 58

27.1 User documentation . 58

27.1.1 Examples . 58

27.1.2 Download and compile Normaliz . 58

27.2 Maintainer documentation . 58

27.3 Bugs, shortcomings and other ideas . 58

27.4 Main changes . 58

28 factor (John Abbott, Anna M. Bigatti) 58

28.1 Examples . 58

28.2 User documentation . 58

28.3 Maintainer documentation . 59

28.4 Bugs, shortcomings and other ideas . 59

28.5 Main changes . 59

29 factorization (John Abbott) 59

29.1 Examples . 59

29.2 User documentation . 59

29.2.1 Constructor . 59

29.2.2 Accessors . 59

29.2.3 Operations . 60

29.3 Maintainer documentation . 60

29.4 Bugs, shortcomings and other ideas . 60

29.5 Main changes . 60

30 FGModule (John Abbott) 60

30.1 User documentation for FGModule . 60

30.2 Examples . 61

30.3 Maintainer documentation for FGModule . 61

30.4 Bugs, Shortcomings and other ideas . 61

31 FieldIdeal (John Abbott) 61

31.1 User documentation for files FieldIdeal* . 61

31.2 Maintainer documentation for files FieldIdeal* . 61

31.3 Bugs, Shortcomings, and other ideas . 61

32 FloatApprox (John Abbott) 61

32.1 Examples . 61

32.2 User documentation . 62

32.2.1 Pseudo-constructors for binary representation . 62

6

32.2.2 Pseudo-constructors for decimal representation . 62

32.3 Maintainer documentation . 62

32.4 Bugs, shortcomings and other ideas . 63

32.5 Main changes . 63

33 FractionField (John Abbott, Anna M. Bigatti) 63

33.1 User documentation for FractionField . 63

33.1.1 Examples . 63

33.1.2 Pseudo-constructors . 63

33.1.3 Query and cast . 63

33.1.4 Operations on FractionField . 64

33.1.5 Homomorphisms . 64

33.2 Maintainer documentation for FractionField, FractionFieldBase, FractionFieldImpl 64

33.3 Bugs, Shortcomings and other ideas . 64

34 FreeModule (John Abbott) 65

34.1 Examples . 65

34.2 User documentation for the class FreeModule . 65

34.3 Maintainer documentation for the classes FreeModule and FreeModuleImpl 65

34.4 Bugs, Shortcomings and other ideas . 66

35 GBEnv (Anna Bigatti) 66

35.1 User documentation . 66

35.2 Maintainer documentation . 66

35.2.1 GBEnv will know . 66

35.2.2 GBInfo will know . 67

35.2.3 GBMill/BuchbergerMill (?) will know – was GReductor . 67

35.3 Bugs, shortcomings and other ideas . 67

35.4 Main changes . 67

36 geobucket (Anna Bigatti) 68

36.1 Examples . 68

36.2 User documentation . 68

36.2.1 Constructors . 68

36.2.2 Queries . 68

36.2.3 Operations . 68

36.3 Maintainer documentation . 69

36.3.1 bucket . 69

36.4 changes . 70

37 GPoly (Anna Bigatti) 70

37.1 User documentation for the class GPoly . 70

37.2 Maintainer documentation for the class GPoly . 70

37.2.1 Old logs . 70

38 GlobalManager (John Abbott) 71

38.1 Examples . 71

38.2 User Documentation . 71

7

38.2.1 Constructors and pseudo-constructors . 71

38.2.2 Operations . 72

38.2.3 The Purpose of the GlobalManager . 72

38.3 Maintainer Documentation . 72

38.3.1 GMPMemMgr . 73

38.3.2 GlobalSettings . 73

38.4 Bugs, Shortcomings, etc . 73

39 hilbert (Anna Bigatti) 73

39.1 hilbert . 73

40 ideal (John Abbott) 74

40.1 Examples . 74

40.2 User documentation . 74

40.2.1 Operations . 74

40.2.2 Functions for ideals in polynomial rings . 75

40.2.3 Writing new types of ideal . 75

40.3 Maintainer documentation for the classes ideal, IdealBase . 76

40.4 Bugs, Shortcomings and other ideas . 76

41 empty (John Abbott) 76

41.1 Examples . 76

41.2 User documentation . 76

41.2.1 Operations . 76

41.3 Maintainer documentation . 76

41.4 Bugs, shortcomings and other ideas . 76

41.5 Main changes . 77

42 IntOperations (John Abbott) 77

42.1 Examples . 77

42.2 User documentation . 77

42.2.1 Queries . 77

42.2.2 Operations . 77

42.2.3 Error Conditions and Exceptions . 79

42.3 Maintainer Documentation . 80

42.4 Bugs, shortcomings and other ideas . 80

42.5 Main changes . 80

43 io (John Abbott) 80

43.1 Examples . 80

43.2 User Documentation . 80

43.3 Maintainer Documentation . 81

43.4 Bugs, Shortcomings, and other ideas . 81

43.5 Main changes . 81

44 JBMill (Mario Albert) 81

44.1 User documentation for Janet Basis . 81

44.1.1 Computing a Janet Basis . 81

8

44.1.2 Using the JBMill . 81

44.1.3 Examples . 83

44.2 Maintainer documentation for JBDatastructure.C, JBSets.C, JBEnv.C 83

44.2.1 JBDatastructure.C . 83

44.2.2 JBSets.C . 83

44.2.3 JBEnv.C . 83

44.3 Bugs, Shortcomings and other ideas . 84

45 leak-checker (John Abbott) 84

45.1 User documentation . 84

45.2 Maintainer documentation . 84

45.3 Bugs, shortcomings, and other ideas . 85

46 library (Anna Bigatti) 85

46.1 User documentation for file library.H . 85

46.2 Common includes . 85

47 MachineInt (John Abbott) 86

47.1 User documentation for MachineInt . 86

47.1.1 Operations . 87

47.1.2 Queries and views . 87

47.1.3 NOTE: converting to long or unsigned long . 87

47.1.4 Why? . 87

47.2 Maintainer documentation for MachineInt . 87

47.3 Bugs, Shortcomings and other ideas . 88

47.4 Main changes . 88

48 matrix (John Abbott) 88

48.1 User documentation for the classes matrix, MatrixView and ConstMatrixView 88

48.1.1 Examples . 88

48.1.2 Constructors and Pseudo-constructors . 88

48.1.3 Operations on ConstMatrixView, MatrixView, matrix . 89

48.1.4 Operations on MatrixView, matrix . 90

48.1.5 Operations on matrix . 90

48.1.6 Utility functions . 90

48.2 Library contributor documentation . 91

48.3 Maintainer documentation for the matrix classes . 92

48.4 Bugs, Shortcomings and other ideas . 92

48.5 Main changes . 93

49 MatrixForOrdering (Anna Bigatti) 93

49.1 User Documentation . 93

49.1.1 Examples . 93

49.1.2 PseudoConstructors . 93

49.1.3 Queries . 93

49.2 Maintainer Documentation . 94

49.3 Bugs, Shortcomings, and other ideas . 94

9

50 MatrixOperations (John Abbott) 94

50.1 User documentation for MatrixOperations . 94

50.2 Maintainer documentation for MatrixOperations . 95

50.3 Bugs, Shortcomings and other ideas . 95

50.4 Main changes . 95

51 MatrixSpecial (Anna Bigatti) 96

51.1 User documentation for MatrixSpecial . 96

51.1.1 Examples . 96

51.1.2 Special Matrices . 96

51.2 Maintainer documentation . 96

51.3 Bugs, shortcomings and other ideas . 96

51.4 Main changes . 96

52 MatrixView (John Abbott) 96

52.1 User documentation for MatrixView . 96

52.1.1 Examples . 96

52.1.2 Pseudo-constructors . 97

52.1.3 Operations on ConstMatrixView, MatrixView . 98

52.2 Maintainer documentation for MatrixView . 98

52.3 Bugs, Shortcomings and other ideas . 98

52.4 Main changes . 98

53 MemPool (John Abbott) 99

53.1 User Documentation for MemPool . 99

53.1.1 General description . 99

53.1.2 Basic Use . 99

53.1.3 Debugging with MemPools . 100

53.1.4 The Verbosity Levels . 100

53.1.5 Using Verbosity Level 3 . 100

53.1.6 Debug Levels in MemPools . 101

53.1.7 Example: Using a MemPool as the memory manager for a class 101

53.2 Maintenance notes for the MemPool source code . 103

53.2.1 MemPoolFast and loaf . 104

53.2.2 MemPoolDebug . 105

53.3 Bugs, Shortcomings, etc . 106

54 module (John Abbott) 106

54.1 User documentation for the classes module, ModuleBase, ModuleElem 106

54.2 Maintainer documentation for the classes module, and ModuleElem 107

54.3 Bugs, Shortcomings and other ideas . 108

55 ModuleTermOrdering (Anna Bigatti) 108

55.1 User documentation for ModuleTermOrdering . 108

55.1.1 Example . 109

55.2 Maintainer documentation for ModuleTermOrdering . 109

55.3 Bugs, shortcomings and other ideas . 109

55.3.1 do we need a class ”shifts”? . 109

10

56 MorseGraph (Mario Albert) 110

56.1 Examples . 110

56.2 User documentation for Morse Graph . 110

56.2.1 Using the Morse Graph . 110

56.3 Maintainer documentation for TmpMorseGraph.C, TmpMorseElement.C, TmpMorsePaths.C, Tm-
pResolutionMinimization.C . 110

56.3.1 TmpMorseElement.C . 110

56.3.2 TmpMorsePaths.C . 110

56.3.3 TmpMorseGraph.C . 110

56.3.4 ResolutionMinimization.C . 110

56.4 Bugs, Shortcomings and other ideas . 110

56.4.1 ResolutionMinimization.C . 110

56.4.2 TmpMorseGraph.C . 111

57 NumTheory (John Abbott) 111

57.1 User documentation . 111

57.1.1 Generalities . 111

57.1.2 Examples . 111

57.1.3 The Functions Available For Use . 111

57.2 Maintainer Documentation . 113

57.3 Bugs, Shortcomings, etc. 114

58 OpenMath (John Abbott) 114

58.1 User documentation for OpenMath . 114

58.2 Maintainer documentation for OpenMath . 114

58.3 Bugs, Shortcomings and other ideas . 114

59 OrdvArith (John Abbott) 115

59.1 User documentation for OrdvArith . 115

59.1.1 Initializers and Converters for OrdvElem . 115

59.1.2 Arithmetic operations on OrdvElem . 115

59.1.3 Other operations on OrdvElem . 115

59.2 Maintainer documentation for OrdvArith . 116

59.3 Bugs, Shortcomings and other ideas . 117

60 PolyRing (John Abbott) 117

60.1 User documentation for PolyRing . 117

60.1.1 Examples . 117

60.1.2 Pseudo-constructors . 117

60.1.3 Queries and views . 118

60.1.4 Operations on a PolyRing . 118

60.1.5 Homomorphisms . 118

60.2 Maintainer documentation for PolyRing . 118

60.3 Bugs, Shortcomings and other ideas . 118

61 PPMonoid (John Abbott) 119

61.1 User documentation for the classes PPMonoid, PPMonoidElem and PPMonoidBase 119

61.1.1 Examples . 119

11

61.1.2 Operations PPMonoids . 119

61.1.3 Summary of functions for PPMonoidElems . 120

61.2 Library Contributor Documentation . 122

61.2.1 To add a new type of concrete PPMonoid class . 122

61.2.2 To add a new member function to PPMonoidBase . 123

61.2.3 Calculating directly with raw PPs . 123

61.3 Maintainer documentation for PPMonoid, PPMonoidElem, and PPMonoidBase 124

61.4 Bugs, Shortcomings and other ideas . 125

62 PPMonoidHom (John Abbott) 126

62.1 User documentation for the class PPMonoidHom . 126

62.1.1 Examples . 126

62.1.2 Functions for PPMonoidHoms . 126

62.2 Library Contributor Documentation . 126

62.3 Maintainer documentation for PPMonoid, PPMonoidElem, and PPMonoidBase 126

62.4 Bugs, Shortcomings and other ideas . 126

63 PPOrdering (John Abbott) 126

63.1 Examples . 126

63.2 User documentation . 126

63.2.1 Pseudo-constructors . 127

63.2.2 Queries . 127

63.2.3 Operations . 127

63.3 Maintainer documentation for PPOrdering . 128

63.4 Bugs, shortcomings and other ideas . 128

64 PPVector (Anna Bigatti) 128

64.1 class PPVector . 128

64.1.1 Examples . 128

64.2 Fields and main functions . 128

64.2.1 Utility functions . 128

64.2.2 Mathemetical functions . 129

64.3 Bugs, Shortcomings and other ideas . 129

64.3.1 Abstract Class . 129

65 PPWithMask (Anna Bigatti) 129

65.1 Examples . 129

65.2 User documentation . 129

65.3 constructor . 129

65.4 Maintainer documentation for files BuildInfo . 130

65.5 Bugs, Shortcomings and other ideas . 130

66 ProgressReporter (John Abbott) 130

66.1 Examples . 130

66.2 User documentation . 130

66.2.1 Constructors and pseudo-constructors . 130

66.2.2 Operations . 130

66.3 Maintainer documentation . 130

12

66.4 Bugs, shortcomings and other ideas . 131

66.5 Main changes . 131

67 QBGenerator (John Abbott) 131

67.1 User documentation for QBGenerator . 131

67.1.1 Constructors and Pseudo-constructors . 131

67.1.2 Operations on QBGenerator . 131

67.2 Maintainer documentation for QBGenerator . 132

67.3 Bugs, Shortcomings and other ideas . 132

68 QuotientRing (John Abbott, Anna M. Bigatti) 132

68.1 User documentation for QuotientRing . 132

68.1.1 Examples . 132

68.1.2 Constructors and Pseudo-constructors . 132

68.1.3 Query and cast . 133

68.1.4 Operations on QuotientRing . 133

68.1.5 Homomorphisms . 133

68.2 Maintainer documentation for QuotientRing, QuotientRingBase, GeneralQuotientRingImpl 133

68.3 Bugs, Shortcomings and other ideas . 133

69 RandomSource (code: John Abbott; doc: John Abbott, Anna M. Bigatti) 134

69.1 Examples . 134

69.2 User documentation . 134

69.2.1 Constructors . 135

69.2.2 RandomSource Operations . 135

69.2.3 RandomSeqXXXX Operations . 136

69.3 Maintainer documentation . 136

69.4 Bugs, shortcomings and other ideas . 137

69.4.1 Doubts common to RandomSeqBigInt, RandomSeqBool, RandomSeqLong 137

69.5 Main changes . 137

70 ReductionCog (Anna Bigatti) 138

70.1 class ReductionCogBase . 138

70.2 implementations . 138

71 RegisterServerOps (Anna Bigatti) 139

71.1 User documentation . 139

71.1.1 Quick and easy way to add a single operation . 139

71.1.2 Proper way to add a library . 139

71.2 Mantainer documentation . 140

71.3 Main changes . 140

71.3.1 2009 . 140

72 ring (John Abbott, Anna M. Bigatti) 140

72.1 User documentation . 140

72.1.1 Examples . 140

72.1.2 Types of ring (inheritance structure) . 141

72.1.3 Pseudo-constructors . 141

13

72.1.4 Operations on Rings . 141

72.1.5 ADVANCED USE OF RINGS . 142

72.2 Maintainer documentation . 143

72.3 Bugs, Shortcomings and other ideas . 144

73 RingDistrMPoly (John Abbott) 144

73.1 User documentation for the class RingDistrMPoly . 144

73.2 Maintainer documentation for the class RingDistrMPoly . 144

73.2.1 Bugs and Shortcomings . 144

74 empty (John Abbott, Anna M. Bigatti) 145

74.1 Examples . 145

74.2 User documentation . 145

74.2.1 Constructors and pseudo-constructors . 145

74.2.2 Operations . 145

74.3 Maintainer documentation . 145

74.4 Bugs, shortcomings and other ideas . 145

74.5 Main changes . 145

74.6 Main changes . 145

75 RingElem (John Abbott) 145

75.1 Examples . 145

75.2 User documentation . 146

75.2.1 Constructors . 146

75.2.2 Operations on RingElems . 146

75.2.3 Notes on operations . 152

75.2.4 Writing functions with RingElems as arguments . 152

75.2.5 ADVANCED USE OF RingElem . 152

75.3 Maintainer documentation . 154

75.4 Bugs, Shortcomings and other ideas . 156

75.5 Main changes . 156

76 RingElemInput (Anna M. Bigatti) 157

76.1 Examples . 157

76.2 User documentation . 157

76.3 Maintainer documentation . 157

76.4 Bugs, shortcomings and other ideas . 157

76.5 Main changes . 157

77 RingFp (John Abbott) 157

77.1 User documentation for the class RingFpImpl . 157

77.1.1 Examples . 158

77.2 Maintainer documentation for the class RingFpImpl . 158

77.3 Bugs, shortcomings and other ideas . 158

78 RingFpDouble (John Abbott) 159

78.1 User documentation for the class RingFpDoubleImpl . 159

78.2 Maintainer documentation for the class RingFpDoubleImpl . 159

14

78.3 Bugs, shortcomings and other ideas . 160

79 RingFpLog (John Abbott) 160

79.1 User documentation for the class RingFpLogImpl . 160

79.2 Maintainer documentation for the class RingFpLogImpl . 160

79.3 Bugs, shortcomings and other ideas . 161

80 RingHom (John Abbott) 161

80.1 User documentation for the files RingHom.H and RingHom.C . 161

80.1.1 Examples . 161

80.1.2 Constructors . 162

80.1.3 Applying a RingHom . 163

80.1.4 Composition . 163

80.1.5 Domain and Codomain . 163

80.1.6 Kernel . 163

80.1.7 Member Functions for Operations on Raw Values . 163

80.2 Maintainer documentation for the files RingHom.H and RingHom.C 163

80.3 Bugs, Shortcomings and other ideas . 164

80.4 Some very old notes about implementing rings . 164

80.4.1 Mapping elements between rings automatically . 165

81 RingQQ (John Abbott, Anna M. Bigatti) 165

81.1 User documentation for RingQQ . 165

81.1.1 Examples . 166

81.1.2 Constructors and pseudo-constructors . 166

81.1.3 Query . 166

81.1.4 Operations on RingQQ . 166

81.1.5 Homomorphisms . 166

81.2 Maintainer documentation for the class RingQQImpl . 166

81.3 Bugs, Shortcomings and other ideas . 166

82 RingTwinFloat (John Abbott, Anna M. Bigatti) 167

82.1 User documentation for the classes RingTwinFloat and RingTwinFloatImpl 167

82.1.1 Examples . 167

82.1.2 Pseudo-constructors . 167

82.1.3 Query and cast . 167

82.1.4 Operations . 167

82.1.5 Homomorphisms . 167

82.2 Maintainer documentation for the classes RingTwinFloat and RingTwinFloatImpl 168

82.2.1 Philosophy . 168

82.2.2 RingTwinFloatImpl::myFloor . 168

82.3 Bugs, shortcomings and other ideas . 169

82.4 Main changes . 169

83 RingWeyl (John Abbott and Anna M. Bigatti) 169

83.1 User documentation . 169

83.1.1 Examples . 169

83.1.2 Constructors . 170

15

83.2 Maintainer documentation . 170

83.3 Bugs, shortcomings and other ideas . 170

84 RingZZ (John Abbott, Anna M. Bigatti) 170

84.1 User documentation for RingZZ . 170

84.1.1 Examples . 170

84.1.2 Constructors and pseudo-constructors . 170

84.1.3 Query . 170

84.1.4 Homomorphisms . 170

84.2 Maintainer documentation for the class RingZZImpl . 171

84.3 Bugs, Shortcomings and other ideas . 171

85 ServerOp (Anna Bigatti) 171

85.1 User documentation . 171

85.1.1 Outline . 171

85.1.2 Virtual functions . 172

85.1.3 Debugging the server . 173

86 SmallFpDoubleImpl (John Abbott) 173

86.1 User documentation for SmallFpDoubleImpl . 173

86.2 Maintainer documentation for SmallFpDoubleImpl . 174

86.3 Bugs, Shortcomings, and other ideas . 174

87 SmallFpImpl (John Abbott) 174

87.1 User documentation for SmallFpImpl . 174

87.1.1 Advanced Use: delaying normalization in a loop . 175

87.2 Maintainer documentation for SmallFpImpl . 175

87.3 Bugs, Shortcomings, and other ideas . 176

88 SmallFpLogImpl (John Abbott) 176

88.1 User documentation for SmallFpLogImpl . 176

88.2 Maintainer documentation for SmallFpLogImpl . 176

88.3 Bugs, Shortcomings and other ideas . 177

89 SmartPtrIRC (John Abbott) 177

89.1 User documentation for files SmartPtrIRC . 177

89.2 Maintainer documentation for files SmartPtrIRC . 178

89.3 Bugs, Shortcomings and other ideas . 178

90 SmartPtrIRCCOW (John Abbott, Anna Bigatti) 178

90.1 User documentation for files SmartPtrIRCCOW . 178

90.2 Maintainer documentation for files SmartPtrIRCCOW . 178

90.3 Bugs, Shortcomings and other ideas . 178

90.4 Main changes . 178

91 SocketStream (John Abbott) 179

91.1 User Documentation for SocketStream . 179

91.1.1 General description . 179

91.1.2 Example of Basic Use . 179

16

91.1.3 Source for server.C . 179

91.1.4 Source for client.C . 179

91.2 Maintenance notes for the SocketStream source code . 180

91.3 Bugs, Shortcomings, etc . 180

92 SparsePolyRing (John Abbott) 180

92.1 Examples . 180

92.2 User documentation for SparsePolyRing . 180

92.2.1 Pseudo-constructors . 181

92.2.2 Query and cast . 181

92.2.3 Operations on a SparsePolyRing . 181

92.2.4 Operations with SparsePolyIters . 181

92.3 Maintainer documentation for SparsePolyRing . 182

92.4 Bugs, Shortcomings and other ideas . 182

93 submodule (John Abbott, Anna M. Bigatti) 182

93.1 Examples . 182

93.2 User documentation . 183

93.2.1 Operations . 183

93.3 Maintainer documentation for the classes module, and ModuleElem 183

93.4 Bugs, Shortcomings and other ideas . 183

94 SugarDegree (Anna Bigatti) 183

94.1 User documentation . 183

94.1.1 Member functions . 184

94.1.2 Non member functions . 184

95 symbol (John Abbott) 185

95.1 Examples . 185

95.2 User documentation . 185

95.2.1 Constructors . 185

95.2.2 Operations on symbols . 186

95.3 Maintainer documentation for symbol . 186

95.4 Bugs, Shortcomings and other ideas . 187

96 ThreadsafeCounter (John Abbott) 187

96.1 User documentation for ThreadsafeCounter . 187

96.1.1 Constructors . 187

96.1.2 Operations on ThreadsafeCounters . 187

96.2 Maintainer documentation . 187

96.3 Bugs, shortcomings and other ideas . 187

96.4 Main changes . 187

97 time (John Abbott) 187

97.1 User documentation for CpuTime and RealTime . 187

97.2 Maintainer documentation for CpuTime . 188

97.3 Bugs, Shortcomings, and other ideas . 188

98 ToString (John Abbott) 188

17

98.1 Examples . 188

98.2 User documentation . 188

98.3 Maintainer documentation . 189

98.4 Bugs, shortcomings and other ideas . 189

98.5 Main changes . 189

99 ULong2Long (John Abbott) 189

99.1 User documentation . 189

99.1.1 Generalities . 189

99.2 Maintainer Documentation . 189

99.3 Bugs, shortcomings and other ideas . 189

99.4 Main changes . 189

100utils (John Abbott) 190

100.1User documentation for file utils.H . 190

100.2Maintainer documentation for files utils.H . 190

100.3Bugs, Shortcomings and other ideas . 190

18

1 INSTALL (John Abbott and Anna Bigatti)

1.1 INSTALLATION guide for CoCoALib

CoCoALib is supplied as SOURCE code in C++, and so must be COMPILED before you can use it – instructions
on how to do this are below.

1.1.1 Prerequisites

Before compilation you must ensure that you have available:-

• the GNU make program (other versions may work too);

• a C++ compiler together with the standard C++ libraries (e.g. g++)

• an installation of GMP (version 4.2.1 or later) – see http://gmplib.org/

• if you want to build CoCoA-5 too, you need the BOOST libraries (see http://www.boost.org/); more
details are in [[src/CoCoA-5/INSTALL]]

1.1.2 Compilation of CoCoALib

Use the cd comand to go to the root directory CoCoALib-nnn. In most cases the following two commands will
suffice:

./configure

make

The command make compiles CoCoALib (and puts it in lib/libcocoa.a); it also compiles & runs the test
suite, and will compile CoCoA-5 if possible. The compilation generally takes a few minutes. If there were no
problems you’ll get the reassuring message:

Good news: all tests passed

Notes

(1) The configure script looks for the GMP library, and makes a few checks. It assumes your compiler is g++.
If it encounters a problem, it will print out a helpful error message telling you.

(2) The command make library will compile the library but not run the tests. The command make check

will run the tests – they are in src/tests/.

(3) For the adventurous: the command

./configure --help

explains the various options the script recognizes. Also look at INSTALL advanced (Sec.1)

1.1.3 Documentation & Examples

Main documentation for CoCoALib: index (Sec.??)

Example programs using CoCoALib: [[../../examples/index]]

1.1.4 Microsoft Windows

If you have Microsoft Windows, read the file INSTALL MicrosoftWindows (Sec.1)

19

1.1.5 In Case of Trouble

If you encounter problems while using CoCoALib (or trying to compile it), the best way to let us know is to report
the issue via

http://cocoa.dima.unige.it/redmine/

Please tell us also the platform and compiler you are using.

Alternatively you can send us email at cocoa@dima.unige.it

2 INSTALL-advanced (John Abbott and Anna Bigatti)

2.1 Advanced Installation Options

By default CoCoALib allows quite polynomials of quite high degree (e.g. typically beyond 1000000). If you are sure
that degrees will remain small (e.g. below 1000) then you might obtain better performance by editing the source
file include/CoCoA/config.H so that the typedef for SmallExponent t is unsigned short instead of unsigned
int. But beware that CoCoALib does not generally check for exponent overflow during polynomial arithmetic!

3 INSTALL-MicrosoftWindows (John Abbott and Anna Bigatti)

3.1 Guidelines for installing CoCoA on a Microsoft Windows computer

You can build CoCoALib and CoCoA-5 on a Microsoft Windows computer by using Cygwin, a free package which
provides a Linux-like environment (see http://www.cygwin.com/).

Once you have installed Cygwin, start its terminal emulator, and then follow the usual instructions for compiling
CoCoA.

3.1.1 Installing Cygwin

WARNING: installing Cygwin can take quite some time

Download the script setup.exe from the Cygwin website. Start the script and choose install from internet.
Using that script select the following extension packages:

• gcc-g++

• make

• m4

• libboost-devel

• libboost-1.48

• libgmp-devel

• emacs

If you want to build the CoCoA-5 GUI, you must obtain also these extension packages for Cygwin

• qt4-devel-tools

• libqtcore4

• libqtcore4devel

• libqtgui4

• libqtgui4-devel

• libqtxml4-devel

20

• xorg-server

• xinit

• emacs-X11 (not necessary, but probably helpful)

3.1.2 In Case of Trouble

We cannot really help you, as we have almost no experience ourselves. Try searching on the internet...

4 INTRODUCTION (John Abbott)

4.1 Quick Summary: CoCoALib and CoCoA-5

CoCoA-5 is an easy-to-use interactive system for computations in commutative algebra; it contains an on-line
manual accessible via the ? command.

CoCoALib is a C++ library of functions for computations in commutative algebra.

This introduction is part of the documentation for CoCoALib; to use the library you will need some basic
knowledge of the C++ programming language.

4.2 Getting Started

The first step is to compile the software: see INSTALL (Sec.1)

4.2.1 Using CoCoALib

As we know that no one likes to read documentation, the best place to start is by looking at the examples/ directory
full of sample code using CoCoALib.

Writing Your Own Programs

The simplest approach is to copy the example program ex-empty.C and modify that (see guide).

If you want to experiment with CoCoALib using a different directory, just copy examples/Makefile into your
directory and change the line

COCOA_ROOT=...

so that it specifies the full path of CoCoALib-XX, for instance

COCOA_ROOT=/Users/bigatti/CoCoALib-0.99

In any case, it is best to start with a copy of ex-empty.C.

Debugging with CoCoALib

CoCoALib does offer some help in tracking down bugs in programs which use it. If the preprocessor symbol
CoCoA DEBUG is set then various run-time assertions are enabled which perform extra checks in various func-
tions. If you use the compiler g++ then the simplest way to activate debugging is to modify two lines in the file
configuration/autoconf.mk – the file contains comments to guide you. You may like to read [assert.html] to
learn about CoCoA ASSERT.

4.2.2 Various Forms of Documentation

CoCoALib comes with a collection of hand-written descriptions of its capabilities as well as a collection of example
programs showing how to use many of the features of the library. The hope is that the example programs (plus
perhaps a little intelligent guesswork) will suffice to answer most questions about CoCoALib. The hand-written

21

../../examples/index.html
../../examples/index.html

documentation is intended to be more thorough: so less guesswork is needed, but you may have to plough through
lots of tedious text to find the detail you’re looking for.

The hand-written documentation is split into many files: generally there is one file of documentation for each
implementation file in the source code. Furthermore, each file comprises three sections:

• User Documentation gives the information a normal user of the library may need to know, principally the
function interfaces offered

• Maintainer Documentation contains notes and details about how the various functions are implemented
in the library, essentially all information that might be needed to comprehend and maintain the code in the
future

• Shortcomings, etc contains sundry notes about the implementation, for instance ideas on how the imple-
mentation might be improved in the future, doubts about certain design choices, and generally any thoughts
to be taken into consideration for future versions.

This documentation is in the CoCoALib directory doc/txt/, and converted into html (doc/html/) and LaTeX
(doc/tex/) using txt2tags.

A template file fo adding to this documentation and some basic instructions for txt2tags are in the file
doc/txt/empty.txt.

There is also some automatically generated DOXYGEN documentation in [../doxygen/index.html]

We believe that many simple questions are probably best answered by looking at the example programs (and
perhaps applying a little intelligent guesswork). The hand-written documentation in the directory doc/ is supposed
to be exhaustive (and is doubtless also rather exhausting). The Doxygen files will most likely be of use to those
already experienced in using CoCoALib.

4.3 Sundry Important Points

We have tried to give CoCoALib a natural interface, but this has not always been possible. Here are the main
problem areas:

Powering and Exponentiation

The use of the hat symbol (ˆ) to denote exponentiation is very widespread. CoCoALib does not allow this
you must use the function power instead.

Why not? Because it would be too easy to write misleading code, i.e. valid code which does not compute what
you would expect. Here is a simple example: 3*x^2 is interpreted by the compiler as (3*x)^2. Unfortunately there
is no way to make the C++ compiler use the expected interpretation.

Integers and Rationals

The C++ language is not designed to compute directly with unlimited integers or with exact rational numbers;
special types (namely BigInt (Sec.8) and BigRat (Sec.9)) to handle these sorts of values have been added as part
of CoCoALib (with the real work being done by the GMP library). Nevertheless the user has to be wary of several
pitfalls where code which looks correct at first glance does not produce the right answer.

• rationals must be constructed explicitly, e.g. the expression 2/3 is valid C++ but is interpreted as an integer
division giving result 0; instead the rational must be constructed like this BigRat(2,3).

• large integer constants must be converted from a string representation, e.g. n = 99...99; (with 99 nines)
will probably not even compile because of an error about ”integer constant too big”; instead such a large
value must be handled directly by CoCoALib in a call like convert(n, "99...99"); where the variable n

has already been declared to be of type BigInt (Sec.8) or BigRat (Sec.9).

• the compiler believes it knows how to perform arithmetic between machine integers, but the spectre of overflow
continues to haunt such computations. Overflow cannot occur with values of type BigInt (Sec.8) but the
computations will be much slower than with machine integers. If you are quite sure that large values can
never occur then it is fine to use machine integers; otherwise use unlimited integers.

22

http://txt2tags.sourceforge.net/
http://txt2tags.sourceforge.net/
empty.html

• (AMB: add examples from talk in Kassel)

=== Reporting CoCoALib Bugs and other problems ==

Please let us know if you find any bugs in CoCoALib. Ideally your bug report should include a small program
which exhibits the bad behaviour with a clear indication of what you think the program should do, and where it
apparently goes wrong. The best way to inform us of the problem is to report an issue on

http://cocoa.dima.unige.it/redmine/

If you’d rather not use redmine Forum, you can send email to:

cocoa@dima.unige.it

5 Coding Conventions (John Abbott)

5.1 User and contributor documentation

This page summarises the coding conventions used in CoCoALib. This document is useful primarily to contributors,
but some users may find it handy too. As the name suggests, these are merely guidelines; they are not hard and
fast rules. Nevertheless, you should violate these guidelines only if you have genuinely good cause. We would also
be happy to receive notification about parts of CoCoALib which do not adhere to the guidelines.

We expect these guidelines to evolve slowly with time as experience grows.

Before presenting the guidelines I mention some useful books. The first is practically a sine qua non for the
C++ library: The C++ Standard Library by Josuttis which contains essential documentation for the C++
library. Unless you already have quite a lot of experience in C++, you should read the excellent books by Scott
Meyers: Effective C++ (the new version), and Effective STL. Another book offering useful guidance is C++
Coding Standards by Alexandrescu and Sutter; it is a good starting point for setting coding standards.

5.1.1 Names of CoCoA types, functions, variables

All code and ”global” variables must be inside the namespace CoCoA (or in an anonymous namespace); the only
exception is code which is not regarded as an integral part of CoCoA (e.g. the C++ interface to the GMP big
integer package).

There are numerous conventions for how to name classes/types, functions, variables, and other identifiers
appearing in a large package. It is important to establish a convention and apply it rigorously (plus some common
sense); doing so will facilitate maintenance, development and use of the code. (The first three rules follow the
convention implicit in NTL)

• single word names are all lower-case (e.g. ring);

• multiple word names have the first letter of each word capitalized, and the words are juxtaposed (rather than
separated by underscore, (e.g. PolyRing);

• acronyms should be all upper-case (e.g. PPM);

• names of functions returning a boolean start with Is (Are if argument is a list/vector);

• names of functions returning a bool3 (Sec.10) start with Is and end with 3 (Are if argument is a list/vector);

• variables of type (or functions returning a) pointer end with Ptr

• data members’ names start with my (or Iam/Ihave if they are boolean);

• a class static member has a name beginning with our;

• enums are called BlahMarker if they have a single value (e.g. BigInt::CopyFromMPZMarker) and BlahFlag

if they have more;

• abbreviations should be used consistently (see below);

23

• Abstract base classes and derived abstract classes normally have names ending in Base; in contrast,
a derived concrete class normally has a name ending in Impl. Constructors for abstract classes should
probably be protected rather than public.

It is best to choose a name for your function which differs from the names of functions in the C++ standard
library, otherwise it can become necessary to use fully qualified names (e.g. std::set and CoCoA::set) which is
terribly tedious. (Personally, I think this is a C++ design fault)

If you are overloading a C++ operator then write the keyword operator attached to the operator symbol (with
no intervening space). See ring.H for some examples.

5.1.2 Order in function arguments

When a function has more than one argument we follow the first applicable of the following rules:

1. the non-const references are the first args, e.g.

• myAdd(a,b,c) as in a=b+c,

• IsIndetPosPower(long& index, BigInt& exp, pp)

2. the ring/PPMonoid is the first arg, e.g.

• ideal(ring, vector<RingElem>)

3. the main actor is the first arg and the with respect to args follow, e.g.

• deriv(f, x)

4. optional args go last, e.g.

• NewPolyRing(CoeffRing, NumIndets),

• NewPolyRing(CoeffRing, NumIndets, ordering)

5. the arguments follow the order of the common use or sentence, e.g.

• div(a,b) for a/b,

• IndetPower(P, long i, long/BigInt exp) for x[i]ˆexp,

• IsDivisible(a,b) for a is divisible by b,

• IsContained(a,b) for a is contained in b

6. strongly related functions behave as if they were overloading (–> optional args go last), (??? is this ever used
apart from NewMatrixOrdering(long NumIndets, long GradingDim, ConstMatrixView OrderMatrix);???)

7. the more structured objects go first, e.g. ... (??? is this ever used ???)

IMPORTANT we are trying to define a good set of few rules which is easy to apply and, above all, respects
common sense. If you meet a function in CoCoALib not following these rules let us know: we will fix it, or fix the
rules, or call it an interesting exception ;-)

Explanation notes, exceptions, and more examples

• We don’t think we have any function with 1 and 2 colliding

• The main actor is the object which is going to be worked on to get the returning value (usually of the same
type), the with respect to are strictly constant, e.g.

– deriv(f, x)

– NF(poly, ideal)

• Rule 1 wins on rule 4, e.g.

– IsIndetPosPower(index, exp, pp) and IsIndetPosPower(pp)

• Rule 2 wins on rule 4, e.g.

– ideal(gens) and ideal(ring, gens)

• we should probably change:

– NewMatrixOrdering(NumIndets, GradingDim, M) into NewMatrixOrdering(M, GradingDim)

24

5.1.3 Abbreviations

The overall idea is that if a given concept in a class or function name always has the same name: either always the
full name, or always the same abbreviation. Moreover a given abbreviation should have a unique meaning.

Here is a list for common abbreviations

• col – column

• ctor – constructor

• deg – degree (exceptions: degree in class names)

• div – divide

• dim – dimension

• elem – element

• mat – matrix (exceptions: matrix in class names)

• mul – multiply

• pos – positive (or should it be positive? what about IsPositive(BigInt N)?)

Here is a list of names that are written in full

• assign

• one – not 1

• zero – not 0

5.2 Contributor documentation

5.2.1 Guidelines from Alexandrescu and Sutter

Here I paraphrase some of the suggestions from their book, picking out the ones I think are less obvious and are
most likely to be relevant to CoCoALib.

• Write correct, clean and simple code at first; optimize later.

• Keep track of object ownership; document any ”unusual” behaviour.

• Keep implementation details hidden (e.g. make data members private)

• Use const as much as you reasonably can.

• Use prefix ++ and – (unless you specifically do want the postfix behaviour)

• Each class should have a single clearly defined purpose; keep it simple!

• Guideline: member fns should be either virtual or public not both.

• Exception cleanliness: dtors, deallocate and swap should never throw.

• Use explicit to avoid making unintentional ”implicit type conversions”

• Avoid using in header files.

• Use CoCoA ERROR for sanity checks on args to public fns, and CoCoA ASSERT for internal fns.

• Use std::vector unless some other container is obviously better.

• Avoid casting; if you must, use a C++ style cast (e.g. static cast)

25

5.2.2 Use of “#define“

Excluding the read once trick for header files, #define should be avoided (even in experimental code). C++ is
rich enough that normally there is a cleaner alternative to a #define: for instance, inline functions, a static

const object, or a typedef – in any case, one should avoid polluting the global namespace.

If you must define a preprocessor symbol, its name should begin with the prefix CoCoA , and the remaining
letters should all be capital.

5.2.3 Header Files

The read once trick uses preprocessor symbols starting with CoCoA and then finishing with the file name (retaining
the capitalization of the file name but with slashes replaced by underscores). The include path passed to the compiler
specifies the directory above the one containing the CoCoALib header files, so to include one of the CoCoALib
header files you must prefix CoCoA/ to the name of the file – this avoids problems of ambiguity which could arise
if two includable files have the same name. This idea was inspired by NTL.

Include only the header files you really need – this is trickier to determine than you might imagine. The
reasons for minimising includes are two-fold: to speed compilation, and to indicate to the reader which external
concepts you genuinely need. In header files it often suffices simply to write a forward declaration of a class instead
of including the header file defining that class. In implementation files the definition you want may already be
included indirectly; in such cases it is enough to write a comment about the indirectly included definitions you will
be using.

In header files I add a commented out using command immediately after including a system header to say
which symbols are actually used in the header file. In the implementation file I write a using command for each
system symbol used in the file; these commands appear right after the #include directive which imported the
symbol.

5.2.4 Curly brackets and indentation

Sutter claims curly bracket positioning doesn’t matter: he’s wrong! Matching curly brackets should be either
vertically or horizontally aligned. Indentation should be small (e.g. two positions for each level of nesting); have
a look at code already in CoCoALib to see the preferred style. Avoid using tabs for indentation as these do not
have a universal interpretation.

The else keyword indents the same as its matching if.

5.2.5 Inline Functions

Use inline sparingly. inline is useful in two circumstances: for a short function which is called very many times
(at least several million), or for an extremely short function (e.g. a field accessor in a class). The first case may
make the program faster; the second may make it shorter. You can use a profiler (e.g. gprof) to count how often
a function is called.

There are two potential disadvantages to inline functions: they may force implementation details to be publicly
visible, and they may cause code bloat.

5.2.6 Exception Safety

Exception Safety is an expression invented/promulgated by Sutter to mean that a procedure behaves well when
an exception is thrown during its execution. All the main functions and procedures in CoCoALib should be
fully exception safe: either they complete their computations and return normally, or they leave all arguments
essentially unchanged, and return exceptionally. A more relaxed approach is acceptable for functions/procedures
which a normal library user would not call directly (e.g. non-public member functions): it suffices that no memory
is leaked (or other resources lost). Code which is not fully exception-safe should be clearly marked as such.

Consult one of Sutter’s (irritating) books for more details.

5.2.7 Dumb/Raw Pointers

If you’re using dumb/raw pointers, improve your design!

Dumb/raw pointers should be used only as a last resort; prefer C++ references or std::auto ptr<...>

if you can. Note that it is especially hard writing exception safe code which contains dumb/raw pointers.

26

5.2.8 Preprocessor Symbols for Controlling Debugging

During development it will be useful to have functions perform sanity checks on their arguments. For general use,
these checks could readily produce a significant performance hit.

Compilation without setting any preprocessor variables should produce fast code (i.e. without non-vital checks).
Instead there is a preprocessor symbol (CoCoA DEBUG) which can be set to turn on extra sanity checks. Currently
if CoCoA DEBUG has value zero, all non-vital checks are disabled; any non-zero value enables all additional checks.

There is a macro CoCoA ASSERT(...) which will check that its argument yields true when CoCoA DEBUG is set;
if CoCoA DEBUG is not set it does nothing (not even evaluating its argument). This macro is useful for conducting
extra sanity checks during debugging; it should not be used for checks that must always be performed (e.g. in
the final optimized compilation).

There is currently no official preprocessor symbol for (de)activating the gathering of statistics.

NB I wish to avoid having a plethora of symbols for switching debugging on and off in different sections of the
code, though I do accept that we may need more than just one or two symbols.

5.2.9 Errors and Exceptions

During development

Conditions we want to verify solely during development (i.e. when compiling with -DCoCoA DEBUG) can be
checked simply by using the macro CoCoA ASSERT with argument the condition. Should the condition be false, a
CoCoA::ErrorInfo object is thrown – this will cause an abort if not caught. The error message indicates the file
and line number of the failing assertion. If the compilation option -DCoCoA DEBUG is not enabled then the macro
does nothing whatsoever. An example of its use is:

CoCoA_ASSERT(index <= 0 && index < length);

Always

A different mechanism is to be used for conditions which must be checked even after development is com-
pleted.

What should happen when one tries to divide by zero? Or even asks for an exact division between elements
that do not have an exact quotient (in the given ring)?

Answer: call the macro CoCoA ERROR(err type, location) where err type should be one of the error codes
listed in error.H and location is a string saying where the error was detected (e.g. the name of the function
which discovered it). Here is an example

if (trouble)

CoCoA_ERROR(ERR::DivByZero, "applying partial ring homomorphism");

The macro CoCoA ERROR never returns: it will throw a CoCoA::ErrorInfo object. See the example programs for
the recommended way of catching and handling exceptions: so that an informative message can be printed out.
See error.txt for advice on debugging when an unexpected CoCoA error is thrown.

5.2.10 Functions Returning Complex Values

C++ tends to copy the return value of a function; this is undesirable if the value is potentially large and complex.
An obvious alternative is to supply as argument a reference into which the result will be placed. If you choose to
return the value via a reference argument then make the reference argument the first one.

myAdd(rawlhs, rawx, rawy); // stands for: lhs = x + y

5.2.11 Spacing and Operators

All binary operators should have one space before and one space after the operator name (unless both arguments
are particularly short and simple). Unary operators should not be separated from their arguments by any spaces.
Avoid spaces between function names and the immediately following bracket.

27

expr1 + expr2;

!expr;

UsefulFunction(args);

6 ApproxPts (John Abbott, Anna M. Bigatti)

6.1 Examples

• ex-ApproxPts1.C

6.2 User documentation

ApproxPts offers three functions for preprocessing sets of approximate points whose coordinates are given as values
of type double. Given a large set of approximate points with considerable overlap of the error boxes of adjacent
points, the preprocessing algorithms determine a smaller set of approximate points which preserve the geometrical
disposition of the original points but with little or no overlap of the error boxes. In general, the output points do
not form a subset of the original points.

Details of the underlying algorithms are in the article Thinning Out Redundant Empirical Data by Abbott,
Fassino, Torrente, and published in Mathematics in Computer Science (vol. 1, no. 2, pp. 375-392, year 2007). For a
fully detailed description of the methods and the context in which they were developed refer to Laura Torrente’s
PhD thesis: (Applications of Algebra in the Oil Industry, Scuola Normale Superiore di Pisa, 2009). The thesis is
available at the URL Laura’s thesis

6.2.1 Operations

Here is a quick summary of the functions.

typedef ApproxPts::PointR ApproxPt; // actually std::vector<RingElem>

vector<ApproxPt> OriginalPoints; // the coords of the original approx pts

vector<RingElem> epsilon; // epsilon[i] is semiwidth of error box in dimension i

vector<ApproxPt> NewPoints; // will be filled with the preprocessed points

vector<long> weights; // will be filled with the weights of the representatives

PreprocessPts(NewPoints, weights, OriginalPoints, epsilon);

PreprocessPtsGrid(NewPoints, weights, OriginalPoints, epsilon);

PreprocessPtsAggr(NewPoints, weights, OriginalPoints, epsilon);

PreprocessPtsSubdiv(NewPoints, weights, OriginalPoints, epsilon);

All the algorithms work by partitioning the original points into subsets, and then choosing the average of each
subset as the representative of those original points. The weight of each representative is just the number of
original points in the corresponding partition. The algorithms offer differing trade-offs between speed and number
of representatives.

PreprocessPtsGrid This algorithm is the fastest but the results tend to be rather crude; it is possible that some of the preprocessed points are close together. The subsets in the partition comprise all original points which are closer to a certain fixed grid point than to any other of the grid points. In other words, viewing the grid as a lattice, the whole space can be covered by grid-translates of the fundamental region; the partitions comprise all original points lying in one of these grid-translates.

PreprocessPtsAggr This algorithm gives much better results than PreprocessPtsGrid but can take considerably longer, perhaps requiring an hour’s computation for around 10000 original points. The subsets in the partition are determined by an iterative process of aggregation. Initially each subset contains a single original point, then iteratively the closest (mergeable) pair of subsets are united into a single new subset, and so on.

PreprocessPtsSubdiv This algorithm generally gives the best results (i.e. fewest output points, and best visual disposition of them). However it can be rather slower than PreprocessPtsAggr in certain cases (e.g. when the input points are already fairly well separated). It works best when only few preprocessed points are produced, which will happen if the original points are densely packed compared to their error neighbourhoods. The subsets in the partition are determined by an iterative process of subdivision. Initially there is a single subset containing all the original points, then if some original point is too far from the average of the subset to which it belongs, that point is moved to its own new subset, then a redistribution of all original points occurs (reassigning them to optimize the goodness of representation).

PreprocessPts makes a (not very) intelligent choice between PreprocessPtsAggr and PreprocessPtsSubdiv aiming to minimise the computation time.

6.3 Maintainer documentation for files ApproxPts.H and ApproxPts.C

All the preprocessing algorithms rescale their inputs so that the error widths in each dimension are all equal to 1.
The main work is done with these rescaled points, and at the very end the results are scaled back.

28

../../examples/index.html#ex-ApproxPts1.C
http://www.dima.unige.it/~{}torrente/PhDThesis.pdf

PreprocessPtsGrid might be better if we were to use std::maps, but it seems fast enough as is. From the
theory, each input point is associated to a unique grid point; GridNearPoint effects this association. We build
up a table of useful grid points by considering each input point in turn: if the associated grid point is already
in our table of grid points, we simply append the new input point to the grid point’s list of associated original
points, otherwise we add the new grid point to the table and place the input point as the first element in its list
of associated original points. Finally we compute the averages of each list of original points associated to a fixed
grid point. These averages are our result along with the cardinalities of the corresponding list.

PreprocessPtsAggr implements an aggregative algorithm: initially the original points are split into subsets
each containing exactly one original point, then iteratively nearby subsets are coalesced into larger subsets provided
each original point of the two subsets is not too far from the ”centre of gravity” of the coalesced set – this proviso
is necessary as otherwise there are pathological examples.

PreprocessPtsSubdiv implements a subdivision algorithm. Initially all original points are placed into a
single partition. Then iteratively we seek the original point furthest from the average of its subset. If this distance
is below the threshold then we stop (all original points are sufficiently well represented by the averages of their
subsets). Otherwise we separate the worst represented original point into a new subset initially containing just
itself. Now we redistribute the original points: we do this by minimizing the sum of the squares of the L2 distances
of the original points from their respective representatives.

6.4 Bugs, Shortcomings and other ideas

I do not like the typedef for ApproxPts::ApproxPt because the name seems very redundant; I am also uneasy
about having a typedef in a header file – perhaps it should be a genuine class?

The preprocessing algorithms should really receive input as a pair of iterators, and the output should be sent
to an output iterator. But such an interface would rather uglify the code – what to do???

7 assert (John Abbott)

7.1 Examples

• ex-PolyIterator2.C

7.2 User documentation for files assert.H and assert.C

The only part of assert.H which a normal CoCoALib user might find useful is the CoCoA ASSERT macro: it is
intended to be a debugging aid.

The CoCoA ASSERT macro does absolutely nothing (not even evaluating its argument) unless the compilation flag
CoCoA DEBUG is set. If that flag is set then the macro evaluates its argument to a boolean result which is then tested:
if the result is true nothing further happens, if the result is false then the function CoCoA::AssertionFailed is called
with some arguments indicating which CoCoA ASSERT macro call obtained the false value. The AssertionFailed

function prints out an informative message on std::cerr and then throws a CoCoA::ERR::AssertFail exception.

The file assert.H contains the following: - definition of the CoCoA ASSERT macro to aid debugging, and the
related function AssertionFailed

7.2.1 Debugging

During debugging, a debugger can be used to intercept calls to the function CoCoA::AssertionFailed which will
stop the program just before throwing the CoCoA::ERR::AssertFail exception. This should enable one to find
more easily the cause of the problem.

For example, in gdb type

break CoCoA::AssertionFailed

and then go up (perhaps repeatedly) to the offending line.

29

../../examples/index.html#ex-PolyIterator2.C

7.3 Maintainer documentation for files assert.H and assert.C

The macro name CoCoA ASSERT is rather cumbersome, but must contain the prefix CoCoA since macro names
cannot be placed in C++ namespaces. The two definitions of the macro (debugging and non-debugging cases)
both look rather clumsy, but are done that way so that the macro expands into an expression which is syntactically
a simple command. The definition for the non-debugging case I took from /usr/include/assert.h; I do not recall
where I got the definition for the debugging case, but the definition in /usr/include/assert.h looked to be gcc
specific.

The purpose of the procedure AssertionFailed is explained above in the user documentation (to facilitate
interception of failed assertions). The procedure never returns; instead it throws a CoCoALib exception with code
ERR::AssertFail. Before throwing the exception it prints out a message on std::cerr summarising what the
assertion was, and where it was. Note the non-standard way of throwing the CoCoA exception: this allows the
ErrorInfo object to refer to the file and line where CoCoA ASSERT was called (rather then to the line in assert.C

where CoCoA ERROR is called). The entire printed message is assembled into an ostringstream before being printed
to ensure exception safety: either the whole message is printed or none of it is, since the printing step is an atomic
operation.

7.4 Bugs, Shortcomings, and other ideas

Is the exception safe implementation of AssertionFailed excessive?

You have to use explicitly #ifdef CoCoA DEBUG if you want to have a loop or any other non-trivial piece of
code executed only when debugging it turned on.

The following (simplified but real) code excerpt is mildly problematic:

{

bool OK =;

CoCoA_ASSERT(OK);

}

When compiled without debugging (i.e. CoCoA DEBUG is zero) the compiler (gcc-3) complains that the variable OK

is unusued. It does not appear to be possible to make the macro ”depend on its argument” in the non-debugging
case without incurring the run-time cost of evaluating the argument (if the argument is just a variable the cost is
negligible, but if it is a more complex expression then the cost could be considerable). The solution adopted was
to modify the calling code like this:

{

bool OK;

OK =;

CoCoA_ASSERT(OK);

}

Note that the apparently simpler code below will not work if the elided code (i.e. the) has a side effect
since the elided code will not be called at all in the non-debugging case:

{

CoCoA_ASSERT(....);

}

POSSIBLE SOLUTION: maybe CoCoA ASSERT could compute sizeof(...) in the non-debugging case –
this should avoid evaluation of the argument, and will compile away to nothing.

8 BigInt (John Abbott)

8.1 Examples

• ex-BigInt1.C

• ex-BigInt2.C

30

../../examples/index.html#ex-BigInt1.C
../../examples/index.html#ex-BigInt2.C

• ex-BigInt3.C

• ex-GMPAllocator1.C

• ex-GMPAllocator2.C

8.2 User documentation

NOTE: for operations on values of type BigInt see IntOperations (Sec.42) and NumTheory (Sec.57)

8.2.1 Generalities

The class BigInt is intended to represent integers of practically unlimited range. CoCoALib relies on an external
library for handling big integers: currently it is based on the the GMP multiple precision library. This CoCoALib
code simply forms the interface to the underlying big integer library.

Computations with BigInt values do not suffer from overflow, but they are significantly slower than with
machine integers. All BigInt values are stored on the heap.

It is important not to confuse values of type BigInt with values of type RingElem (Sec.75) which happen to
belong to the ring RingZZ (Sec.84). In summary, the operations available for RingElem (Sec.75) are those applicable
to elements of any ordered commutative ring, whereas the range of operations on BigInt values is wider (since we
have explicit knowledge of the type).

See BigRat (Sec.9) for representing and handling rational numbers.

8.2.2 The Functions Available For Use

Constructors

A value of type BigInt may be created from:

• nothing, in which case the value is zero

• another value of type BigInt (its value is copied)

• a machine integer

• a string containing the decimal digits (optionally preceded by a minus sign)

• a GMP mpz t value

Note: No direct constructor for creating a BigInt from a char* is provided because it introduces an ambiguity
in BigInt(0) – since 0 is valid as a char*. However C++ will automatically convert a char* into a std::string,
so you can still use a C-string if you want.

Operations

NOTE: for operations on values of type BigInt see IntOperations (Sec.42)

1. Functions violating encapsulation

• mpzref(n) – this gives a (const) reference to the mpz t value inside a BigInt object. You should use
this accessor very sparingly (but it is handy for calling GMP functions directly).

8.3 Maintainer Documentation

The implementation is structurally very simple, just rather long and tedious. The value of a BigInt object is
represented as an mpz t; this is a private data member, but to facilitate interfacing with code which uses mpz t

values directly I have supplied the two functions called mpzref which allow access to this data member.

The output function turned out to be trickier than one might guess. Part of the problem was wanting to respect
the ostream settings.

Of course, input is a mess. Nothing clever here.

Check also the documentation for MachineInt (Sec.47) to understand how that class is used.

31

../../examples/index.html#ex-BigInt3.C
../../examples/index.html#ex-GMPAllocator1.C
../../examples/index.html#ex-GMPAllocator2.C

8.4 Bugs, shortcomings and other ideas

Currently functions which return BigInt values will copy the result (upon each return) – an attempt to avoid the
waste with proxy classes caused a problem see test-bug4.C Move semantics in C++11 should solve this.

The official GMP interface (mpz class) is certainly more efficient; should CoCoALib eventually switch to using
mpz class? It seems most unlikely that GMP will be displaced from its position as the foremost library for big
integer arithmetic, so such explicit dependence on it should not matter.

No bit operations: bit setting and checking, and/or/xor/not.

The code is long, tedious and unilluminating. Are there any volunteers to improve it?

8.5 Main changes

2012

• May (v0.9951):

– moved common operations on BigInt (Sec.8) and MachineInt (Sec.47) together into IntOperations -

2011

• August (v0.9950):

– class ZZ renamed into BigInt: avoid confusion with RingZZ (Sec.84) and its name in CoCoA system

– random has changed (was random(lo,hi)): see RandomZZStream (Sec.??), RandomLongStream (Sec.??)

9 BigRat (John Abbott)

9.1 Examples

• ex-BigRat1.C

9.2 User documentation

9.2.1 Generalities

The class BigRat is intended to represent (exact) rational numbers of practically unlimited range; it is currently
based on the implementation in the GMP multiple precision library. This code forms the interface between Co-
CoALib and the big integer/rational library upon which it relies. It seems most unlikely that GMP will be displaced
from its position as the foremost library of this type; as a consequence the class BigRat may eventually be replaced
by GMP’s own C++ interface.

The usual arithmetic operations are available with standard C++ syntax but generally these incur run-time
overhead since results are returned through temporaries which are created and destroyed silently by the compiler.
Thus if the variables a, b and c are each of type BigRat then a = b+c; is a valid C++ statement for placing
the sum of b and c in a, but the sum is first computed into a hidden temporary which is then copied to a, and
then finally the temporary is destroyed. As a general principle, the type BigRat is provided for convenience of
representing rational values rather than for rapid computation.

There is an important exception to the natural syntax: ^ does not denote exponentiation; you must use the
function power instead. We have chosen not to define operator^ to perform exponentiation because it is too easy
to write misleading code: for instance, a*b^2 is interpreted by the compiler as (a*b)^2. There is no way to make
the C++ compiler use the expected interpretation.

Arithmetic may also be performed between a BigRat and a machine integer or a BigInt (Sec.8). The result
is always of type BigRat (even if the value turns out to be an integer). Do remember, though, that operations
between two machine integers are handled directly by C++, and problems of overflow can occur.

It is important not to confuse values of type BigRat with values of type RingElem (Sec.75) which happen to
belong to the ring RingQQ (Sec.81). The distinction is analogous to that between values of type BigInt (Sec.8) and
value of type RingElem (Sec.75) which happen to belong to the ring RingZZ (Sec.84). In summary, the operations
available for RingElem (Sec.75) are those applicable to elements of any ordered commutative ring, whereas the
range of operations on BigRat values is wider (since we have explicit knowledge of the type).

32

../../src/tests/test-bug4.C
../../examples/index.html#ex-BigRat1.C

9.2.2 The Functions Available For Use

Constructors

A value of type BigRat may be created from:

• nothing, in which case the value is zero

• another value of type BigRat (its value is copied)

• BigRat(n,d) a pair of integers (machine integers or BigInt (Sec.8)s) specifying numerator and denominator
in that order

• BigRat(str) where str is a string of the form N or N/D where N is the decimal representation of the numerator
and D that of the denominator

• BigRat(mpq value) copy a GMP rational (of type mpq t) into a BigRat; helps interfacing between CoCoALib
and code using GMP directly.

The ctors BigRat(n,d) and BigRat(str) accept an optional arg BigRat::AlreadyReduced which asserts that
the value is already reduced (i.e. positive denominator, and numerator and denominator are coprime). Use this
feature only if you are absolutely certain that there is no common factor between the given numerator and
denominator.

See Bugs section for why there is no ctor from a single integer, and also for why BigRat(0) is accepted by the
compiler (but crashes at run-time).

Infix operators

NOTE: similar to operations on BigInt – see IntOperations (Sec.42)

1. normal arithmetic (potentially inefficient because of temporaries)

• + the sum

• - the difference

• * the product

• / quotient

• = assignment

2. arithmetic and assignment

• +=, -=, *=, /= – definitions as expected; LHS must be of type BigRat

3. arithmetic ordering

• ==, !=

• < , <=, > , >= – comparison (using the normal arithmetic ordering) – see also the cmp function below.

4. increment/decrement

• ++, -- (prefix, e.g. ++a) use these if you can

• ++, -- (postfix, e.g. a++) avoid these if you can, as they create temporaries

More functions

1. query functions (all take 1 argument)

• IsZero(q) – true iff q is zero

• IsOne(q) – true iff q is 1

• IsMinusOne(q) – true iff q is -1

• IsOneNum(q) – true iff num(q) is 1

33

• IsOneDen(q) – true iff den(q) is 1

• sign(q) – gives -1 (machine integer) to mean q is negative, 0 (machine integer) to mean q is zero, +1
(machine integer) to mean q is positive.

2. Exponentiation

• power(a, b) – returns a to the power b (result is always a BigRat)

3. The cmp function (three way comparison)

• cmp(a, b) – returns an int which is < 0 if a < b, or == 0 if a == b, or > 0 if a > b.

4. Other functions

• abs(q) – gives the absolute value of q

• floor(q) – returns a BigInt (Sec.8) for the greatest integer <= q

• ceil(q) – returns a BigInt (Sec.8) for the least integer >= q

• round(q) – returns a BigInt (Sec.8) which is the nearest to q (halves round the same way as in RoundDiv,
see IntOperations (Sec.42))

• num(q) – returns a BigInt (Sec.8) which is the numerator of q

• den(q) – returns a positive BigInt (Sec.8) which is the denominator of q

• log(q) – returns a double whose value is (approx) the natural logarithm of q

• ILogBase(q,base) – returns largest integer k such that power(base,k) <= abs(q)

• mantissa(q) – returns a double between 0.5 and 1 (excluded)

• exponent(q) –

5. Functions violating encapsulation

• mpqref(n)– this gives a (const) reference to the mpq t value inside a BigRat object. You should use
this accessor very sparingly!

9.3 Maintainer Documentation

Nothing very clever. Conversion from a string was a bit tedious.

Note that the ctor call BigRat(0) actually calls the ctor from a string. Unfortunately, this a C++ ”feature”.
It will result in a run-time error.

I have replaced the bodies of the BigRat ctors which take two integers as arguments by a call to the common
body BigRat::myAssign. This does mean that some wasteful temporaries are created when either of the arguments
is a machine integer. Time will tell whether this waste is intolerable.

9.4 Bugs, Shortcomings and other ideas

This code is probably not exception safe; I do not know what the mpq * functions do when there is insufficient
memory to proceed. Making the code exception safe could well be non-trivial: I suspect a sort of auto ptr to an
mpq t value might be needed.

Removed BigRat ctors from a single (machine) integer because too often I made the mistake of writing something
like BigRat(1/2) instead of BigRat(1,2).

Should the BigRat ctor from string also accept numbers with decimal points? e.g. BigRat("3.14159")? We’ll
wait and see whether there is demand for this before implementing; note that GMP does not offer this capability.

9.5 Main changes

2011

• August (v0.9950): class QQ renamed into BigRat: to avoid confusion with RingQQ (Sec.81) and its name in
CoCoA system

34

10 bool3 (John Abbott)

10.1 User documentation for bool3

The class called bool3 implements a three-valued boolean: the possible values represent the notions false, uncertain
and true. A variable of type bool3 has a default initial value of uncertain. To avoid problems with reserved words
the three truth values are actually called:

true3

false3

uncertain3

10.1.1 Examples

• ex-bool3.C

10.1.2 Constructors

• bool3(true) – is the same as true3

• bool3(false) – is the same as false3

• bool3() – is the same as uncertain3

To convert a normal bool to a bool3 value, you must call the ctor explicitly.

Nevertheless, a variable of type bool3 may be assigned a C++ bool value (e.g. bool3 b3 = true;) in which
case true maps to true3 and false to false3.

10.1.3 Queries

There are three functions for testing the value of a bool3 expression: (note that these functions return a C++
bool value)

• IsTrue3(bool3expr) – true iff expr is true3

• IsFalse3(bool3expr) – true iff expr is false3

• IsUncertain3(bool3expr) – true iff expr is uncertain3

These functions are the only way of converting a bool3 to a standard C++ bool value – there is no automatic
conversion from a bool3 value to a standard C++ bool.

10.1.4 Operations on bool3

There are no arithmetic operations on bool3 values.

bool3 values may be printed in the usual way. The printed forms are: true3 false3 uncertain3.

10.1.5 Comparison with BOOST library

Note that bool3 is not the same as BOOST’s tribool, though the two are fairly similar. The principal differences
are that bool3 does not have automatic conversion to bool, and there are no logical operations on bool3 whereas
tribool does have some.

10.2 Maintainer documentation for bool3

The implementation is very simple. The only point to watch is that the order of the constants in the enum
Bool3TruthValues was chosen to allow a simple implementation of the function cmp (which is currently removed
from bool3.H, see Bugs and Shortcomings below). If you change the order, you will have to change the definition
of cmp.

All functions/operations are implemented inline except for I/O. I have avoided const-ref arguments since it is
surely cheaper simply to copy the enum value.

35

../../examples/index.html#ex-bool3.C

10.3 Bugs, Shortcomings and other ideas

I made the bool3 ctor from bool explicit; if conversion from bool to bool3 is automatic then machine integer
value match bool3 as well as they match MachineInt – be careful.

I do feel quite uneasy about disagreeing with BOOST’s tribool design, but their example of a three-way if
statement looks to me to be a recipe for programmer grief – one has to suppress the law of the excluded middle to
read their code without finding it odd and surprising.

Boolean arithmetic operations are not defined since we have not needed them so far. It would be a simple
matter, but I prefer to wait until there is a real need for such operations.

Is the cmp function ever going to be useful??? There was also a function cmp for comparing two bool3 values:

cmp(b1, b2) returns an int <0, =0 or >0 according as b1 <,=,> b2

(assuming this ordering: false3 < uncertain3 < true3)

> friend int cmp(bool3 lhs, bool3 rhs); // must be friend function

> inline int cmp(bool3 lhs, bool3 rhs)

> {

> return lhs.myTruthValue - rhs.myTruthValue;

> }

11 BuildInfo (John Abbott)

11.1 Examples

• ex-BuildInfo.C

• ex-limits.C

11.2 User documentation

The constant in BuildInfo allows you to find out which version of CoCoALib you are using. The function
BuildInfo::PrintAll prints out all the build information on the ostream passed in as argument – you should
include this information whenever you report a bug.

There is one string constant which contains the version number of the library: it is of the form A.bcde where
A is the major version, bc is the minor version, and de is the patch level. Note that there are always precisely 4
digits after the point (even if they are all zero).

• BuildInfo::version – a C string containing the CoCoALib version number.

NOTE: if you happen upon a copy of libcocoa.a and want to find out which version it is, you can use the
following Unix/Linux command:

strings libcocoa.a | egrep "CoCoA::BuildInfo"

This should print out three lines informing you of the library version, the compiler used, and the compiler flags
used when creating libcocoa.a.

11.3 Maintainer documentation

I chose to put the constants and function in their own namespace to emphasise that they go together.

There are actually four string constants, but only one is supposed to be publicly accessible (because I cannot
imagine why anyone would want access to the other three). I made the constants C strings because it seemed
simpler than using C++ strings. The three constants VersionMesg, CompilerMesg, and CompilerFlagsMesg

contain the substring CoCoA::BuildInfo so that the egrep trick described above will produce the version/compiler
information directly.

I made BuildInfo::PrintAll leave a blank line before and after its message so that it would stand out better
from other output produced by the program.

36

../../examples/index.html#ex-BuildInfo.C
../../examples/index.html#ex-limits.C

11.4 Bugs, Shortcomings and other ideas

The constants are not C++ strings – is this really a bug?

Should the three constants VersionMesg, CompilerMesg, and [CompilerFlagsMesg] be hidden or public? Until
someone convinces me there is a good reason to make them public, they’ll stay private.

12 BuiltInFunctions (code: Giovanni Lagorio, Anna M Bigatti; doc:
Anna M. Bigatti)

12.1 Examples

• BuiltinFunctions.C ;-)

12.2 User documentation

Very rough set of notes about adding new functions to CoCoA-5

• runtimeEnv->evalArgAs<XXXXValue>(ARG(0)); returns a pointer intrusive ptr<XXXXValue> which
needs to be accessed as x->theXXXX

• runtimeEnv->evalArgAsListOf<TValue>(ARG(1)); – all elements must be of type TValue and returns
vector<T>

• runtimeEnv->evalArgAsRingElemList(ARG(2), R->theRing); – accepts also INT and RAT.

• runtimeEnv->evalArgAsRingElemList(ARG(0)); – guesses the ring

• runtimeEnv->evalArgAsT1orT2<T1Value,T2Value>(ARG(0), n)

• runtimeEnv->evalArgAsT1orT2orT3<T1Value,T2Value,T3Value>(ARG(0), n)

• ...

• runtimeEnv->evalArgAsT1orT2orT3orT4orT5orT6<T1Value,T2Value,T3Value>(ARG(0), n) returns a
pointer intrusive ptr<RightValue> and puts in n the index of the type found. Throws a meaningful
error is the type found is not in the list.

• PtrCastXXXX(v) where v is a intrusive ptr<RightValue> (generic right value): casts the pointer to
specific type and call the reference theXXXX. So it returns an XXXX. (Defined in BuiltinFunctions.H)

DECLARE_STD_BUILTIN_FUNCTION(IsOne, 1) {

int which;

intrusive_ptr<RightValue> v = runtimeEnv->evalArgAsT1orT2orT3<BigIntValue, BigRatValue, RingElemValue>(ARG(0), which);

switch (which) {

case 1: return Value::from(IsOne(PtrCastBigInt(v)));

case 2: return Value::from(IsOne(PtrCastBigRat(v)));

default:return Value::from(IsOne(PtrCastRingElem(v)));

}

}

END_STD_BUILTIN_FUNCTION

== Maintainer documentation ==

37

12.3 Bugs, shortcomings and other ideas

12.4 Main changes

13 CanonicalHom (John Abbott)

13.1 User Documentation for CanonicalHom

The function CanonicalHom can be used to create certain simple canonical homomorphisms. If it is unable
to produce the required homomorphism then it will throw an exception of type ErrorInfo having error code
ERR::CanonicalHom (see error (Sec.25)).

13.1.1 Examples

• ex-RingHom1.C

• ex-RingHom2.C

• ex-RingHom5.C

13.1.2 Constructors

In all cases the syntax is

• CanonicalHom(domain, codomain)

You can use CanonicalHom whenever the domain is RingZZ (Sec.84) or RingQQ (Sec.81), or if codomain is
formed from domain in a single step. Here is a complete list of the cases when CanonicalHom will work:

• if domain == codomain then result is IdentityHom

• if domain is RingZZ (Sec.84) then result is ZZEmbeddingHom

• if domain is RingQQ (Sec.81) then result is QQEmbeddingHom (may be a partial hom)

• if codomain == FractionField(domain) then result is fraction field EmbeddingHom

• if domain == CoeffRing(codomain) then result is CoeffEmbeddingHom

• if codomain is a quotient of domain then result is QuotientingHom

13.2 Maintenance notes for CanonicalHom

Structurally simple and rather tedious. It is important that the cases of the domain being RingZZ (Sec.84) or RingQQ
(Sec.81) are tested last because the other cases offer shortcuts (compared to ZZEmbeddingHom and QQEmbeddingHom).

13.3 Bugs, Shortcomings, etc

JAA does not like the structure of the code. Also the restriction to a ”single step” seems artificial, but how to
generalize this without perhaps producing annoying ”semi-intelligent” code?

If you don’t like goto, have a go at rewriting the implementation. I’ll accept it so long as it is no more
complicated than the current implementation!

Pity I cannot combine IsPolyRing and AsPolyRing to produce simpler code.

Are there any missing cases?

38

../../examples/index.html#ex-RingHom1.C
../../examples/index.html#ex-RingHom2.C
../../examples/index.html#ex-RingHom5.C

14 config (John Abbott)

14.1 User documentation for files config.H

The file config.H defines certain global concepts which may be used by any of the files in CoCoALib; in particular,
this will include any definitions needed to ensure platform independence. Consequently, every header file in the
CoCoA library should include the header file CoCoA/config.H.

The file config.H contains the following:

• typedefs for SmallFpElem t and SmallFpLogElem t which are used in RingFpImpl and SmallFpImpl (and
their Log counterparts)

• typedef for SmallExponent t which is used internally in some PPMonoid (Sec.61) implementations.

14.2 Maintainer documentation for files config.H and config.C

The typedef for SmallFpElem t fixes the choice of representing type for elements in a SmallFpImpl which are used
to implement a RingFpImpl; the type SmallFpLogElem t does the same for SmallFpLogImpl and RingFpLogImpl.
These types should be some size of unsigned integer; the best choices are probably platform dependent. If you
want to try different choices, you will probably have to recompile the whole CoCoA library.

The typedef for SmallExponent t should be an unsigned integer type. It is used in the PPMonoid (Sec.61)s
which use an ”order vector”.

14.3 Bugs, Shortcomings, and other ideas

Putting SmallFpElem t and SmallFpLog t here is ugly. How can I do it better?

Shouldn’t these typedefs be moved to the corresponding *.H files? What is the point of putting them here???

15 convert (John Abbott)

15.1 Examples

• ex-convert1.C

15.2 User Documentation

The header file convert.H supplies several conversion functions. They are for converting a numerical value of one
type into another numerical type (at least one of the types must be a CoCoALib type). There is also a way of
safely converting machine integer values into other integral types.

There are two families of conversion functions:

1. IsConvertible(dest,src) the result is a boolean: true means the conversion was successful (and the result
was placed in dest, the 1st arg)

2. ConvertTo<DestType>(src) the result is the converted value; if src cannot be converted then an error is
thrown (with code ERR::BadConvert)

3. ConvertTo<DestType>(src, ErrMesg) the result is the converted value; if src cannot be converted then
an error is thrown (with code ErrMesg)

Here is a summary of the conversions currently offered:

39

../../examples/index.html#ex-convert1.C

”to” type ”from” type notes
(unsigned) long BigInt (Sec.8)
(unsigned) int BigInt (Sec.8)
(unsigned) long BigRat (Sec.9)
(unsigned) int BigRat (Sec.9)
long RingElem (Sec.75) equiv to IsInteger & range check
BigInt (Sec.8) RingElem (Sec.75) same as IsInteger

BigRat (Sec.9) RingElem (Sec.75) same as IsRational

long double value must be integral & in range
BigInt (Sec.8) double
BigRat (Sec.9) double
double BigInt (Sec.8) may have rounding error!!
double BigRat (Sec.9) may have rounding error!!

NOTE 1: Conversion to a string can be achieved via ostringstream:

ostringstream buffer;

buffer << value;

const string& ConvertedValue = buffer.str();

NOTE 2: Conversion fails if overflow occurs. Currently converting a non-zero BigRat to a double does not
fail if the closest double is 0.

NumericCast

There is a templated class called NumericCast; it is roughly analogous to BOOST::numeric cast, and will
eventually be replaced by direct use of this BOOST feature. It is to be used for converting safely from one machine
integer type to another: the conversion succeeds only if the value supplied can be represented by the destination
type. In case of failure an ERR::BadConvert exception is thrown.

15.3 Maintenance notes for convert

The ConvertTo fns simply call the corresponding IsConvertible function – indeed a template implementation is
appropriate here.

Only some combinations of IsConvertible functions are present so far.

The class NumericCast has a single template argument, and the constructor has a separate template argument
to allow the ”natural syntax” like that of static cast (or BOOST’s numeric cast). I used a class rather than
a templated function because a function would have required the user to specify two template arguments (i.e.
unnatural syntax). I don’t know if this is the best way to achieve what I want, but it is simple enough that there
are obviously no deficiencies.

15.4 Bugs, Shortcomings, etc

Conversion to C++ integral types other than (unsigned) int/long is not yet supported. Indeed the IsConvertible

functions are a hotch potch, but how can it be done better?

BOOST has numeric cast which is like NumericCast for built in numerical types. Sooner or later we should
use that.

Should conversion of BigRat to double ignore underflow, or should it fail?

16 debug-new (John Abbott)

16.1 User documentation

debug new.C is distributed with CoCoALib, but is not really part of the library proper. Together with the stan-
dalone program leak checker (Sec.45) it can help identify incorrect memory use (e.g. leaks). If you want to use
debug new to find a memory use problem, you may find it enough simply to see the section Example below.

40

The purpose of debug new is to assist in tracking down memory use problems: most particularly leaks and
writing just outside the block allocated; it is not currently able to help in detecting writes to deleted blocks.
It works by intercepting all calls to global new/delete. Memory blocks are given small margins (invisible to the
user) which are used to help detect writes just outside the legitimately allocated block.

debug new works by printing out a log message for every memory allocation and deallocation. Error messages
are printed whenever something awry has been found. The output can easily become enormous, so it is best to
send the output to a file. All log messages start with the string

[debug_new]

and error messages start with the string

[debug_new] ERROR

so they can be found easily. Most messages include a brief summary of the amount of memory currently in use,
the total amount allocated and deallocated, and the maximum amount of memory in use up to that point.

16.1.1 Finding memory leaks

To use debug new to help track down memory leaks, you must employ the program called leak checker (in-
cluded in this distribution) to process the output produced by your program linked with debug new.o. See
leak checker (Sec.45) for full details. Your program output should be put in a file, say called memchk. Then
executing leak checker memchk will print out a summary of how many alloc/free messages were found, and
how many unpaired ones were found. The file memchk is modified if unpaired alloc/free messages were found: an
exclamation mark is placed immediately after the word ALLOC (where previously there was a space), thus a search
for ALLOC! will find all unpaired allocation messages.

Each call to new/delete is given a sequence number (printed as seq=...). This information can be used when
debugging. Suppose, for instance, that leak checker discovers that the 500th call to new never had a matching
delete. At the start of your program (e.g. I suggest immediately after you created the debug new::PrintTrace

object) insert a call to

debug_new::InterceptNew(500);

Now use the debugger to set a breakpoint in debug new::intercepted and start your program. The breakpoint
will be reached during the 500th call to new. Examining the running program’s stack should fairly quickly identify
precisely who requested the memory that was never returned. Obviously it is necessary to compile your program
as well as debug new.C with the debugger option set before using the debugger!

Analogously there is a function debug new::InterceptDelete(N) which calls debug new::intercepted during
the Nth call to operator delete.

16.1.2 Example

Try detecting the (obvious) memory problems in this program.

#include <iostream>

#include "CoCoA/debug_new.H"

int main()

{

debug_new::PrintTrace TraceNewAndDelete; // merely activates logging of new/delete

std::cout << "Starting main" << std::endl;

int* pi1 = new int(1);

int* pi2 = new int(2);

pi1[4] = 17;

pi1 = pi2;

delete pi2;

delete pi1;

std::cout << "Ending main" << std::endl;

return 0;

}

41

Make sure that debug new.o exists (i.e. the debug new program has been compiled). Compile this program, and
link with debug new.o. For instance, if the program is in the file prog.C then a command like this should suffice:

g++ -g -ICoCoALib/include prog.C -o prog debug_new.o

Now run ./prog >& memchk and see the debugging messages printed out into memchk ; note that the debugging
messages are printed on cerr/stderr (hence the use of >& to redirect the output). In this case the output is
relatively brief, but it can be huge, so it is best to send it to a file. Now look at the messages printed in memchk.

The probable double delete is easily detected: it happens in the second call to delete (seq=2). We locate the
troublesome call to delete by adding a line in main immediately after the declaration of the TraceNewAndDelete

local variable

debug_new::InterceptDelete(2); // intercept 2nd call to delete

Now recompile, and use the debugger to trap execution in the function debug new::intercepted, then start
the program running under the debugger. When the trap springs, we can walk up the call stack and quickly learn
that delete pi1; is the culprit. We can also see that the value of pi1 at the time it was deleted is equal the value
originally assigned to pi2.

Let’s pretend that it is not obvious why delete pi1; should cause trouble. So we must investigate further to
find the cause. Here is what we can do. Comment out the troublesome delete (i.e. delete pi1;), and also the call
to InterceptDelete. Recompile and run again, sending all the output into the file memchk (the previous contents
are now old hat). Now run the leak checker (Sec.45) program on the file memchk using this command: (make
sure leak checker has been compiled: g++ leak checker.C -o leak checker)

./leak_checker memchk

It will print out a short summary of the new/delete logs it has found, including a message that some unmatched
calls exist. By following the instructions in leak checker (Sec.45) we discover that the unfreed block is the one
allocated in the line ... pi1 = new Combining this information with the double delete error for the line
delete pi1 we can conclude that the pointer pi1 has been overwritten with the value of pi2 somewhere. At this
point debug new and leak checker can give no further help, and you must use other means to locate where the
value gets overwritten (e.g. the watch facility of gdb; try it!).

WARNING debug new handles all new/delete requests including those arising from the initialization of static
variables within functions (and also those arising from within the system libraries). The leak checker (Sec.45)
program will mark these as unfreed blocks because they are freed only after main has exited (and so cannot be
tracked by debug new).

16.2 Maintainer documentation

This file redefines the C++ global operators new and delete. All requests to allocate or deallocate memory pass
through these functions which perform some sanity checks, pass the actual request for memory management to
malloc/free, and print out a message.

Each block requested is increased in size by placing margins both before and after the block of memory the
user will be given. The size of these margins is determined by the compile-time (positive, even) integer constant
debug new::MARGIN; note that the number of bytes in a margin is this value multiplied by sizeof(int). A margin
is placed both before and after each allocated block handed to the user; the margins are invisible to the user.
Indeed the user’s block size is rounded up to the next multiple of sizeof(int) for convenience.

The block+margins obtained from the system is viewed as an integer array, and the sizes for the margins
and user block are such that the boundaries are aligned with the boundaries between integers in the array – this
simplifies the code a bit (could have used chars?). Each block immediately prior to being handed to the user is
filled with certain values: currently 1234567890 is placed in each margin integer and -999999999 is placed in each
integer inside the user’s block. Upon freeing, the code checks that the values in the margins are unchanged, thus
probably detecting any accidental writes just outside the allocated block. Should any value be incorrect an error
message is printed. The freed block is then overwritten with other values to help detect accidental ”posthumous”
read accesses to data that used to be in the block before it was freed.

For our use, the size of the block (the size in bytes as requested by the user) is stored in the very first integer
in the array. A simplistic sanity check is made of the value found there when the block is freed. The aim is not to
be immune to a hostile user, but merely to help track down common memory usage errors (with high probability,

42

and at tolerable run-time cost). This method for storing the block size requires that the margins be at least as
large as a machine integer (probably ought to use size t).

Note the many checks for when to call debug new::intercepted; maybe the code should be restructured to
reduce the number of these checks and calls?

16.3 Shortcomings, bugs, etc

WARNING debug new handles calls only to plain new and plain delete; it does not handle calls to new(nothrow)

nor to delete(nothrow), nor to any of the array versions.

Have to recompile to use the debug new::PrintTrace to turn on printing. Maybe the first few messages could
be buffered up and printed only when the buffer is full; this might buy enough time to bypass the set up phase of
cerr?

Big trouble will probably occur if a user should overwrite the block size held in the margin of an allocated
block. It seems extremely hard to protect against such corruption.

When a corrupted margin is found a printed memory map could be nice (compare with what MemPool (Sec.53)
does).

An allocated block may be slightly enlarged so that its size is a whole multiple of sizeof(int). If the block
is enlarged then any write outside the requested block size but within the enlarged block is not detected. This
could be fixed by using a char as the basic chunk of memory rather than an int. It is rather unclear why int was
chosen, perhaps for reasons of speed? Or to avoid alignment problems?

Could there be problems on machines where pointers are larger than ints (esp. if the margin size is set to 1)?
There could also be alignment problems if the margin size is not a multiple of the size of the type which has the
most restrictive alignment criteria.

Is it right that the debugging output and error messages are printed on cerr? Can/Should we allow the user
to choose? Using cout has given some trouble since it may call new internally for buffering: this seemed to yield
an infinite loop, and anyway it is a nasty thought using the cout object to print while it was trying to increase an
internal buffer.

The code does not enable one to detect easily writes to freed memory. This could be enabled by never freeing
memory, and instead filling the freed blocks with known values and then monitoring for changes to these values in
freed blocks. This could readily become very costly.

17 degree (John Abbott)

17.1 Examples

• ex-PolyRing1.C

• ex-RingElem1.C

• ex-module2.C

17.2 User documentation

The class degree is used to represent the values returned by the ”deg” function applied to power products and
(multivariate) polynomials. Recall that in general a degree is a value in Zˆk; the value of k and the way the
degree is computed (equiv. weight matrix) are specified when creating the PPOrdering object used for making the
PPMonoid of the polynomial ring – see the function NewPolyRing.

If t1 and t2 are two power products then the degree of their product is just the sum of their individual degrees;
and naturally, if t1 divides t2 then the degree of the quotient is the difference of their degrees. The degree values
are totally ordered using a lexicographic ordering. Note that a degree may have negative components.

17.2.1 Constructors

A degree object may be created by using one of the following functions:

• degree d1(k); – create a new degree object with value (0,0,...,0), with k zeroes

43

../../examples/index.html#ex-PolyRing1.C
../../examples/index.html#ex-RingElem1.C
../../examples/index.html#ex-module2.C

• wdeg(f) – where f is a RingElem (Sec.75) belonging to a PolyRing (Sec.60)

• wdeg(t) – where t is a PPMonoidElem (see PPMonoid (Sec.61))

17.2.2 Operations

The following functions are available for objects of type degree:

• d1 = d2 – assignment, d1 must be non-const

• cout << d – print out the degree

• GradingDim(d) – get the number of the components

• d[s] – get the s-th component of the degree (as a BigInt) (for 0 <= s < k)

• SetComponent(d, k, n) – sets the k-th component of d to n (mach.int. or BigInt (Sec.8))

Arithmetic

• d1 + d2 – sum

• d1 - d2 – difference (there might be no PP with such a degree)

• d1 += d2 – equivalent to d1 = d1 + d2

• d1 -= d2 – equivalent to d1 = d1 - d2

• top(d1, d2) – coordinate-by-coordinate maximum (a sort of ”lcm”)

• cmp(d1, d2) – (int) result is <0, =0, >0 according as d1 < ,=,> d2

Queries

The six comparison operators may be used for comparing degrees (using the lexicographic ordering).

• IsZero(d) – return true iff d is the zero degree

17.3 Maintainer documentation

So far the implementation is very simple. The primary design choice was to use C++ std::vector<>s for holding
the values – indeed a degree object is just a ”wrapped up” vector of values of type degree::ElementType. For a
first implementation this conveniently hides issues of memory management etc. Since I do not expect huge numbers
of degree objects to created and destroyed, there seems little benefit in trying to use MemPool (Sec.53)s (except it
might be simpler to detect memory leaks...) I have preferred to make most functions friends rather than members,
mostly because I prefer the syntax of normal function calls.

The CheckCompatible function is simple so I made it inline. Note the type of the third argument: it is
deliberately not (a reference to) a std::string because I wanted to avoid calling a ctor for a std::string unless
an error is definitely to be signalled. I made it a private static member function so that within it there is free
access to myCoords, the data member of a degree object; also the call degree::CheckCompatible makes it clear
that it is special to degrees.

As is generally done in CoCoALib the member function mySetComponent only uses CoCoA ASSERT for the
index range check. In contrast, the non-member fn SetComponent always performs a check on the index value.
The member fn operator[] also always performs a check on the index value because it is the only way to get read
access to the degree components. I used MachineInt (Sec.47) as the type for the index to avoid the nasty surprises
C++ can spring with silent conversions between various integer types.

In implementations of functions on degrees I have preferred to place the lengths of the degree vectors in a const
local variable: it seems cleaner than calling repeatedly myCoords.size(), and might even be fractionally faster.

operator<< no longer handles the case of one-dimensional degrees specially so that the value is not printed
inside parentheses.

44

17.4 Bugs, Shortcomings and other ideas

The implementation uses BigInt (Sec.8)s internally to hold the values of the degree coordinates. The allows a
smooth transition to examples with huge degrees but could cause some run-time performance degradation. If many
complaints about lack of speed surface, I’ll review the implementation.

Is public write-access to the components of a degree object desirable? Or is this a bug?

No special handling for the case of a grading over Z (i.e. k=1) other than for printing. Is this really a
shortcoming?

Printing via operator<< is perhaps rather crude? Is the special printing for k=1 really such a clever idea?

GradingDim(const degree&) seems a bit redundant, but it is clearer than ”dim” or ”size”

Is use of MachineInt (Sec.47) for the index values such a clever idea?

18 DenseMatrix (John Abbott)

18.1 User documentation for dense matrices (and DenseMatImpl)

A normal user should never need to know about the class DenseMatImpl; see below for notes aimed at library
maintainers.

An dense martrix object is a matrix represented in the most natural way: as a 2-dimensional array of its
entries. For instance a DenseMat of 4 rows and 3 columns will contain 12=4x3 entries. Contrast this with the a
SparseMatrix where the values (and positions) of only the non-zero entries are recorded.

To create a DenseMat you need to specify its ring R and dimensions (r rows and c columns). By default the
matrix is filled with zeroes; alternatively the entries may be initialized from a vector of vector.

NewDenseMat(R, r, c) -- an r-by-c matrix filled with zero(R)

NewDenseMat(R, VV) -- a matrix whose (i,j) entry is VV[i][j]

To create a copy of a matrix, MatrixView, ConstMatrixView use the call

NewDenseMat(M);

Currently a DenseMat has no special operations in addition to those for a general matrix (Sec.48). Here is a
brief summary of those operations

BaseRing(M) -- the ring to which the matrix entries belong

NumRows(M) -- the number of rows in M (may be zero)

NumCols(M) -- the number of columns in M (may be zero)

cout << M -- print out the value of the matrix

M(i,j) -- a copy of entry (i,j) in the matrix

SetEntry(M,i,j,value) -- set entry (i,j) of matrix M to value

18.2 Maintainer documentation for the class DenseMatImpl

The implementation is really quite straightforward (apart from keeping proper track of RingElemRawPtrs when
exceptions may occur).

DenseMatImpl is a concrete class derived from MatrixBase (see matrix (Sec.48)). As such it supplies definitions
for all pure virtual functions. DenseMatImpl represents the value of a matrix as an object of type

vector< vector<RingElemRawPtr> >

The convention used is that the outer vector has an entry for each row, and each inner vector contains the values
of that row. The indices of a matrix entry correspond directly to the vector<> indices needed to get at the value
of that entry. The advantage of using a vector of vector is that resizing is relatively simple (compared to mapping
the entries into a single vector whose length is equal to the total number of matrix entries).

45

Note that each entry in a DenseMatImpl is a RingElemRawPtr, so care must be taken to handle exceptions in
a way which doesn’t leak memory.

A DenseMatImpl object keeps explicit track of its own size (in the data members myNumRows and myNumColumns).
This makes life easier when handling matrices one of whose dimensions is zero. The space overhead should normally
be utterly negligible.

Member functions accepting indices use CoCoA ASSERT to check the validity of the index values. This is
useful during debugging but should cost nothing when compiled with debugging turned off.

18.3 Bugs and Shortcomings

Using RingElemRawPtr may not have been my brightest idea (because it becomes hard to make all functions fully
exception clean).

The pseudo-ctor from vector of vector should probably be a template fn; this would offer better flexibility to
the user (e.g. could initialize from a vector of vector of int).

This is a first implementation: simplicity was paramount, efficiency disregarded.

19 DenseUPolyClean (Anna Bigatti)

19.1 User documentation

Internal implementation for RingDenseUPolyClean (Sec.??)

• DenseUPolyRing NewPolyRing DUP(const ring& CoeffRing) – default indet name is x

• DenseUPolyRing NewPolyRing DUP(const ring& CoeffRing, const symbol& IndetName)

• DenseUPolyRing NewPolyRing DUP(const ring& CoeffRing, const symbol& IndetName, long MinCapacity)

19.2 Maintainer documentation

The primary purpose for object of class DenseUPoly is to represent values in a RingDenseUPoly.

An object of type DenseUPoly is essentially a vector of coefficients (RingElem) and a degree (long).

In a valid DenseUPoly the vector has size at least min(1, deg). Moreover coeff[deg] is different from 0, the
only exception being the zero polynomial, represented with myCoeffsValue[0]=0 and myDegValue=0.

19.3 Bugs, Shortcomings, and other ideas

20 DenseUPolyRing (Anna Bigatti)

20.1 User documentation for DenseUPolyRing

DenseUPolyRing is an abstract class (inheriting from PolyRing (Sec.60)) representing rings of univariate polyno-
mials written with *dense representation*: a polynomial is viewed abstractly as a vector of coefficients (belonging
to the coefficient ring). Indices are long. All meaningful coefficients are in the positions 0 to deg. Between deg+1
and size-1 the coefficients are guaranteed to be valid and valued 0.

Zero polynomial is represented with myDegPlus1 = 0.

See RingElem DenseUPolyRing (Sec.75) for operations on its elements.

20.1.1 Pseudo-constructors

• NewPolyRing DUP(CoeffRing) – default indet name is x

• NewPolyRing DUP(CoeffRing, IndetName)

• NewPolyRing DUP(CoeffRing, IndetName, MinCapacity) – allows to specify the minimum capacity for the
coefficient vector (in order to minimize reallocations)

46

20.1.2 Query and cast

Let R be an object of type ring (Sec.72).

• IsDenseUPolyRing(R) – true if R is actually DenseUPolyRing

• AsDenseUPolyRing(R) – if R is a DenseUPolyRing view it as such

20.1.3 Operations on a DenseUPolyRing

See PolyRing operations (Sec.60).

20.2 Maintainer documentation for DenseUPolyRing

20.3 Bugs, Shortcomings and other ideas

21 DistrMPoly (John Abbott)

21.1 User documentation

Internal implementation for RingDistrMPolyClean (Sec.??)

21.2 Maintainer documentation

The primary purpose for object of class DistrMPoly is to represent values in a RingDistrMPoly; consequently all
operations on a DistrMPoly which could allocate or deallocate memory must take arguments indicating which
memory manager(s) to use.

An object of type DistrMPoly is essentially an ordered (singly) linked list of summands, and each summand is
a pair made up of a coefficient (held as a RingElem) and a power product (held as a PPMonoidElem). In a valid
DistrMPoly all the coefficients are non-zero, the power products are all distinct and the summands are ordered
decreasingly according to the ordering on the PPs (as determined by the PPO inside the owning PPMonoid).

21.3 Bugs, Shortcomings, and other ideas

22 DistrMPolyInlPP (John Abbott)

22.0.1 User documentation for the class DistrMPolyInlPP

If you are not a CoCoA library developer then most likely you should not be considering using this class – use a
polynomial ring instead. That way you will gain ease of use and safety with only a small performance penalty.

This class should be seen and used only by CoCoA library implementors; normal users should use the polynomial
rings (which internally may well use DMPIs to represent their elements).

The class DistrMPolyInlPP implements multivariate polynomials represented as ordered linked lists of sum-
mands, each summand is made up of a coefficient (RingBase::RawValue) and a power product represented as an
order vector.

The implementation is oriented towards speed rather than safety or ease of use. To this end argument sanity
checks (and other types too) should normally use CoCoA ASSERT rather than CoCoAError.

22.0.2 Maintainer documentation for the class DistrMPolyInlPP

NO DOCUMENTATION YET WRITTEN.

This code is very ugly, and I am far from happy with it. I hope it will eventually become much cleaner while
maintaining the speed.

47

22.0.3 Bugs and Shortcomings

The biggest bug is the definition of the struct summand which is NOT PORTABLE since C++ compilers do not
guarantee to respect the order of fields in a structure. I do not yet know how best to avoid this without incurring
a run-time penalty.

This code is apparently stable but surprisingly ugly and awkward to use. I continue to hope that the same
speed can be achieved with cleaner code. As an example of how bad the code is just take a look at the function
deriv (which computes derivatives) – it is far too long and incomprehensible. There must be better way!

The classes DistrMPolyInlPP, PPMonoid and PPOrdering are more closely tied together than I would really
like.

Iterators are giving me headaches – we need them, but they seem to expose implementation details.

23 DivMask (John Abbott)

23.1 Examples

• ex-DivMask1.C

• ex-DivMask2.C

23.2 User documentation

The main reason for creating a DivMask is to permit a quick, coarse test of divisibility between power products –
but before you read on, you might like to consider using PPWithMask (Sec.65) instead, which offers essentially the
same advantages with a *much more convenient interface*.

We say that DivMasks permit a ”coarse” test because we accept as responses definitely not divisible or possibly
divisible (but further checks must be conducted to decide for certain).

For example the radical of a PP (WORK-IN-PROGRESS)

DivMasks are a fairly low-level concept, and probably of little use to most normal CoCoALib users. If you
need to do conduct a great many divisibility tests (between power products) and think you’re interested, read on
(assuming you have already decided that PPWithMask (Sec.65) does not fulfill your needs).

Note: currently DivMasks cannot be used to ascertain coprimality (see Bugs section).

To use DivMasks you must master two concepts. Firstly, the DivMask itself is simply a bitset wrapped up in a
class. The size of the bitset is determined at compile time. There are various rules for how to set the bits in the
bitset, but they all satisfy the following guiding principle:

if t1 divides t2 then (DivMask(t1) & DivMask(t2)) == DivMask(t1)

i.e. DivMask(t1) is a ”subset” of DivMask(t2)

There are no other guarantees: in particular, the converse of the guiding principle does not hold in general.

23.2.1 Constructors and pseudo-constructors

You can create five different sorts of DivMaskRule:

WORK-IN-PROGRESS: explain what a DivMaskRule is

NewDivMaskNull(); no bit is ever set (relatively fast, but otherwise pretty useless). (It is useful when a DivMaskRule
is required and you know you won’t use it)

NewDivMaskSingleBit(); if the k-th exponent in the PP is strictly positive then the k-th bit is set: at most
a single bit is used for each indeterminate, indets with index >= DivMask::ourMaskWidth are ignored
completely.

NewDivMaskSingleBitWrap(); if the k-th exponent in the PP is strictly positive then the k%DivMask::ourMaskWidth-
th bit is set: all indets are taken into account, and each bit is used for a set of indeterminates. This imple-
mentation is good when we have many indeterminates in supposedly sparse PPs. (So far I don’t have good
examples with more than 2*ourMaskWidth indeterminates)

48

../../examples/index.html#ex-DivMask1.C
../../examples/index.html#ex-DivMask2.C

NewDivMaskEvenPowers(); This rule may set several bits for a PP divisible by a ”high” power of an indeterminate.
For instance, with a mask width of 32 and 4 indets, up to 8 bits can be set for each indet: sets 1 bit if exponent
is 1 or 2, set 2 bits if exponent is 3 or 4, etc. The actual number of bits set is ceiling(exponent/2). This
implementation is good when we have few indeterminates with high exponents (e.g. Buchberger’s algorithm).
It is equivalent to SingleBitWrapImpl if the number of indets is bigger than ourMaskWidth.

NewDivMaskHashing(); this rule uses a hashing scheme to allow many bits to be set for each indet even when
there are many indets. The number of bits set for an indet is ceiling(sqrt(exponent)).

Supposedly the implementation works well in all cases (e.g. few indets and high degrees, or many indets and
low degrees)

For indet x the first bit set has index x%ourMaskWidth, and in general the k-th bit set has index (x +

k*hash2)%ourMaskWidth. (See code for definition of hash2)

23.2.2 Operations

Operations with DivMaskRule

The type DivMaskRule is used to set the bits in a DivMask object. The possible function calls are:

• DMR->myAssignFromExpv(mask, exps, NumIndets) – sets mask according to PP with exponent vector
exps. Currently the parameter exps must be of type vector<SmallExponent t> , but this may change.

This function might be quite expensive and its cost depends on the DivMaskRule, but this is not a problem
if it is called much more rarely than IsSubset.

• DMR->myOutputSelf(out)

Operations with DivMask

The value of a DivMask object may be set any number of times (even using different DivMaskRules on each
occasion). Any two DivMasks may be compared, but the result is meaningful only if both values were created using
the same DivMaskRule.

There are a few comparison functions on DivMask objects – these are guaranteed to be very fast and independent
of the DivMaskRule, unlike myAssignFromExpv

• dm1 == dm2 – true iff the bitsets are equal

• dm1 != dm2 – false iff the bitsets are equal

• IsSubset(dm1, dm2) – true if every bit set in dm1 is set in dm2

You can read the bits held inside a DivMask object using this function:

• bits(dm) – gives read-only access to the bitset inside the DivMask, the type of the result is DivMask::mask t

which is a typedef for a std::bitset.

23.3 Maintainer documentation

The class DivMask is pretty simple: we don’t use a naked bitset to ensure that only a DivMaskRule can set
the value. Use of bitwise-and for modular reduction restricts ourMaskWidth to being a power of 2. There are no
member functions, and just one friend function (giving read access to the bitset):

friend const mask_t bits(const DivMask& dm);

The class DivMaskRuleBase is an abstract base class with an intrusive reference count: every concrete divmask
rule must be derived from this class. The virtual member function myAssignFromExpv must be defined in each
concrete divmask rule class: it should set the bits in the DivMask argument according to the exponents specified
in the other two arguments. The virtual member function myOutput simply prints the name of the divmask rule
– it might be useful during debugging. The protected member function DivMaskRuleBase::myBits simply allows
write access to the bitset held inside a DivMask value; I have to do it this way because friendship is not inherited.

49

The type DivMaskRule is just a reference counting smart pointer to an instance of a concrete divmask rule
class.

The entire declarations and definitions of the concrete classes are in the .C file. There is no need for them to
be visible in the .H file.

The class DivMaskNullImpl is quite simple.

The class DivMaskSingleBitImpl is also very simple.

The class DivMaskSingleBitWrapImpl is implemented assuming that the mask width is a power of 2. It is
quite simple.

The class DivMaskEvenPowersImpl was (half) written by Anna while under the influence of mind-altering drugs,
I reckon.

The class DivMaskHashingImpl is a bit involved, especially regarding the choice of bits to set. I’m sure
the heuristic can be improved (e.g. by actually trying it on some real cases :-) Currently the heuristic works
as follows. We consider each indeterminate in turn: let var be the index of the indeterminate, and exp the
exponent, then the total number of bits to be set is ceil(sqrt(exp)), and the first bit to be set will be in
position var%ourMaskWidth and subsequent bits will be in positions separated by multiples of step (where step is
24*floor(var/ourMaskWidth)+13 – this was chosen because it happened to make DivMaskHashingImpl perform
well in the CoCoALib tests).

23.4 Bugs, Shortcomings, and other ideas

Publicly visible use of SmallExponent t is most unfortunate; how to fix it?

Define operator<= for DivMasks, to do the same as IsSubset??

Should default ourMaskWidth be 32 or 64? Surely most current processors are 64 bit now?

Is the restriction that DivMask::ourMaskWidth be a power of 2 reasonable? Would we really lose that much
speed if any value were allowed? Chances are that the only interesting values are 32, 64 or 128 (which are indeed
all powers of 2).

COPRIMALITY: Do we want DivMasks to permit a swift coprimality check? Presumably the idea would be
that two disjoint DivMask values would imply that the corresponding PPs must be coprime. Another possibility
is that the DivMask values are disjoint iff the PPs are coprime; this second possibility would exclude some ideas
for implementing DivMasks (for instance DivMaskSingleBitWrap and DivMaskHashing would be excluded).

Documentation is too sarcastic.

23.5 Main changes

2006

• August: Removed almost all publicly visible references to SmallExponent t; changed to long in all PPMonoid
functions and SparsePolyRing functions. DivMask remains to sorted out.

• January: Added new DivMask type: DivMaskHashingImpl.

24 DynamicBitset (Anna Bigatti)

WORK-IN-PROGRESS

24.1 Examples

• ex-DynamicBitset1.C

24.2 User documentation

Class for representing square free monomials, or subsets of integers.

This is quite technical and useful only when efficiency is important.

Similar to a C++ bitset except that its size does not need to be fixed at compile time (hence the adjective
dynamic).

50

../../examples/index.html#ex-DynamicBitset1.C

24.2.1 Constructors

Let n be an integer, pp a PPMonoidElem (Sec.??), b a DynamicBitset

• DynamicBitset(n) – DynamicBitset() same as DynamicBitset(0)

• DynamicBitset(ConstRefPPMonoidElem pp)

• DynamicBitset(const DynamicBitset&)

24.2.2 Functions

Let DB1 and DB2 be two (const) values of type DynamicBitset

• len(DB1) – returns number of bits in DB1

• count(DB1) – returns number of set bits in DB1

• out << DB1 – print out DB1 (using currently chosen style)

• DB1 | DB2 – bitwise or (equiv. the union of the subsets)

• DB1 & DB2 – bitwise and (equiv. the intersection of the subsets)

• DB1 - DB2 – bitwise diff (equiv. the set difference)

• DB1 ^ DB2 – bitwise xor (equiv. union set-diff intersection)

• IsSubset(DB1, DB2) – true iff DB1 is subset of DB2

• IsDisjoint(DB1, DB2) – true iff DB1 and DB2 are disjoint

• Is1At(DB1, n) – true iff DB1 is 1 at position n

• NewPP(PPM, DB1) – create new PP in PPM whose exponents are given by DB1

• flip(DB1) – create new DynamicBitset which is bitwise inverse of DB1

24.2.3 Member functions

Additionally, let DB be a non-const value of type DynamicBitset.

• DB1.myLen() – number of bits

• DB1.IamAll0s() – true iff value is [00000...0000]

• DB1.IamAll1s() – true iff value is [11111...1111]

These two do not check that the index is valid:

• DB.mySet(index, val) – morally equiv to DB[index] = val (boolean)

• DB.mySet(index) – morally equiv to DB[index] = true

• DB = DB1 – assignment

• DB &= DB1 – equiv. to DB = (DB & DB1)

• DB |= DB1 – equiv. to DB = (DB | DB1)

• DB ^= DB1 – equiv. to DB = (DB ^ DB1)

• DB -= DB1 – equiv. to DB = (DB - DB1)

• DB1.Iam1At(index) – equiv. to DB[index] == 1

• bool operator<(const DynamicBitset& rhs) const; – wrt Xel

• DB1.IamSubset(DB2) – true iff DB1 is subset of DB2

• DB1.IamDisjoint(DB2) – true iff DB1 and DB2 are disjoint

• DB1 == DB2 – true iff DB1 and DB2 have the same value

• DB1 != DB2 – true iff DB1 and DB2 have different values

51

24.2.4 output options

Default printing style is clean, i.e. as an STL bitset of the same size. Printing style can be changed by setting the
variable DynamicBitset::ourOutputStyle Example with a 66-bit DynamicBitset on a 64-bit machine:

DynamicBitset::clean 0000000000000000000000000000000011

DynamicBitset::WithSeparators 00-00000000.00000000.00000000.00000011

DynamicBitset::AsRevVecOfLong [0, 3]

(see ex-DynamicBitset1.C).

Member functions

• void myOutputSelf(std::ostream& out) const; – as a bitset of same size

• void myOutputSelf8(std::ostream& out) const; – blocks of 8/ourNumBitsInBlock, for readability

• void myOutputSelfLong(std::ostream& out) const; – as reversed vector<unsigned long>

24.3 Maintainer documentation

Member fields (private)

std::vector<BitBlock> myVec;

unsigned long mySizeValue;

The long constant DynamicBitset::ourNumBitsInBlock stores number of bits contained in an unsigned long

(normally 32 or 64).

So a DynamicBitset stores a STL vector of STL bitsets of (constant) size ourNumBitsInBlock called myVec.
The field mySizeValue is the number of bits we intend to use. (e.g. in a 32 bit machine a DynamicBitset of size
60 is stored as a vector with 2 BitBlocks and will have 4 unused bits)

enum OutputStyle {clean, AsRevVecOfLong, WithSeparators};

Member functions (private)

• myResize(long n); – only for ctors

• myVecLen() const; – number of BitBlocks in vector

24.4 Bugs, shortcomings and other ideas

24.4.1 boost?

This class is needed because C++ bitset length has to be fixed at compile time. There is a class in boost named
dynamic bitset: if/when we decide CoCoALib inlude boost DynamicBitset will just call the boost implementa-
tion.

24.4.2 Stretchable?

DynamicBitsets, unlike boost’s dynamic bitsets, are not stretchable: the resize function is private. They are used
to represent square-free power-products, therefore changing size does not make sense. But there is no technical
reason to forbid it, so we might make it available.

24.5 Main changes

2010

• moved definition of class facet from TmpIsTree into DynamicBitset.H,C (and renamed). Rearranged and
changed names for similarity with bitsets in STL and boost. Stuctured in safe or fast functions according to
coding conventions. Test and example.

52

../../examples/index.html#ex-DynamicBitset1.C

25 error (John Abbott)

25.1 Examples

• ex-error1.C

25.2 User documentation

25.2.1 Debugging

If you get a CoCoA ERROR when you execute your program, you can easily intercept it with your preferred debugger
tool.

For example, when debugging with gdb, type

break CoCoA::ThrowError

and then run. When it stops in the call of ThrowError, type up to reach the line which originally caused the error.

25.2.2 Recommended way of reporting errors

Usually if you have detected an error in your program, you want to report it immediately. We recommend that
you use the macro CoCoA ERROR to do this. Here’s an example:

value_t operator/(const value_t& num, const value_t& den)

{

if (IsZero(den))

CoCoA_ERROR(ERR::DivByZero, "operator/ for value_t");

....

}

The first argument should be an error ID (i.e. ERR::something); you can find a list of the IDs in the file (Co-
CoA ROOT)/include/CoCoA/error.H. If no ID is suitable, you can just put a string instead. The second argument
should be an indication of the function in which the error occurred.

25.2.3 Adding a New Error ID and its Default Message

If you are a CoCoALib contributor and want to add a new error ID and message (or even a new language for error
messages), please read the maintainer documentation for what to do.

25.2.4 Information about errors – for the more advanced

The macro CoCoA ERROR does two things:

• (1) it creates a CoCoA::ErrorInfo object with the parameters given to the macro, and also with the filename
and line number;

• (2) it calls the function CoCoA::ThrowError on the ErrorInfo object just created.

Below we explain these two stages in more detail.

The class CoCoA::ErrorInfo is intended to be used for creating exception objects – indeed, it derives from
std::exception. There are two things you are likely to want to do with exception objects:

• (A) create and throw the exception object

• (B) catch the exception object

53

../../examples/index.html#ex-error1.C

• Case (A) Rather than using using the C++ throw command directly, we recommend that you pass the error
object to the function CoCoA::ThrowError as it makes debugging easier (see above).

We also recommend that you use the constructor which takes a CoCoA::ERR::ID and a string; the string
should indicate where the error was detected, e.g. the name of the C++ function which found the error.
Look through the list of CoCoA::ERR::IDs (in the file error.H) to find the one best suited to the type of
error you wish to signal.

If no error CoCoA::ERR::ID is suitable then you can use the constructor which accepts two string arguments:
the first should be a description of the error (e.g. ”Incompatible hypermatrix dimensions”), and the second
should indicate where the error was detected. If you are a CoCoALib contributor, see the notes below about
how to add a new error ID and message.

NOTE: if you set the C++ preprocessor symbol CoCoA DEBUG to a value greater than 1 then a log message is
produced each time CoCoA::ThrowError is called; the log message is printed on std::clog.

• Case (B) After catching a CoCoA::ErrorInfo object in the variable err you can make the following queries:

err == ERR::ErrorID -- returns true iff err is of type ERR::ErrorID

(replace ErrorID by the ID of the error you want!)

err.what() -- returns a C string being the error message;

EXAMPLE (of handling a CoCoA Error):

try { ... }

catch (const CoCoA::ErrorInfo& err)

{

if (err != ERR::DivByZero) throw; // rethrow unexpected error

// code to handle the "expected" division by zero error

}

If you have caught a CoCoA::ErrorInfo object and want to announce it as an error then call the proce-
dure CoCoA::ANNOUNCE with the ostream on which to make the announcement and the ErrorInfo object
as second argument. This will print an eye-catching error announcement, and then return to the caller.
Note that CoCoA::ANNOUNCE does not cause the program to exit/abort, it merely prints out an eye-catching
announcement.

To facilitate debugging, an ErrorInfo object may be printed in the usual way; this produces a modest
message, clearly different from an error announcement.

Recall that, as for any other ”exception object”, simply creating a CoCoA::ErrorInfo object does not cause
the error condition to be signalled. To signal the error it must be thrown – we recommend passing the error object
to the function CoCoA::ThrowError (see above).

25.2.5 Choosing the language for error messages

You may choose the language for CoCoALib error messages: the default is English. If an error message has not
yet been translated into the chosen language then it is replaced by the default english message. Currently there
are only two choices:

ErrorLanguage::english();

ErrorLanguage::italian();

EXAMPLE:

int main()

{

CoCoA::ErrorLanguage::italian(); // vogliamo messaggi d’errore in italiano

....

}

The language for error messages may be changed any number of times: the last chosen language is the one used
when creating an ErrorInfo object.

54

25.3 Maintainer documentation for files error.H and error.C

CoCoA::ErrorInfo is derived from std::exception for compatibility with the rest of C++. How this might be
useful I cannot yet say, but it does not measurably complicate the code (though it does force the implementation
of a member function called what).

The preferred constructors for ErrorInfo are those accepting an ERR::ID and a C string indicating context
(with or without filename and line number information); the other constructors should be used only when no
suitable ERR::ID exists. The ERR::ID object indicates the general nature of the error, and is used for selecting the
error message to be printed.

Note that the conversion from an ERR::ID to a string is slightly convoluted: this is to allow the possibility of
selecting at run-time a language other than English for the error messages.

I chose not to offer an ErrorInfo constructor which accepts natively const char* args because the potential
extra copying of strings (to construct a std::string) is hardly likely to be important, and std::strings feel
much cleaner.

The nature and context of the error are kept separate in an ErrorInfo object since it is possible that we may
wish to propagate the nature of the error to top level in an interactive system where it would be unhelpful or
confusing to refer to some C++ function irrelevant to the user.

The definition of the function CoCoA::ThrowError is quite straightforward. The function is deliberately not
inline: efficiency is wholly unimportant whereas the ability to set a breakpoint in the function is (some debuggers
may be unable to set a breakpoint in an inline function).

Each CoCoA error ID object is in reality a constant global variable containing two pointers to constant C
strings called myName and myDefaultMesg: the latter contains the associated default error message (which must
be in English), and the former contains the name of the error ID object. The identity of the error ID actually
resides in the address of the specific string constant in the data member myName – this implies that copying the ID
object does not change its identity. Since the different objects necessarily have different names, the string literals
containing those names are surely distinct, and so we are guaranteed that these addresses are distinct. There
are comparison operators (equal, not-equal, and less-than) for ERR::ID; less-than is needed for using C++ maps
when implementing error messages in languages other than english. These comparison operators merely conduct
the required comparison on the addresses of the strings in myName; this is quick and simple, and sufficient for our
purposes – the actual values of strings pointed to are not taken into consideration!

25.3.1 To Add a New Error Code and Message

Invent a new name for the error code, and insert it in the list of names of ”error variables” (in the file error.H).
Make sure you insert it in the right place respecting alphabetical order – this way it is easy to check whether a
name is already present in the list. Add a short comment indicating what sort of error that code is to be used for.

Next you must add a message corresponding to that code. In the file error.C you will find a long list of ”error
variable” initializations. Add an initialization for your new ”error variable” – the syntax is quite obvious from the
other initializations there (which use the macro DEFINE ERROR). You may wish to add translations of your new
error message into the other languages present in error.C.

25.3.2 To Add a New Language for Error Messages

You must write a function analogous to the function italian() which resides inside the namespace CoCoA::ErrorLanguage.
The new function must have a name different from the other functions there: I suggest the english name of the
language. Inside the function you will have to fill a MsgTable t object with the translated messages associated
to each possible error code. At the end you should check to make sure that you have a message for each possible
code: it should suffice simply to count them. The code will still compile and run even if some translated messages
are missing: if an error occurs for which the current error language has no translation then the default (english)
message is printed.

EXAMPLE: Suppose we want to add german error messages. We choose to use the name ”german” for the
function which activates german error messages. Here is what we do:

(1) edit error.H; immediately after the line containing ”void italian();” insert ”void german();”

(2) edit error.C; make a copy of the function italian(){...} and change its name to ”german” – make sure you
stay inside namespace ErrorLanguage; translate all the error messages in the strings.

55

25.4 Bugs, Shortcomings, and other ideas

The throw specifications on the destructor and what member function are needed for compatibility with std::exception

– I regard this as a nuisance. I wonder if std::string::c str can throw?

What about parameter values? In some cases it would be handy to give the bad value which caused the error:
e.g. ”Bad characteristic: 33”. A problem is that a parameter value could be very large. We could simply allow up
to 100 (say) characters of parameter information in a suitable string.

Only very few error messages have been translated into italian so far.

Perhaps allow the user to specify which ostream to print the logging message in ThrowError?

25.4.1 new improved list of errors

work in progress

• SERIOUS

• NYI

• nonstandard (specified by a string) – equality test makes sense for these?

• system/LowLevel (about GlobalMgr, MemPool, I/O, AssertFail)

– InsuffPrecision???

• BadArg (UnsuitableValue)

– NotNonZero RENAME ExpectedNonZero

– IndexOutOfRange (incl iterators?)

– ValueOutOfRange

∗ NotNonNegative (RENAME ExpectedNonNegative?)

∗ NotPositive (RENAME ExpectedNonNegative?)

∗ TooBig (*not* system independent!!!)

• BadArgType

• IncompatibleArgs (op not def’d for the given combination of args)

– IncompatibleSizes

– IncompatibleTypes

25.5 Main changes

2013

• July (v0.995??):

– major re-write in progress -

26 ExternalLibs-frobby (Anna Bigatti, Bjarke Hammersholt Roune)

26.1 User documentation

Frobby is a software system and project for computations with monomial ideals. Frobby is free software and it is
intended as a vehicle for research on monomial ideals, as well as a useful practical tool for investigating monomial
ideals.

Available functions:

56

long dimension(const ideal& I);

ideal AlexanderDualFrobby(I, pp);

ideal AlexanderDualFrobby(I);

ideal MaximalStandardMonomialsFrobby(I);

void IrreducibleDecompositionFrobby(std::vector<ideal>& components, I);

void PrimaryDecompositionFrobby(std::vector<ideal>& components, I);

void AssociatedPrimesFrobby(std::vector<ideal>& primes, I);

RingElem MultigradedHilbertPoincareNumeratorFrobby(I);

RingElem TotalDegreeHilbertPoincareNumeratorFrobby(I);

RingElem TotalDegreeHilbertPoincareNumeratorFrobby(I, const RingElem& base);

26.1.1 Examples

• ex-frobby1.C

26.1.2 Download and compile Frobby

frobby website

CoCoALib requires Frobby release 0.9.0 or later.

Download and compile Frobby following the instructions from the website. Then configure and compile Co-
CoALib typing

cd CoCoALib-0.99

./configure --with-libfrobby=<your_path_to>/libfrobby.a

make

NOTE: JAA says that to compile Frobby (0.8.2) on my machine I had to execute the following:

export CFLAGS="-m64 -mtune=core2 -march=core2" # taken from gmp.h

export LDFLAGS=$CFLAGS

make

make library

26.2 Maintainer documentation

26.3 Bugs, shortcomings and other ideas

Currently Frobby is not really intended to be used as a library, so linking it with CoCoALib is not as simple as it
could be. Hopefully this will soon change.

26.4 Main changes

2011

• 29 July: added (temporarily?) Frobby suffix to all functions

• 5 July: modified AlexanderDualFrobby into AlexanderDualFrobby, PrimaryDecomposition into PrimaryDe-
compositionFrobby.

2010

• 1 October: first inclusion

57

../../examples/index.html#ex-frobby1.C
http://www.broune.com/frobby/

27 ExternalLibs-Normaliz (Anna Bigatti, Christof Soeger)

27.1 User documentation

Normaliz is a tool for computations in affine monoids, vector configurations, lattice polytopes, and rational cones.

Here we should include the manual for the normaliz flags/functions, but we wait until libnormaliz interface is
more stable. For the moment look at the examples for available functions on NormalizCones and setting flags.

27.1.1 Examples

• ex-Normaliz1.C

• ex-Normaliz2.C

27.1.2 Download and compile Normaliz

libnormaliz website

• CoCoALib (still at 29th July 2011) requires a more recent version than the official Normaliz release. The
authors will be quite happy to send you a snapshot in the meanwhile.

Download and compile Normaliz following the instructions from the website. Then configure and compile
CoCoALib typing

cd CoCoALib-0.99

./configure --with-libnormaliz=<your_path_to>/libnormaliz.a

make

27.2 Maintainer documentation

27.3 Bugs, shortcomings and other ideas

27.4 Main changes

2011

• 26 July: new libnormaliz configuration (still a private copy)

2010

• 1 October: first inclusion

28 factor (John Abbott, Anna M. Bigatti)

28.1 Examples

• ex-factor.C

28.2 User documentation

There are several functions for computing factorizations of ring elements. The factorizations produced have different
properties.

• factor(f) factorization into irreducibles

• SqFreeFactor(f) factorization into coprime squarefree factors

• ContentfreeFactor(f) polynomial factorization into (coprime) content-free factors

The irreducible factorization of a polynomial with rational coefficients produces factors with integer coefficients
(and integer content = 1) having positive leading coefficient. The remaining factor is the unique rational number
(actually a polynomial of degree 0) which makes the factorization correct.

58

../../examples/index.html#ex-Normaliz1.C
../../examples/index.html#ex-Normaliz2.C
http://www.mathematik.uni-osnabrueck.de/normaliz/
../../examples/index.html#ex-factor.C

28.3 Maintainer documentation

Still only a prototype – just uses old C4 code to do the work.

28.4 Bugs, shortcomings and other ideas

Still only a prototype – just uses old C4 code to do the work.

28.5 Main changes

2013

• aprile (v0.9953): first doc

29 factorization (John Abbott)

29.1 Examples

• ex-factor1.C

29.2 User documentation

In CoCoALib factorization is a template class for representing (partial) factorizations. Conceptually it comprises
a list of factors and their multiplicities, and an extra remaining factor (which may be, for instance, an
unfactorized part, or an invertible element).

The class itself imposes few conditions: the factors in the list cannot be invertible or zero-divisors, and their
multiplicities are all positive. The remaining factor is a non-zero-divisor. The exact characteristics of the factors
depend on the function which generated the factorization. Naturally the vectors returned by myFactors and
myMultiplicities will be of the same length.

See also: factor, SqFreeFactor, ContentFreeFactor (see section factor (Sec.28)), SmoothFactor (see section
NumTheory (Sec.57))

29.2.1 Constructor

• factorization(remfactor) specifies an initial remaining factor, the factor/multiplicity lists are empty

• factorization(facs, mults, remfactor) specifies initial values for the 3 components

29.2.2 Accessors

Let FactorInfo be of type factorization<T> . These are the accessor functions:

• FactorInfo.myFactors() all the factors as a read-only std::vector

• FactorInfo.myMultiplicities() all the multiplicities as a std::vector<long> (read-only)

• FactorInfo.myRemainingFactor() the remaining factor (read-only)

For better readability of code using factorization we recommend using const ref aliases for the lists of
factors and multiplicities; for instance

const factorization<RingElem> FactorInfo = factor(f);

const vector<RingElem>& facs = FactorInfo.myFactors();

const vector<long>& mults = FactorInfo.myMultiplicities();

...

// code using the arrays "facs" and "mults"

59

../../examples/index.html#ex-factor1.C

29.2.3 Operations

Let facs be of type factorization<T> . These are the operations available:

• facs.myAppend(fac, mult) appends a new factor with its multiplicity

• facs.myNewRemainingFactor(RemFac) sets RemFac as the remaining factor

29.3 Maintainer documentation

Being template code it’s all in the header file. It’s mostly fairly straightfoward.

The main point to note is that ourCheckNotZeroDiv and ourCheckNotUnit need to be written by hand for
each instantiation – this is enforced by the absence of a default template impl. Note that the impls for DUPFp are
defined in the file DUPFp.H.

The fn ourCheckCompatibility is needed for RingElem but not for other types (so the default impl is
empty). It simply checks that all the factors belong to the same ring (equiv. that they belong to ring of
myRemainingFactorValue).

In CoCoALib there are just 4 instantiations of this template:

• factorization<BigInt> for the fns factor and SmoothFactor in NumTheory

• factorization<RingElem> for the fns factor and SqFreeFactor and ContentFreeFactor in PolyRing

(actually TmpFactor)

• factorization<long>

• factorization<DUPFp>

29.4 Bugs, shortcomings and other ideas

It would be safer to have pairs of factor-and-multiplicity rather than two separate vectors whose length must be
the same. However it may be less convenient for the user.

Maybe add fn to get length of a factorization? (same as length of myFactors())

Maybe add fn to get ring of a factorization<RingElem>?

Maybe add fn to change the multiplicity of a factor?

Bruns questioned the necessity of the restriction that factors be non-zero-divisiors and non-units. JAA prefers
to apply these restrictions for the time being, because it will be easier to relax the restrictions later than it would
be to tighten them (might break some existing code).

Bruns/Soeger asked whether requiring all factors to be in the same ring is necessary (esp. once CoCoA allows
arithmetic between different rings). They cite the example of factors in ZZ[x] and remaining factor in QQ.

29.5 Main changes

2014

• March: fields are now private: new accessor fns; new append fn, and new fn to update rem factor

2012

• October: chose ”myMultiplicities” rather than ”myExponents” as the field name.

• April: first version of doc (v0.9950)

30 FGModule (John Abbott)

30.1 User documentation for FGModule

FGModule is a reference counting smart pointer to an object of type FGModuleBase. Its value represents a Finitely
Generated Module. Most modules in CoCoALib will probably actually be FGModules.

60

Let v be a ModuleElem belonging to an FGModule. Then we can access the various components of v using a
syntax like that for indexing into a std::vector. Thus v[n] gives the n-th component (which will be a RingElem.

30.2 Examples

• ex-module1.C

30.3 Maintainer documentation for FGModule

Um.

30.4 Bugs, Shortcomings and other ideas

Documentation does not exist.

There was a suggestion to merge module.* with FGModule.* based on the reasoning that in practice all modules
will (probably) be FGModules, so the distinction is rather pointless.

FGModule.C is jolly small – probably some code is missing.

31 FieldIdeal (John Abbott)

31.1 User documentation for files FieldIdeal*

The structure of ideals in a field is so simple that it is usually ignored completely: there are just two ideals being
the zero ideal and the whole field. Nonetheless it is helpful to have an implementation of them.

There is only one publicly callable function here

NewFieldIdeal(k, gens)

where k is a CoCoA::ring which represents a field, and gens is a std::vector<CoCoA::RingElem> being a
collection of generators (RingElem values belonging to k). It creates a CoCoA::ideal which represents the ideal of
k generated by the elements of gens; gens may be empty.

For operations on ideals, please see ideal (Sec.40).

31.2 Maintainer documentation for files FieldIdeal*

The implementation is slightly more complex than one might naively expect: the primary complication is simply
the need to retain the list of generators as specified by the user.

myTidyGensValue is either empty or it contains a single copy of RingElem(k, 1) according as the ideal is zero
or the whole field.

31.3 Bugs, Shortcomings, and other ideas

One would like to think that code so short and so simple couldn’t possibly harbour any nasty surprises. Then
again one might just be surprised...

I definitely do not like the name of the function GetPtr; perhaps import? What is the correct way to achieve
the end I want to achieve?

32 FloatApprox (John Abbott)

32.1 Examples

• ex-empty.C

61

../../examples/index.html#ex-module1.C
../../examples/index.html#ex-empty.C

32.2 User documentation

These functions determine a ”floating point” approximation to an integer or rational. The base of the representation
is either 2 or 10.

See also: ToString (Sec.98) for functions producing readable numbers.

32.2.1 Pseudo-constructors for binary representation

• MantissaAndExponent2(x,prec) determine the MantExp2 structure for x with precision prec

• FloatApprox(x,prec) apply MantissaAndExponent2 then convert the result into BigRat.

The value of prec is the number of bits in the mantissa; if unspecified, it defaults to 53.

A MantExp2 structure contains 4 public data fields:

• mySign an int having value -1 or 1

• myExponent a long

• myMantissa a BigInt (between 2^(prec-1) and 2^prec-1)

• myNumDigits a long (just the value of prec)

As an exception if x=0 then all fields are set to 0.

The structure represents the value mySign * (myMantissa/2^(myNumDigits-1)) * 2^myExponent.

32.2.2 Pseudo-constructors for decimal representation

• MantissaAndExponent10(x,prec) determine the MantExp10 structure for x with precision prec

The value of prec is the number of (decimal) digits in the mantissa; if unspecified, it defaults to 5.

A MantExp10 structure contains 3 public data fields:

• mySign an int having value -1 or 1

• myExponent a long

• myMantissa a BigInt (between 10^(prec-1) and 10^prec-1)

• myNumDigits a long (just the value of prec)

As an exception if x=0 then all fields are set to 0.

The structure represents the value mySign * (myMantissa/10^(myNumDigits-1)) * 10^myExponent.

32.3 Maintainer documentation

The implementation is simple rather than efficient. The current design ensures that 0.5ulp is rounded consistently
(currently towards zero).

The only tricky parts were deciding how to round in the case of a tie, and correct behaviour when the mantissa
”overflows”. I finally decided to delegate rounding to RoundDiv: it is easy to implement, and I wanted a solution
which was symmetric about zero, so that the two MantissaAndExponent fns applied to N and to -N would always
give the same result except for sign.

Mantissa overflow requires special handling, but it’s quite easy.

Printing of a MantExp2 or MantExp10 structure is simple rather than elegant.

62

32.4 Bugs, shortcomings and other ideas

Using mpfr would surely be better.

The fields of a MantExp2 and MantExp10 are publicly accessible; I’m undecided whether it is really better to
supply the 3 obvious accessor fns.

The conversion in MantissaAndExponent10 is rather slow when the input number is large.

In principle the call to ILogBase could fail because of overflow; but in that case ILogBase itself should report
the problem.

In principle a mantissa overflow could trigger an exponent overflow (i.e. if the exponent was already the largest
possible long).

32.5 Main changes

2014

• April (v0.99533): first release

33 FractionField (John Abbott, Anna M. Bigatti)

33.1 User documentation for FractionField

A FractionField is an abstract class (inheriting from ring (Sec.72)) representing a fraction field of an effective
GCD domain.

See RingElem FractionField (Sec.75) for operations on its elements.

33.1.1 Examples

• ex-RingQQ1.C

• ex-PolyRing1.C

• ex-RingHom5.C

33.1.2 Pseudo-constructors

• NewFractionField(R) – creates a new ring (Sec.72), more precisely a FractionField, whose elements are
formal fractions of elements of R (where R is a true GCD domain, see IsTrueGCDDomain in ring (Sec.72)).

• RingQQ() – produces the CoCoA ring (Sec.72) which represents QQ, the field of rational numbers, frac-
tion field of RingZZ (Sec.84). Calling RingQQ() several times will always produce the same unique ring in
CoCoALib.

33.1.3 Query and cast

Let S be a ring (Sec.72)

• IsFractionField(S) – true iff S is actually a FractionField

• AsFractionField(S) – if S is a FractionField view it as such

if (IsFractionField(S))

{

FractionField FrF = AsFractionField(S);

... code using FrF ...

}

Calling AsFractionField(S) when IsFractionField(S) is false will throw an exception of type CoCoAError
with code ERR::NotFracField

63

../../examples/index.html#ex-RingQ1.C
../../examples/index.html#ex-PolyRing1.C
../../examples/index.html#ex-RingHom5.C

33.1.4 Operations on FractionField

In addition to the standard ring operations (Sec.72), a FractionField may be used in other functions.

Let FrF be a FractionField built as NewFractionField(R) with R a ring (Sec.72)

• BaseRing(FrF) – the ring (Sec.72) it is the FractionField of – an identical copy of R, not merely an
isomorphic ring (Sec.72).

33.1.5 Homomorphisms

• EmbeddingHom(FrF) – BaseRing(FrF) –> FrF

• InducedHom(FrF, phi) – phi: BaseRing(K) –> codomain(phi)

33.2 Maintainer documentation for FractionField, FractionFieldBase, FractionField-
Impl

The class FractionField is wholly analogous to the class ring (Sec.72), i.e. a reference counting smart pointer.
The only difference is that FractionField knows that the myRingPtr data member actually points to an instance
of a class derived from FractionFieldBase (and so can safely apply a static cast when the pointer value is
accessed).

FractionFieldBase is an abstract class derived from RingBase. It adds a few pure virtual functions to those
contained in RingBase:

virtual const ring& myBaseRing() const;

virtual ConstRawPtr myRawNum(ConstRawPtr rawq) const; // NB result belongs to BaseRing!!

virtual ConstRawPtr myRawDen(ConstRawPtr rawq) const; // NB result belongs to BaseRing!!

virtual const RingHom& myEmbeddingHom() const;

virtual RingHom myInducedHomCtor(const RingHom& phi) const;

myBaseRing returns a reference to the ring (Sec.72) (guaranteed to be an effective GCD domain) supplied to
the constructor.

myRawNum (resp. myRawDen) produces a raw pointer to a value belonging to BaseRing (and *NOT* to the
FractionField!); these two functions *practically* *oblige* the implementation of FractionField to represent a
value as a pair of raw values ”belonging” to the BaseRing. Note that, while the value belongs to BaseRing, the
resources are owned by the FractionField!!

EmbeddingHom returns the embedding homomorphism from the BaseRing into the FractionField; it actually
returns a reference to a fixed homomorpism held internally.

InducedHom creates a new homomorpism from the FractionField to another ring (Sec.72) S given a homo-
morpism from the BaseRing to S.

FractionFieldImpl implements a general fraction field. Its elements are just pairs of RawValues belonging to
the BaseRing (see the struct FractionFieldElem). For this implementation the emphasis was clearly on simplicity
over speed (at least partly because we do not expect FractionFieldImpl to be used much). For polynomials whose
coefficients lie in a FractionField we plan to implement a specific ring (Sec.72) which uses a common denominator
representation for the whole polynomial. If you want to make this code faster, see some of the comments in the
bugs section.

Important: while fractions are guaranteed to be reduced (i.e. no common factor exists between numerator and
denominator), it is rather hard to ensure that they are canonical since in general we can multiply numerator and
denominator by any unit. See a bug comment about normalizing units.

33.3 Bugs, Shortcomings and other ideas

The functions myNew are not exception safe: memory would be leaked if space for the numerator were successfully
allocated while allocation for the denominator failed – nobody would clean up the resources consumed by the
numerator. Probably need a sort of auto ptr for holding temporary bits of a value.

Should partial homomorphisms be allowed: e.g. from QQ to ZZ/(3)? Mathematically it is a bit dodgy, but
in practice all works out fine provided you don’t divide by zero. I think it would be too useful (e.g. for chinese

64

remaindering methods) to be banned. Given phi:ZZ->ZZ[x] it might be risky to induce QQ->ZZ[x]; note that
ker(phi)=0, so this is not a sufficient criterion!

In fact one could create a FractionFieldImpl of any integral domain (it just wouldn’t be possible to cancel
factors without a GCD). I’ll wait until someone really needs it before allowing it.

It is not clear how to make the denominator positive when the GCD domain is ZZ (so the fraction field is
QQ). In general we would need the GCD domain to supply a normalizing unit : such a function could return 1
unless we have some special desire to normalize the denominator in a particular way. HERE’S A CONUNDRUM:
FractionField(Q[x]) – all rationals are units, and so we could end up with horrible representations like (22/7)/(22/7)
instead of just 1. MUST FIX THIS!!

The printing function is TERRIBLE!

FASTER + and - Addition and subtraction can be done better: let h be the GCD of the two denominators,
suppose we want to compute a/bh + c/dh (where gcd(a,bh) = gcd(c, dh) = gcd(b,d) = 1 i.e. h = gcd(B,D)
where B,D are the denoms) If h = 1 then there is no cancellation, o/w gcd(ad+bc, bdh) = gcd(ad+bc, h),
so we can use a simpler gcd computation to find the common factor.

FASTER * and / Multiplication and division can also be made a little faster by simplifying the GCD compu-
tation a bit. The two cases are essentially the same, so I shall consider just multiplication. Assuming inputs
are already reduced (i.e. there is no common factor between numerator and denominator). To compute
(a/b)*(c/d), first calculate h1 = gcd(a, d) and h2 = gcd(b, c). The result is then: num = (a/h1)*(c/h2) &
den = (b/h2)*(d/h1) and this is guaranteed to be in reduced form.

myIsRational is incomplete: it will fail to recognise rationals whose numerator and denominator have been
multiplied by non-trivial units. BAD BUG! Ironically myIsInteger does work correctly.

34 FreeModule (John Abbott)

34.1 Examples

• ex-module1.C

34.2 User documentation for the class FreeModule

For normal use there are only three functions of interest:

NewFreeModule(R, NumCompts) creates an object of type FGModule representing the free module of di-
mension NumCompts over the ring R.

FreeModule(M) where M is a module; if M is genuinely a FreeModule then that FreeModule is returned other-
wise an error is generated.

IsFreeModule(M) true iff the module M is genuinely a FreeModule.

NewFreeModule(R, NumCompts, shifts) creates an object of type FGModule representing the free module
of dimension NumCompts over the ring R. R must be a PolyRing, and shifts is a vector<degree> containing
NumCompts elements, the i-th element being the shift applied to degrees of values in the i-th component.
For example: ?????

34.3 Maintainer documentation for the classes FreeModule and FreeModuleImpl

I shall suppose that the maintainer documentation for modules and FGModules has already been read and digested.
It could also be helpful to have read ring.txt since the ”design philosophy” here imitates that used for rings.

As one would expect, FreeModule is simple a reference counting smart pointer class to a FreeModuleImpl object.

FreeModuleImpl turns out to be a little more complex than one might naively guess. The extra complexity arises
from two causes: one is compatibility with the general structure of modules, and the other is that a FreeModule
manages the memory used to represent the values of ModuleElems belonging to itself.

GradedFreeModuleImpl is derived from FreeModuleImpl and allows storing and using ordering and shifts: it
requires a SparsePolyRing as BaseRing. It provides these functions for FreeModule:

65

../../examples/index.html#ex-module1.C

FreeModule NewFreeModule(const ring& P, const ModuleTermOrdering& O);

bool IsGradedFreeModule(const module& M);

The following functions are defined only if FreeModule is implemented as GradedFreeModuleImpl

const std::vector<degree>& shifts(const FreeModule& M);

const ModuleTermOrdering& ordering(const FreeModule& M);

long LPos(const ModuleElem& v);

degree wdeg(const ModuleElem& v);

int CmpWDeg(const ModuleElem& v1, const ModuleElem& v2);

ConstRefPPMonoidElem LPP(const ModuleElem& v);

bool IsHomog(const ModuleElem& v);

34.4 Bugs, Shortcomings and other ideas

Documentation rather incomplete.

35 GBEnv (Anna Bigatti)

35.1 User documentation

This class contains some information needed for the computation of a GBasis (with Buchberger’s algorithm)

At the moment the file contains instead the class GRingInfo which was defined in TmpGPoly.H

One idea to unify the class of ideals in SparsePolyRing (Sec.92) is to make an abstract GBMill as a base for the
the operation on ideals (toric, squarefree, ideals of points,..) For standard ideals the key for the (GB)operations is
computing with Buchberger algorithm, therefore the BuchbergerMill should inherit from GBMill.

35.2 Maintainer documentation

As one class should do one thing GRingInfo and GReductor should reorganized and split into GBEnv, GBInfo, and
GBMill.

Mill: A building equipped with machinery for processing raw materials into finished products

35.2.1 GBEnv will know

the environment for the arithmetics, that is:

• the SparsePolyRing involved

• the DivMaskRule

• the PPMonoid for LPPForDiv

• the ring of coefficients (field or FrFldOfGCDDomain)

• if it represents a module computation

• the ”module/ring” embeddings (or GBHom ???)

• —> inheritance for the module case?

Notes

Embeddings/deembeddings are now in TmpGReductor: they embed polynomials and ModuleElems into GPoly

(Sec.37)s therefore cannot directly be GBEnv member functions (i.e. GBEnv would need GPoly forward declaration
or .H inclusion)

Should embeddings/deembeddings be a class on their own? or just functions in a file on their own? or where?

The main difference between ring and module computations is in considering the component in IsDivisibleFast.
How to balance efficiency and inheritance? (The other difference is in making pairs of polynomials with the same
component)

66

35.2.2 GBInfo will know

constant GBEnv and the flags related with the algorithm:

• if the input was homogeneous (for interreduction?)

• alg homog/aff/sat/hdriven...

• the kind of sugar function to use

• active criteria (Weyl/module). Now GBCriteria is in GReductor

• ...

35.2.3 GBMill/BuchbergerMill (?) will know – was GReductor

constant GBInfo and the ”frozen computation”:

• the input polynomials

• list of pairs

• list of reducers

• list for output

• reducing SPolynomial (or atomic ???)

• stats

• ...

Some general notes

Partial steps for the conversion of the current code:

1. use member function in ctor for common assignments (done)

2. transform functions with GRingInfo as argument into GRingInfo member functions (wip)

Good to know:

1. reduce.C uses only ”env” info from GRI.

2. GRingInfo has many fields, completely unused in the basic case (ie GB for polys). Some are set with a default
value which is different for some ”concrete classes” (eg modules, operation specific)

3. SPoly creates a GPoly with ”env” info, only sugar needs ”mill”; in fact the constructor for GPoly needs ”mill”
only for sugar: we can make an ”undefined” sugar to be set later on.

35.3 Bugs, shortcomings and other ideas

Everything so far is just work in progress.

35.4 Main changes

2010

• moved definition of class GRingInfo into GBEnv.H,C

67

36 geobucket (Anna Bigatti)

36.1 Examples

• ex-geobucket1.C

36.2 User documentation

Based on The Geobucket Data Structure for Polynomials by Thomas Yan (1996).

A geobucket is a polynomial represented in a C++ vector of buckets: a bucket contains a polynomial and some
other info (see below geobucket bucket (Sec.36))

This construction is particularly useful for adding many short polynomials to a long one (in particular
the reduction process) because it lowers the number of calls of cmp between PPMonoidElems.

36.2.1 Constructors

• geobucket(const SparsePolyRing&);

36.2.2 Queries

• IsZero(g) – true iff g is the zero polynomial (potentially costly because it compares the buckets)

36.2.3 Operations

Let gbk be a geobucket, f a RingElem& (see RingElem (Sec.75))

• CoeffRing(gbk) – the ring (Sec.72) of coefficients of the ring of gbk

• PPM(gbk) – the PPMonoid (Sec.61) of the ring of gbk

• LC(gbk) – the leading coeff of gbk; it is an element of CoeffRing(gbk) (potentially costly because it compares
the buckets)

• content(gbk) – the gcd of all coefficients in gbk; it is an element of CoeffRing(gbk) (it is the gcd of all
bucket contents)

• RemoveBigContent(gbk) – if gbk has a big content, gbk is divided by it

• AddClear(f, gbk) – assign the polynomial value of gbk to f, and set 0 to gbk

• MoveLM(f, gbk); – moves the LM of gbk to f (as a PushFront)

• ReductionStep(gbk, f, RedLen); – reduces gbk with f

• ReductionStepGCD(gbk, f, FScale, RedLen); – same as above, but multiplies by a scalar if needed

• operator<<(std::ostream&, gbk) – prints the buckets (mainly for debugging)

• PrintLengths(std::ostream&, gbk) – just for debugging

Member functions

• myAddClear(f, len) – mainly used for assigning to a geobucket

• myDeleteLM(void)

• myPushBackZeroBucket(MaxLen)

• myBucketIndex(len) – the index for the bucket with length len

• myAddMul(monom, g, std::gLen, SkipLMFlag) – *this += monom*g

68

../../examples/index.html#ex-geobucket1.C

• myDivByCoeff(coeff) – content MUST be divisible by coeff

• myMulByCoeff(coeff)

• myCascadeFrom(std::size t i)

• mySize(void) – the number of buckets

• mySetLM() – Sets the LM of *this in the 0-th bucket and set IhaveLM to true; *this will be normalized

36.3 Maintainer documentation

After calling gbk.mySetLM() the leading monomial of gbk is in gbk.myBuckets[0] (and then gbk is zero iff
gbk.myBuckets[0]=0)

gbk.myBuckets[i] contains at most gbk minlen * gbk factor^i summands

• myPolyRing – the SparsePolyRing gbk lives in

• IhaveLM – true if certified that LM(gbk) = LM(gbk[0])

• myBuckets – the bucket vector

36.3.1 bucket

This class is to be used only by geobuckets.

A bucket represents a polynomial as a product of a polynomial and a coefficient, two RingElem respectivey in
a SparsePolyRing (Sec.92) P and CoeffRing(P).

The coeffient factor is used for fast multiplication of a geobucket by a coefficient and it comes useful in the
reduction process over a field of fraction of a GCD ring.

We normalize the bucket (i.e. multiply the polynomial by the coefficient) only when it is necessary: e.g. to
compute a reference to the LC of the bucket.

All methods are private (to be used only by geobuckets, friend)

Methods on buckets (weak exception guarantee)

• myNormalize(void) – myPoly *=myCoeff; myCoeff 1

• myAddClear(RingElem& f, int FLen) – *this += f; f = 0; *this normalized

• myAddClear(bucket& b) – *this += b; b = 0; *this normalized

• myMul(ConstRefRingElem coeff) – *this *= coeff

• myDiv(ConstRefRingElem coeff) – *this /= coeff; assumes *this divisible by coeff

Functions on buckets

• IsZero(const bucket&) –

• content(const bucket& b) –

• poly(bucket& b) – normalize b and return a reference to the polynomial

Dirty method and function for efficiency (b1 and b2 will be normalized))

• myIsZeroAddLCs(const SparsePolyRing&, bucket& b1, bucket& b2) – b1 += LM(b2); b2 -= LM(b2);

return LC(b1)+LC(b2)==0; it assumes LPP(b1) == LPP(b2)

• MoveLM(const SparsePolyRing&, bucket& b1, bucket& b2) – b1 += LM(b2); b2 -= LM(b2); it assumes
LPP(b1)<LPP(b2)

69

Member fields

• myPoly – the polynomial (a RingElem (Sec.75) in P)

• myCoeff – the coefficient factor (a RingElem (Sec.75) in CoeffRing(P))

• myMaxLen – the maximal length allowed for the polynomial of this bucket

• myApproxLen – an upper bound for the current length of the polynomial of this bucket

36.4 changes

2013

• Added example

2004

• October: introduction of myDivMaskImplPtr for computing LPPwMask: LPP with DivMask if this pointer is
0 LPPwMask returns an error (through CoCoA ASSERT?)

37 GPoly (Anna Bigatti)

37.1 User documentation for the class GPoly

This part should be written by Massimo Caboara

37.2 Maintainer documentation for the class GPoly

Also this part should be written by Massimo Caboara, but, as I am the author and maintainer of the reduction
code, I write some notes here.

A GPoly contains some member fields which often depend solely on the field myPolyValue: myLen, myWDeg,
myLPPwMask, myComponent After a reduction we change the value of myPolyValue and the above fields can
be updated accordingly calling: myUpdateLenLPPDegComp(); NB: if myPolyValue is 0 the fields myWDeg,
myLPPwMask, myComponent are unreliable (intrinsicly undefined).

37.2.1 Old logs

GPoly.H

// Revision 1.14 2006/03/21 13:41:52 cocoa

// -- changed: removed typedef before enum CoeffEncoding::type

reduce.C

// Revision 1.20 2006/05/02 14:38:15 cocoa

// -- changed "and,or,not" to "&&,||,!" because of M$Windoze (by M.Abshoff)

//

// Revision 1.19 2006/04/27 13:35:57 cocoa

// -- reverted: using CmpLPP no faster that comparing LPP()

//

// Revision 1.18 2006/04/27 11:32:03 cocoa

// -- improved myReduceTail using CmpLPP

//

// Revision 1.17 2006/04/12 17:00:20 cocoa

70

// -- changed: myReduceTail does nothing if (LPP(*this) < LPP(g))

// ==> great speedup on 6x7-4_h

//

// Revision 1.12 2006/03/17 18:17:16 cocoa

// -- changed: use of ReductionCog for reduction (major cleanup)

//

// Revision 1.5 2004/03/04 11:38:28 cocoa

// -- updated code for Borel reductors:

// "reduce" first checks for myBorelReductors and updates them when needed

38 GlobalManager (John Abbott)

38.1 Examples

• ex-empty.C – recommended structure for a program using CoCoALib

• ex-GMPAllocator1.C

• ex-GMPAllocator2.C

38.2 User Documentation

A GlobalManager object does some very simple management of certain global values used by CoCoALib. You must
create exactly one object of type GlobalManager before using any other feature of CoCoALib. Conversely, the
GlobalManager object must be destroyed only after you have completely finished using CoCoALib values and
operations. An easy way to achieve this is to create a local variable of type GlobalManager at the start of a top
level procedure (e.g. main) – see the CoCoALib example programs listed above.

Shortcut: most likely you will want to use one of the following at the start of your top-level procedure:

GlobalManager CoCoAFoundations; // use default settings

GlobalManager CoCoAFoundations(UseNonNegResidues); // printing preference

GlobalManager CoCoAFoundations(UseGMPAllocator); // faster but NOT THREADSAFE!

Note about threadsafety the ctor for GlobalManager is not threadsafe; it is the user’s responsibility to avoid
trying to create several instances simultaneously.

38.2.1 Constructors and pseudo-constructors

The ctor for a GlobalManager has one (optional) argument. This argument is used to specify the global settings,
namely

1. the type of memory manager to use for GMP values (viz. big integers and rationals), and

2. the convention for elements of rings of the form ZZ/m, viz. least non-negative residues or least magnitude
(symmetric) residues.

The current defaults are to use the system memory mananger and symmetric residues.

Specifying the memory manager for BigInt values

CoCoALib BigInt (Sec.8) values are implemented using the GMP library which needs to have access to a
memory manager. There are three possibilities for specifying the memory manager for GMP:

• UseSystemAllocatorForGMP (default) to use the system memory manager (i.e. malloc)

• UseGMPAllocator to use the CoCoALib custom memory manager

• UseGMPAllocator(sz) to use the CoCoALib custom memory manager with a slice size of sz bytes

71

../../examples/index.html#ex-empty.C
../../examples/index.html#ex-GMPAllocator1.C
../../examples/index.html#ex-GMPAllocator2.C

WARNING if your program is multi-threaded or if you store GMP values in global variables or if your program
uses another library which depends on GMP, then it is safest to use only the system memory manager!

Nevertheless, the CoCoALib custom allocator offers slightly better performance, and may be helpful when
debugging or fine-tuning code.

Specifying the convention for modular integers

CoCoALib lets you choose between two conventions for printing elements of rings of the form ZZ/m:

• UseSymmResidues (default) symmetric residues (if m is even, the residue m/2 is printed as positive)

• UseNonNegResidues least non-negative residues (i.e. from 0 to m-1)

You may ask CoCoALib which convention has been chosen using DefaultResiduesAreSymm() see GlobalManager
operations (Sec.38) below.

Combining several global settings

To specify more than one global setting the individual specifiers should be combined using operator+, like this:

GlobalManager CoCoAFoundations(UseNonNegResidues + UseGMPAllocator);

Combining incompatible or redundant specifiers will produce a run-time error: an exception of type CoCoA::ErrorInfo
having error (Sec.25) code ERR::BadGlobalSettings.

Similarly an exception will be thrown if you attempt to create more than one live GlobalManager object. The
exception is of type CoCoA::ErrorInfo and has error (Sec.25) code ERR::GlobalManager2.

38.2.2 Operations

Once the GlobalManager has been created you can use the following functions:

• DefaultResiduesAreSymm() – returns true iff the convention is UseSymmResidues.

• GlobalRandomSource() – returns a global randomness source; see RandomSource (Sec.69) for a description
of the permitted operations on random source objects.

38.2.3 The Purpose of the GlobalManager

The concept of GlobalManager was created to handle in a clean and coherent manner (almost) all global values
used by CoCoALib; in particular it was prompted by the decision to make the ring of integers a global value (and
also the field of rationals). The tricky part was ensuring the orderly destruction of RingZZ (Sec.84) and RingQQ

(Sec.81) before main exits. Recall that C++ normally destroys globals after main has completed, and that the
order of destruction of globals cannot easily be governed; destroying values in the wrong order can cause to the
program to crash just before it terminates. Another advantage of forcing destruction before main exits is that it
makes debugging very much simpler (e.g. the MemPool (Sec.53) object inside RingZZImpl will be destroyed while
the input and output streams are still functioning, thus allowing the MemPool (Sec.53) destructor to report any
anomalies). And of course, it is simply good manners to clean up properly at the end of the program.

38.3 Maintainer Documentation

To implement the restriction that only one GlobalManager may exist at any one time, the first instruction in the
ctor checks that the global variable GlobalManager::ourGlobalDataPtr is null. If it is null, it is immediately set
to point the object being constructed. At the moment, this check is not threadsafe.

The ctor for GlobalManager is fairly delicate: e.g. the functions it calls cannot use the functions RingZZ() and
RingQQ() since they will not work before the GlobalManager is registered.

The two functions MakeUniqueCopyOfRingZZ and MakeUniqueCopyOfRingQQ are supposed to be accessible only
to the ctor of GlobalManager; they create the unique copies of those two rings which will be stored in the global

72

data. The functions are defined in RingZZ.C and RingQQ.C respectively but do not appear in the corresponding
header files (thus making them ”invisible” to other users).

The dtor for GlobalManager checks that RingZZ and RingQQ are not referred to by any other values (e.g. ring
elements which have been stored in global variables). A rude message is printed on cerr if the reference counts
are too high, and a program crash is likely once the GlobalManager has been destroyed.

38.3.1 GMPMemMgr

The GMPMemMgr class performs the necessary steps for setting the memory manager for GMP values. At the moment
there are essentially two choices: use the system memory manager, or use a MemPool (Sec.53) to handle the memory
for small values. The first parameter to the ctor for GMPMemMgr says which sort of memory manager to use. If the
system allocator is chosen, then the ctor does nothing (since the GMP default is the system manager); similarly
nothing is done when the GMPMemMgr object is destroyed. The second argument is completely ignored when the
system allocator is chosen.

The situation is more complicated if CoCoALib’s custom allocator is to be used. The second argument specifies
the slice size (in bytes) which is to be used – the implementation may automatically increase this value to the next
convenient value (see also the documentation for MemPool (Sec.53)). The slice size defines what a GMP small value
is: it is a value whose GMP internal representation fits into a single slice. The memory for small values is managed
by a (global) MemPool, while the memory for larger values is managed by the standard malloc family of functions.

Since the only place a GMPMemMgr object appears is as a data field in a GlobalManager, we have an automatic
guarantee that there will be at most one GMPMemMgr object in existence – this fact is exploited (implicitly) in the
ctor and dtor for GMPMemMgr when calling the GMP functions for setting the memory management functions.

Of the alloc/free/realloc functions which are handed to GMP, only CoCoA GMP realloc displays any com-
plication. GMP limbs can be stored either in memory supplied by the MemPool belonging to a GMPAllocator object
or in system allocated memory; a reallocation could cause the limbs to be moved from one sort of memory to the
other.

38.3.2 GlobalSettings

The GlobalSettings class serves only to allow a convenient syntax for specifying the parameters to the GlobalManager
ctor. The only mild complication is the operator+ for combining the ctor parameters, where we must check that
nonsensical or ambiguous combinations are not built.

38.4 Bugs, Shortcomings, etc

2010-09-30 The private copies of RingZZ and RingQQ are now direct members, previously they were owned via
auto ptrs. The new implementation feels cleaner, but has to include the definitions of ring and FractionField

in the header file.

You cannot print out a GlobalManager object; is this really a bug?

Ctor for GlobalManager is NOT THREADSAFE.

Should the ctor for GlobalManager set the globals which control debugging and verbosity in MemPool (Sec.53)s?

39 hilbert (Anna Bigatti)

39.1 hilbert

hey!!! write something more!

I’m just using the C code I wrote for CoCoA-4. It will be entirely rewritten in C++

The only usable function is

RingElem HilbertNumeratorMod(PolyRing HSRing, ideal I);

but it works ONLY if I is a monomial ideal. HSRing is the ring where the Hilbert Series Numerator should live.

73

40 ideal (John Abbott)

40.1 Examples

• ex-RingHom3.C

• ex-AlexanderDual.C

• ex-QuotientBasis.C

40.2 User documentation

The class ideal is for representing values which are ideals of some ring (Sec.72). There are several ways to create
an ideal:

NOTE: THIS SYNTAX WILL PROBABLY CHANGE

• ideal I(r) – I is the principal ideal generated by r (a RingElem (Sec.75)) in the ring owner(r)

• ideal I(r1, r2) – RingElem (Sec.75)s in the same ring (Sec.72)

• ideal I(r1, r2, r3) – RingElem (Sec.75)s in the same ring (Sec.72)

• ideal I(r1, r2, r3, r4) – RingElem (Sec.75)s in the same ring (Sec.72)

• ideal I(R, gens) – I is the ideal of R generated by the RingElem (Sec.75)s in the C++ vector<> gens,
(all in the same ring (Sec.72))

• ideal I(gens) – if gens=[] throws ERROR, otherwise equivalent to I(owner(gens[0]), gens)

If you want to make an ideal in R with no generators use this syntax

ideal(R, vector<RingElem>())

40.2.1 Operations

The permitted operations on ideals are: let I and J be two ideals of the same ring

• I+J – the sum of two ideals

• I += J – equivalent to I = I+J

• intersection(I, J) – intersection of two ideals

• colon(I, J) – the quotient of two ideals

We may also enquire about certain properties of an ideal:

• IsZero(I) – true iff the ideal is a zero ideal

• IsOne(I) – true iff the ideal is the whole ring

• IsMaximal(I) – true iff the ideal is maximal in its ring (i.e. iff the quotient ring is a field)

• IsPrime(I) – true iff the ideal is prime (i.e. quotient ring has no zero-divisors)

• IsContained(I, J) – true iff the ideal I is a subset of the ideal J

• IsElem(r, I) – true iff r is an element of the ideal I

• I == J – true iff the ideals are equal (their generating sets may be different)

• AmbientRing(I) – the ring in which the ideal I resides

• gens(I) – a C++ vector<> of RingElem (Sec.75)s which generate I

• TidyGens(I) – a C++ vector<> of RingElem (Sec.75)s which generate I (this generating set is in some
way ”reduced”, and will never contain a zero element)

74

../../examples/index.html#ex-RingHom3.C
../../examples/index.html#ex-AlexanderDual.C
../../examples/index.html#ex-QuotientBasis.C

Queries

It is also possible to give some information about an ideal:

I->UserAssertsIsPrime() to specify that ‘‘I‘‘ is known to be prime

I->UserAssertsIsNotPrime() to specify that ‘‘I‘‘ is known not to be prime

I->UserAssertsIsMaximal() to specify that ‘‘I‘‘ is known to be maximal

I->UserAssertsIsNotMaximal() to specify that ‘‘I‘‘ is known not to be maximal

Making an incorrect assertion using these functions may lead to a program crash, or at least to poorer run-time
performance.

40.2.2 Functions for ideals in polynomial rings

Additional functions for an ideal I in a SparsePolyRing (Sec.92) P.

• IsZeroDim(I) – true iff I is zero-dimensional

• IsHomog(I) – true iff I is homogeneous

• AreGensMonomial(I) – true iff given gens(I) are all monomial. NB 0 is NOT monomial

• AreGensSquareFreeMonomial(I) – true iff given gens(I) are all monomial and radical. NB 0 is NOT
monomial

• GBasis(I) – same as TidyGens (stored into I for future use)

• LT(I) – leading term ideal (also knows as initial ideal)

• homog(h, I) – homogenization with the indeterminate h, a RingElem (Sec.75), indeterminate in AmbientRing(I)

• QuotientBasis(I) – basis of the quotient as a K-vector space

• PrimaryDecomposition(I) – only for square free monomial ideals (for now)

Monomial ideals

Additional functions for a monomial ideal I in a SparsePolyRing (Sec.92)

• PrimaryDecompositionMonId(I) – only for square free monomial ideals (for now)

• AlexanderDual(I) – only for square free monomial ideals (for now)

Using Frobby library

• PrimaryDecompositionFrobby(I)

• AlexanderDual(I), AlexanderDual(I, pp)

• and more...

40.2.3 Writing new types of ideal

Anyone who writes a new type of ring class will have to consider writing a new type of ideal class to go with
that ring. The ideal class must be derived from the abstract class IdealBase (and to be instantiable must offer
implementations of all pure virtual functions). Be especially careful to update the data members IamPrime and
IamMaximal in the non-const member functions (add, intersection, and colon).

Some guidance may be obtained from looking at the FieldIdealImpl class which implements ideals in a field
(there are only two: ideal(0) and ideal(1)). See the file FieldIdeal.txt

75

40.3 Maintainer documentation for the classes ideal, IdealBase

The class ideal is little more than a reference counting smart pointer class pointing to an object of type derived
from IdealBase. This approach allows many different implementations of ideals to be manipulated in a convenient
and transparent manner using a common abstract interface.

The abstract class IdealBase specifies the interface which every concrete ideal class must offer. It is more
complicated than one might expect partly because we want to allow the advanced user to tell the ideal whether it
has certain important properties (which might be computationally expensive to determine automatically).

40.4 Bugs, Shortcomings and other ideas

The maintainer documentation is still quite incomplete.

Shouldn’t ideals be created by a function called NewIdeal???

I am not at all sure about the wisdom of having implemented IamPrime and IamMaximal. It seems to be terribly
easy to forget to update these values when ideal values are modified (e.g. in IdealBase::add). It has also led to
rather more complication that I would have liked. BUT I don’t see how to allow the user to state that an ideal is
maximal/prime without incurring such complication.

Functions to examine the bool3 flags could be handy for heuristic short-cuts when an ideal is already known
to have a certain property.

Is it worth having a constructor for principal ideals generated by a number rather than a RingElem? e.g.
NewIdeal(R,5) or NewIdeal(R,BigInt(5)).

Several member functions have names not in accordance with the coding conventions.

41 empty (John Abbott)

41.1 Examples

• ex-empty.C

41.2 User documentation

The functions here are for computing generators of the vanishing ideal of a set of points (i.e. all polynomials which
vanish at all of the points).

The functions expect two parameters: a polynomial ring P, and a set of points pts. The coordinates of the
points must reside in the coefficient ring of P. The points are represented as a matrix: each point corresponds to a
row.

41.2.1 Operations

The main functions available are:

• IdealOfPoints(P,pts) computes the vanishing ideal in P of the points pts.

• BM(P,pts) computes the reduced Groebner basis of the vanishing ideal in P of the points pts;

41.3 Maintainer documentation

Impl is simple/clean rather than fast.

There was a minor complication to handle the case where the dim of the space in which the points live is less
than the number of indets in the polyring.

41.4 Bugs, shortcomings and other ideas

2013-01-21 there is only a generic impl (which is simple but inefficient).

The name BM is too short?

76

../../examples/index.html#ex-empty.C

41.5 Main changes

2013

• January (v0.9953): first release

42 IntOperations (John Abbott)

42.1 Examples

• ex-BigInt1.C

• ex-BigInt2.C

• ex-BigInt3.C

42.2 User documentation

Here is a collection of basic operations available for integer values; see also the more advanced functions in
NumTheory (Sec.57).

CoCoALib functions which expect integer values will accept either machine integer values or BigInt (Sec.8)
values – they may be mixed. The return type is usually BigInt (Sec.8); the few cases where the return type is
long are clearly indicated. Remember that basic arithmetic operations between two machine integers are handled
directly by C++ (with its rules and restrictions e.g. overflow).

If you want to write new functions which accept machine integers as arguments, take a look at the class
MachineInt (Sec.47) which is designed for this purpose (handling both signed and unsigned machine integers
safely).

42.2.1 Queries

• IsEven(n) – true iff n is even

• IsOdd(n) – true iff n is odd

• IsPowerOf2(n) – true iff n is a (positive) power of 2

• IsDivisible(n,d) – true iff n is divisible by d (throws ERR::DivByZero if d is zero)

• IsSquare(n) – true iff n is a perfect square

• IsPower(n) – true iff n is a perfect k-th power for some k > 1

• IsExactIroot(X,n,r) – true iff n is a perfect r-th power, assigns iroot(N,r) to X

Only for BigInt (Sec.8)

• IsZero(N) – true iff N is zero

• IsOne(N) – true iff N is 1

• IsMinusOne(N) – true iff N is -1

42.2.2 Operations

Infix operators

1. normal arithmetic (potentially inefficient because of temporaries)

• = assignment

• + the sum

77

../../examples/index.html#ex-BigInt1.C
../../examples/index.html#ex-BigInt2.C
../../examples/index.html#ex-BigInt3.C

• - the difference

• * the product

• / integer quotient (truncated ”towards zero”)

• % remainder, satisfies a = b*(a/b)+(a%b); see also LeastNNegRemainder and SymmRemainder

NOTE: you cannot use ^ for exponentiation; you must use the function power instead. We decided this
because it is too easy to write misleading code: for instance, a*b^2 is interpreted by the compiler as (a*b)^2.
There is no way to make the C++ compiler use the expected interpretation.

1. arithmetic and assignment

• +=, -=, *=, /=, %= – definitions as expected; if RHS is a BigInt (Sec.8) LHS must be BigInt (Sec.8)

2. arithmetic ordering

• ==, !=

• < , <=, > , >= – comparison (using the normal arithmetic ordering) – see also the cmp function below.

3. increment/decrement

• ++, -- (prefix, e.g. ++a) use these if you can

• ++, -- (postfix, e.g. a++) avoid these if you can, as they create temporaries

cmp

(three way comparison)

• cmp(a, b) – returns an int which is < 0, == 0, or > 0 if a < b, a == b, or a > b respectively

• CmpAbs(a,b) – same as cmp(abs(a),abs(b)) but might be faster.

Sundry standard functions

(Several basic number theoretical operations are defined in NumTheory (Sec.57)) Let n be an integer,

• abs(n) – the absolute value of n

• sign(n) – (returns int) returns -1 if n<0, 0 if n==0, and +1 if n>0

• LeastNNegRemainder(x,m) – least non-negative remainder; throws ERR::DivByZero if m==0

• SymmRemainder(x,m) – symmetric remainder; throws ERR::DivByZero if m==0

• log(n) – natural logarithm of the absolute value of n (as a double)

• RoundDiv(n,d)– rounded division of n by d, (currently halves round away from 0)

• isqrt(n) – the (truncated) integer part of the square root of n

• ILogBase(n,b)– (returns long) the integer part of log(abs(n))/log(b); error if n=0 or b<2

These functions return BigInt (Sec.8)

• power(a, b) – returns a to the power b (error if b<0); power(0,0) gives 1

• SmallPower(a, b) – (returns long) returns a to the power b (error if b<0; no check for overflow)

• factorial(n) – factorial for non-negative n

• LogFactorial(n) – approx natural log of factorial(n) (abs.err. < 5*10ˆ(-8))

• RangeFactorial(lo,hi) – lo*(lo+1)*(lo+2)*...*hi

• binomial(n, r) – binomial coefficient

• fibonacci(n) – n-th Fibonacci number

• iroot(N,r) – the (truncated) integer part of the r-th root of N (error if r<2 or even root of negative); see
also IsExactIroot

• RandomBigInt(lo, hi) – a uniform random integer N s.t. lo <= N <= hi (see random (Sec.??) for details).

78

Conversion functions

Only for BigInt (Sec.8)

• mantissa(N) – N represented as a floating-point number. If N is zero, produces 0.0. If N>0, produces a value
between 0.5 and 0.999...; otherwise (when N<0) a value between -0.5 and -0.999... The bits of the floating
point result are the topmost bits of the binary representation of N.

• exponent(N) – result is a long whose value is the least integer e such that 2ˆe > abs(n). If N is zero, result
is zero.

Miscellany

Only for BigInt (Sec.8)

• NumDigits(N, b) – (returns long) the number of digits N has when written in base b (the result may
sometimes to be too large by 1)

Procedures for arithmetic

These procedures are ugly but may give a slight gain in speed. Use them only if you really must; it is probably
better to use GMP directly if speed is so very important.

We expect these procedures (except quorem) to become obsolete when CoCoALib upgrades to the C++11
standard.

Assignment is always to leftmost argument(s) a, a BigInt (Sec.8). Second and/or third argument of type
BigInt (Sec.8).

• add(a, b, c) – a = b+c

• sub(a, b, c) – a = b-c

• mul(a, b, c) – a = b*c

• div(a, b, c) – a = b/c (truncated integer quotient)

• mod(a, b, c) – a = b%c (remainder s.t. b = quot*c + rem)

• quorem(a, b, c, d) – same as a = c/d, b = c%d

• divexact(a, b, c) – a = b/c (fast, but division must be exact)

• power(a, b, c) – a = bˆc, where 0ˆ0 gives 1

• neg(a, b) – a = -b

• abs(a, b) – a = abs(b)

42.2.3 Error Conditions and Exceptions

Error conditions are signalled by exceptions. Examples of error conditions are impossible arithmetic operations
such as division by zero, overly large arguments (e.g. second argument to binomial must fit into a machine long),
and exhaustion of resources.

Currently the exception structure is very simplistic:

• exceptions indicating exhaustion of resources are those from the system, this library does not catch them;

• all other errors produce a CoCoA::ErrorInfo exception; for instance

79

ERR::ArgTooBig value supplied is too large for the answer to be computed
ERR::BadArg unsuitable arg(s) supplied (or input number too large)
ERR::BadNumBase the base must be between 2 and 36
ERR::BadPwrZero attempt to raise 0 to negative power
ERR::DivByZero division by zero
ERR::ExpTooBig exponent is too large
ERR::IntDivByNeg inexact integer division by a negative divisor
ERR::NegExp negative exponent
ERR::ZeroModulus the modulus specified is zero

42.3 Maintainer Documentation

The implementation of cmp is more convoluted than I’d like; it must avoid internal overflow.

The implementation of RoundDiv was more difficult than I had expected. Part of the problem was making sure
that needless overflow would never occur: this was especially relevant in the auxiliary functions uround half up

and uround half down. It would be nice if a neater implementation could be achieved – it seems strange that
the C/C++ standard libraries do not already offer such a function. The standard C functions lround almost
achieves what is needed here, but there are two significant shortcomings: rounding is always away from zero
(rather than towards +infinity), and there could be loss of accuracy if the quotient exceeds 1/epsilon. There is also
a standard function ldiv which computes quotient and remainder, but it seems to be faster to compute the two
values explicitly.

NOTE: if you change rounding of halves, you must change TWO fns (RoundDiv for machine ints and RoundDiv

for big ints).

42.4 Bugs, shortcomings and other ideas

The power functions could allow high powers of -1,0,1 (without complaining about the exponent being too big).
But is it worth it?

Only partial access to all the various division functions offered by the C interface to GMP. Many other GMP
functions are not directly accessible.

IsExactIroot has rather a lot of signatures.

42.5 Main changes

2014

• March

– clarified that 0ˆ0 gives 1

2012

• May (v0.9951):

– moved common operations on BigInt (Sec.8) and MachineInt (Sec.47) together into IntOperations -

43 io (John Abbott)

43.1 Examples

• ex-io.C

43.2 User Documentation

There are two template fns for printing out std::list and std::vector values: the printed form is delimited
with square brackets, and items are separated by commas (and a space). These use the normal C++ syntax:

cout << VectorValue << endl;

cout << ListValue << endl;

80

../../examples/index.html#ex-io.C

43.3 Maintainer Documentation

The implementations could hardly be simpler. The only ”clever” part is the fn OutputRange which actually does
the work.

43.4 Bugs, Shortcomings, and other ideas

OutputRange is publicly visible, but is not intended for public use.

43.5 Main changes

2014

• May (v0.99533): removed InputFailCheck (it was rather pointless) moved GlobalOutput etc to file server/GlobalIO.H

44 JBMill (Mario Albert)

44.1 User documentation for Janet Basis

The files JBDatastructure.H, JBSets.H and JBEnv intodruces several classes for computing and working with
Janet Basis. A normal user of the CoCoa library will use only the class JBMill (Sec.44). With this class the
user can do anything, which is related to Janet Bases. Starting with the computation of the Janet Basis for degree
compatible orderings up to computing e.g. extremal betti numbers.

44.1.1 Computing a Janet Basis

There are several ways to compute a Jane Basis: In the following let gens a C++ vector of RingElem (Sec.75)s (all
elements in gens must be in the same ring), I an ideal, crits a C++ bitset<3> , output a flag, which specifies the
Output (allowed flags are GB or JB (default is JB)) and flag a flag, which specifies the used algorithm (allowed flags
are TQDegree, TQBlockHigh, TQBlockLow (default is TQBlockLow)). crits specifies the used involutive criteria (by
default there are all three activated). gens or I contains the input set.

The following algorithms only compute a Groeber Basis (resp. Janet Basis). The output is always a C++
vector of RingElem (Sec.75)s.

• JanetBasis(gens, crits, output, strategy) – crits, output and strategy are not necessary. If they
are not specified the algorithm uses the default values.

• JanetBasis(I, crits, output, strategy) – crits, output and strategy are not necessary. If they are
not specified the algorithm uses the default values.

The following algorithms returns a JBMill

• ExtendedJanetBasis(gens, crits, output, strategy) – crits, output and strategy are not necessary.
If they are not specified the algorithm uses the default values.

• ExtendedJanetBasis(I, crits, output, strategy) – crits, output and strategy are not necessary. If
they are not specified the algorithm uses the default values.

44.1.2 Using the JBMill

Always Works

In the following let mill be a JBMill. The Janet Basis contained in mill generate the Ideal I which is a subset
of the PolyRing P.

81

JBReturnJB(mill) returns the Janet Basis of mill as C++ vector of RingElem (Sec.75)s
JBReturnGB(mill) returns the Groebner Basis of mill as C++ vector of RingElem (Sec.75)s
JBIsPommaret(mill) Returns true if the Janet Basis of I is also a Pommaret Basis, otherwise false

JBIsHomogenous(mill) Returns true if the Janet Basis of I is homogenous, otherwise false

JBIsMonomialIdeal(mill) Returns true if the Janet Basis of I is a monomial ideal, otherwise false

JBOutputMultVar(mill) Prints the Janet-multiplicative variables of the Janet Basis of I
JBOutputNonMultVar(mill) Prints the Janet-nonmultiplicative variables of the Janet Basis of I
JBMultVar(mill) Returns the Janet-multiplicative variables of the elements in the Janet-Basis as C++ map<PPMonoidElem, vector<bool>>. If an entry in vector<bool> is true the corresponding variable is multiplicative
JBNonMultVar(mill) Returns the Janet-nonmultiplicative variables of the elements in the Janet-Basis as C++ map<PPMonoidElem, vector<bool>>. If an entry in vector<bool> is true the corresponding variable is nonmultiplicative
JBStandardRepresentation(mill, f) f must be in the same ring as mill. This function computes the involutive standard representation of f modulo I. it returns a combination of a C++ pair and map: pair<map<PPMonoidElem, RingElem>, RingElem>
JBOutputStandardRepresentation(mill, f) Same as above. But only prints the result.
JBNormalForm(mill, f) f must be in the same ring as mill. This function computes the involutive normal form of f modulo I. it returns a RingElem

JBHilbertPol(mill, s) returns the Hilbert Polynomial of P/I with variable s, which must be a RingElem

JBHilbertFunc(mill, number) return the value of the Hilbert Function of P/I at the position number. number must be of type BigInt

JBHilbertFunc(mill) print the Hilbert Function of P/I
JBHilbertSeries(mill, s) returns the Hilbert Series of P/I in terms of s. s must be a RingElem (Sec.75) of a FractionField
JBSyzygy(mill) Computes the first Syzygy of I. It returns a FGModule

JBDim(mill) Computes the dimension of P/I. It returns a number of type long

JBCls(mill, f) It computes the class of LPP(f) if f is a RingElem (Sec.75). If f is a PPMonoidElem (Sec.??) it computes the class of f. It returns a number of type long. I don’t need a JBMill for that...
JBMinCls(mill, f) It computes the minimal class of the Janet Basis of I. It returns a number of type long

JBElementsWithClass(mill, n) It retuns all elements of the Janet Basis of class n as a C++ vector

The Basis must be monomial

JBComplementaryDecomposition(mill) Returns the complementary decomposition of I as C++ vector<pair<PPMonoidElem, vector<bool>>>
JBStandardPairs(mill) Returns the standard Pairs of I as C++ vector<pair<PPMonoidElem, vector<bool>>>

The Basis must be Pommaret

JBMaxStronglyIndependentSet(mill) Returns a maximal strongly independent set modulo I as a C++ vector
JBDegPommaretClass(mill, n) Returns the maximal degree of elements with class n in the Janet Basis as number of type long. If there isn’t a element in this class it returns -1

The Basis must be a Pommaret and Homogenous

JBDepth(mill) Computes the depth of I. It returns a number of type long

JBProjDim(mill) Computes the projective dimension of I. It returns a number of type long

JBIsCohenMacaulay(mill) Returns true if I is a Cohen-Macauay ring, otherwise false

JBRegularSequence(mill) Returns a maximal reqular sequence of I as a C++ vector

The Basis must be a Pommaret and Homogenous and the ordering must be degrevlex

JBRegularity(mill) Returns the regularity of I as number of type long

JBCastelnuovoMumfordRegularityI](mill) Same as above|
JBSaturation(mill) Returns the generating set of the Saturation of I as C++ vector|
JBSatiety(mill) Returns the satiety of I as natural number of type long. If the ideal is saturated it returns -1

JBExtremalBettiNumbers(mill) Returns the extremal betti numbers of the ideal I as C++ map<pair<long, long>, long>

The Basis must be a Pommaret and Homogenous and the ordering must be degrevlex and the
ideal must be CohenMacaulay

JBSocle(mill) Returns the generating set of the socle of I as C++ vector

82

44.1.3 Examples

• ex-Janet.C

• ex-Janet2.C

• ex-Janet3.C

44.2 Maintainer documentation for JBDatastructure.C, JBSets.C, JBEnv.C

We only explain the basic structure because there is very much code (˜5500 loc). The implementation is divided
in three parts:

44.2.1 JBDatastructure.C

Here we define the basic datastructures, which are necessary to compute Janet-Bases fast.

JanetTriple

These class contains three informations. First of all it contains the polynomial of our generating set. The
second part is the ancestor. Normally the ancestor is the leading monomial of the polynomial contained in the
Triple. But if the polynomial is the result of an involutive prolongation the ancestor is the leading monomial of the
origin polynomial. The last part contains a C++ vector<bool> which shows with which variables we already
prolonged.

JanetTree

The most important datastructure, but maybe also the worst one... The JanetTree is a binary tree where we
order the generating set in variable and degree direction. For further information you have to look at the literatur.
The JanetTree is implemented as a nested set of C++ vectors (I am not sure if this was a right decision, but I guess
to change this could be even worse, than living with it...) The JanetTree contains only in the leafs a reference to
the JaneTriples. The nodes contain a Handle class, which are either an internal handle class (no ‘‘JanetTriple‘‘)
or a leaf class (contain only a triple) Apart from that the nodes only contains datas about their position.

44.2.2 JBSets.C

The algorithms for computing Janet-Bases dealing mainly with to sets T and Q (and P), which contain JanetTriple.
In every iteration some elements goes from T to Q and vica versa. In the first implementation we discoverd that it is
really expensive to delete and element in T and copy it to Q. Therefore we decide to intodruce a new Set BasicSet.
In this set every JanetTriple is included. The Sets T, Q and P contain only Pointers to this BasicSet. BasicSet
is only a C++ list (because inserting and deleting of elements don’t change other iterators). T, Q, P are C++
multisets. For this multiset we defined in class JBSets a inner class CompareIterator, that we need for odering
elements in T, Q and P.

In addition this class contains some useful functions to deal and manipulating elements in T, Q and P.

44.2.3 JBEnv.C

This is the main file.

JBEnv

The class JBEnv contains the basic informations about the ring.

JBFlag

This class stores informations about the options which we use in the computation

83

../../examples/index.html#ex-Janet1.C
../../examples/index.html#ex-Janet2.C
../../examples/index.html#ex-Janet3.C

JBMill

In short: Everything else! The class contains the main algorithms for computing Janet Basis (DegreeTQ and
BlockTQ). And every function which deals with the JanetBase. Maybe this is not a wise decision because this class
gets very big. For the implemented algorithms I refer to the literature...

44.3 Bugs, Shortcomings and other ideas

TODO Index.html in examples The code requires tests! Immediately! we always assume that x1>x2>x3>
... > xn

45 leak-checker (John Abbott)

45.1 User documentation

leak checker is a standalone program included with the distribution of the CoCoA library. It can help track down
memory leaks. If you have never used leak checker before, it may be helpful to try the small example given in the
file debug new.txt.

This program scans output produced by a program run either with the debugging versions of new/delete

(see debug new (Sec.16)) or using MemPool (Sec.53)s with debugging level set high enough that each alloca-
tion/deallocation produces a verbose report (see MemPool (Sec.53)). leak checker pairs up every free message
with its corresponding alloc message, and highlights those alloc messages which do not have a corresponding
free message. In this way probable memory leaks can be tracked down.

To use leak checker with the debugging version of global new/delete, see the file debug new (Sec.16) (which
includes a small example to try). To use leak checker with MemPools, you must compile with the CPP flag
CoCoA MEMPOOL DEBUG set – this probably entails recompiling all your code; see MemPool (Sec.53) for details.
In either case, with debugging active your program will run rather more slowly than usual, and will probably produce
large amounts of output detailing every single allocation/deallocation of memory – for this reason it is best to use
smaller test cases if you can. Put the output into a file, say memchk.

Now, executing leak checker memchk will print out a summary of how many alloc/free messages were found,
and how many unpaired ones were found; beware that leak checker may take a long time if your program’s output
details many allocations and deallocations. The file memchk will be modified if unpaired alloc/free messages were
found: an exclamation mark is placed immediately after the word ALLOC (where previously there was a space),
thus a search through the file memchk for the string ALLOC! will find all unpaired allocation messages.

Each allocation message includes a sequence number (seq=...). This information can be used when debugging.
For instance, if the program leak checker marks an unpaired allocation with sequence number 500 then a debugger
can be used to interrupt the program the 500th time the allocation function is called (the relevant function is
either debug new::msg alloc or CoCoA::MemPool::alloc). Examining the running program’s stack should fairly
quickly identify precisely who requested the memory that was never returned. Obviously, to use the debugger it is
necessary to compile your program with the debugger option set: with gcc this option corresponds to the flag -g.

WARNING: debug new handles ALL new/delete requests including those arising from the initialization of static
variables within functions (and also those arising from within the system libraries). The leak checker program will
mark these as unfreed blocks because they are freed only after main has exited (and so cannot be tracked by
debug new).

45.2 Maintainer documentation

This was formerly a C program (as should be patently evident from the source code). It requires a file name as
input, and then scans that file for messages of the form

ALLOC 0x....

FREED 0x....

(such messages are produced by the global operators new/delete in debug new.C and also by the verbose version
of MemPool (with debug level >= 3)) It then attempts to match up pointer values between ALLOC and FREED
messages. Finally the file is scanned again, and any ALLOC or FREED messages which were not matched up are
modified by adding an exclamation mark (!) immediately after the word ALLOC or FREED.

84

The matching process is relatively simplistic. During an initial scan of the file all ALLOC/FREED messages
are noted in two arrays: one indicating the type of message, the other containing the pointer value. Initially the
two types are UNMATCHED ALLOC and UNMATCHED FREE, as the matching process proceeds some of these
will become MATCHED ALLOC or MATCHED FREE (accordingly); obviously the types are changed in pairs.

The matching process merely searches sequentially (from the first entry to the last) for pointer values of
type UNMATCHED FREE. For each such value it then searches back towards the first entry looking for an UN-
MATCHED ALLOC with the same pointer value. If one is found, then both types are switched to MATCHED xxx.
If none is found, the UNMATCHED FREE is left as such. The main loop then resumes the search for the next
UNMATCHED FREE to try to pair up. This approach does get slow when there are very many ALLOC/FREED
messages, but I do not see any simple way of making it faster.

45.3 Bugs, shortcomings, and other ideas

This program gets painfully slow on large files. It is also rather crude, though quite effective at its job.

46 library (Anna Bigatti)

46.1 User documentation for file library.H

library.H is generated by running make in the include/CoCoA/ directory (which is also called by the general make
in the CoCoALib directory).

It includes all the .H files of CoCoALib, so, copying the lines

#include "CoCoA/library.H"

using namespace CoCoA;

is the easiest way to use it (see the examples directory)

When you include library.H you are also guaranteed to include

#include <algorithm>// using std::transform; from apply.H

#include <bitset> // using std::bitset; from DivMask.H

#include <cstddef> // using std::size_t; from MemPool.H and BigInt.H

#include <exception>// using std::exception; from error.H

#include <gmp.h> // from BigInt.H

#include <iosfwd> // using std::ostream; from PPOrdering.H and BigInt.H

#include <iostream> // using std::istream; using std::ostream; from io.H

#include <list> // using std::list; from QBGenerator.H and io.H

#include <memory> // using std::auto_ptr; from MemPool.H

#include <string> // using std::string; from MemPool.H and symbol.H

#include <vector> // using std::vector; from DenseMatrix.H and io.H

For maintenance purposes we list the most stable files including them. This list is probably not complete, but
should be pretty reliable in the years to come.

46.2 Common includes

To ensure portability you should specify what you use and where it is defined. Moreover you should not have a
using in a .H file.

Here is a list of the most common includes, for more details look at Jossutis C++ Standard Library.

#include <algorithm>

using std::back_inserter;

using std::copy;

using std::count_if;

using std::fill;

using std::find;

using std::find_if;

85

using std::for_each;

using std::max;

using std::min;

using std::sort;

using std::stable_sort;

using std::swap;

#include <list>

using std::list;

#include <cstddef>

using std::size_t;

#include <cstdlib>

using std::abs;

using std::size_t;

#include <cstring>

using std::memcpy;

#include <functional>

using std::binary_function;

using std::bind1st;

using std::bind2nd;

using std::less;

using std::mem_fun_ref; // for calling GPair::complete on GPairList

#include <iostream>

using std::endl;

using std::flush;

using std::ostream;

#include <iterator>

#include <limits>

using std::numeric_limits;

#include <memory>

using std::auto_ptr;

#include <new>

// for placement new

#include <set>

using std::set;

#include <string>

using std::string;

#include <utility>

using std::make_pair;

#include <vector>

using std::vector;

47 MachineInt (John Abbott)

47.1 User documentation for MachineInt

The class MachineInt is intended to help you write functions which accept arguments whose type is a machine
integer (see Why? below). We recommend that you use MachineInt only to specify function argument types;
other uses may result in disappointing performance.

86

You cannot perform arithmetic directly with values of type MachineInt. The primary operations are those for
extracting a usable value from a MachineInt object:

47.1.1 Operations

Arithmetic directly with MachineInt values is not possible. The value(s) must be converted to long or unsigned

long before operating on them.

47.1.2 Queries and views

• IsNegative(N) – true iff N is negative, if false the value can be extracted as an unsigned long, if true the
value can be extracted as a signed long

• IsSignedLong(N) – true iff N can be extracted as a signed long

• AsUnsignedLong(N) – extract N as an unsigned long – see NOTE!

• AsSignedLong(N) – extract N as a signed long – see NOTE!

• IsInRange(lo,x,hi) – true iff lo <= x <= hi

47.1.3 NOTE: converting to long or unsigned long

You should not call AsUnsignedLong if the value is negative, nor should you call AsSignedLong if the value is large
and positive — currently, an error is signalled only if debugging is active. Here’s an outline of the recommended
usage:

void SomeProcedure(const MachineInt& N)

{

if (IsNegative(N))

{

long n = AsSignedLong(N);

...

}

else // N is non-negative

{

unsigned long n = AsUnsignedLong(N);

...

}

}

47.1.4 Why?

The class MachineInt was created in an attempt to circumvent C++’s innate automatic conversions between the
various integral types; most particularly the silent conversion of negative signed values into unsigned ones.

Various C++ programming style guides recommend avoiding unsigned integer types. Unfortunately values of
such types appear frequently as the result of various counting functions in the STL. So it is somewhat impractical
to avoid unsigned values completely.

The class MachineInt employs automatic user-defined conversions to force all integral values into the largest
integral type, viz. long or unsigned long. An extra ”sign bit” inside a MachineInt indicates whether the value
is negative (i.e. must be regarded as a signed long).

Passing an argument as a MachineInt is surely not as fast as using a built in integral type, but should avoid
”nasty surprises” which can arise with C+’s automatic conversions (e.g. a large unsigned long could be viewed
as a negative long).

47.2 Maintainer documentation for MachineInt

On the whole everything is very simple; the hard part was establishing a reasonable design that interoperates with
C++’s overload resolution rules.

An object of type MachineInt contains two data fields:

87

• myValue – the original integer value converted to unsigned long

• IamNegative – true iff the original value was (signed and) negative

The flag IamNegative allows the field myValue to be interpreted correctly: if IamNegative is true then the
correct value of myValue may be obtained by casting it to a (signed) long; conversely, if IamNegative is false

then the value of myValue is correct as it stands (i.e. as an unsigned long).

Most functions are so simple that an inline implementation is appropriate.

The implementation of the function abs will work correctly even if the value being represented is the most
negative signed long. Note that the C++ standard allows the system to produce an error when negating a long

whose value is the most negative representable value; in contrast, operations on unsigned long values will never
produce errors (except division by zero).

The impl of IsInRange is a bit involved; it must avoid overflow, and may not assume anything about the
internal representations of signed and unsigned long values.

47.3 Bugs, Shortcomings and other ideas

My biggest doubt is whether this is really the right way to tackle the problem of silent automatic conversion
between long and unsigned long. Anyway, I’m using it (until a better solution comes along).

47.4 Main changes

2011

• November (v0.9949): this class was previously called MachineInteger

48 matrix (John Abbott)

48.1 User documentation for the classes matrix, MatrixView and ConstMatrixView

CoCoALib offers two distinct concepts for dealing with matrices: one is an explicit implementation of a matrix,
the other is a way to ”view” an existing object as though it were a matrix (possibly of a special form). An example
of a MatrixView is seeing a std::vector<RingElem> as a row matrix (see MatrixView (Sec.52)).

There are two categories of matrix view, namely ConstMatrixView and MatrixView. The only difference
between them is that the former does not allow you to change the entries while the latter allows you to change
them (or at least some of them).

In contrast, a true matrix offers further operations for changing rows, columns and the dimensions – see the
maintainer documentation if you’re curious about why these operations are not allowed on a MatrixView.

Here are some guidelines for writing a function or procedure which takes matrices as arguments. If the func-
tion/procedure does not change the structure of the matrix, then use ConstMatrixView or MatrixView. If the
structure of the matrix parameter may be modified then you must use matrix& as the parameter type.

48.1.1 Examples

• ex-matrix1.C

• ex-matrix2.C

48.1.2 Constructors and Pseudo-constructors

The following create a matrix:

• NewDenseMat(R, r, c) – (see DenseMatrix (Sec.18))

• NewSparseMat(R, r, c) – NOT YET IMPLEMENTED!!

The following create matrix views: for instance, changing an entry in RowMat(v) will also change the vector v,
see MatrixView PseudoConstructors (Sec.52) for more details.

88

../../examples/index.html#ex-matrix1.C
../../examples/index.html#ex-matrix2.C

• ZeroMat(R, r, c)

• IdentityMat(R, n)

• transpose(M)

• submat(M, rows, cols)

• ColMat(v)

• RowMat(v)

• DiagMat(v)

• BlockMat(A, B, C, D)

• ConcatVer(A, B)

• ConcatHor(A, B)

• ConcatDiag(A, B)

• ConcatAntiDiag(A, B)

The following create a matrix and come from MatrixSpecial (Sec.51). See there for more details.

• jacobian(f, indets)

• TensorMat(M1, M2)

48.1.3 Operations on ConstMatrixView, MatrixView, matrix

• BaseRing(M) – the ring to which the matrix entries belong

• NumRows(M) – the number of rows in M (may be zero)

• NumCols(M) – the number of columns in M (may be zero)

• out << M – print the value of the matrix on ostream out (with a dense representation)

• M1 == M2 – true iff M1(i,j) == M2(i,j) for all i,j

• IsSymmetric(M) – true iff M(i,j) == M(j,i) for all i,j

• IsAntiSymmetric(M) – true iff M(i,j) == -M(j,i) for all i,j

• IsDiagonal(M) – true iff M(i,j) == 0 for all i!=j

• IsMat0x0(M) – true iff NumRows(M) == 0 && NumCols(M)==0

NB indices start from 0

• M(i,j) – the (i,j) entry of M

• IsZeroRow(M,i) – true iff row i of M is zero

• IsZeroCol(M,j) – true iff column j of M is zero

The following come from MatrixArith (Sec.??), see there for more details.

• * + - /

• det(M)

• rank(M)

• inverse(M)

• adjoint(M)

• void mul(matrix& lhs, M1, M2)

• LinSolve(M,rhs)

• LinKer(M)

89

48.1.4 Operations on MatrixView, matrix

• M->myIsWritable(i,j) – true iff posn (i,j) can be written to

• SetEntry(M,i,j,val) – set entry (i,j) of matrix M to val (integer, rational, RingElem). Throws ERR::ConstMatEntry
if the entry is not writable

• AssignZero(M) – set all entries of M to zero

• MV->myRawEntry(i,j) – raw pointer to (i,j) entry (may be called only if the (i,j) posn is writable)

• MV->myAssignZero() – sets all entries to zero. Throws ERR::ConstMatEntry if not all entries can be made
zero

NOTE: You cannot set a matrix entry the obvious way, i.e. M(i,j) = value; You must use SetEntry(M,i,j,value).
Calling SetEntry on a position which is not writable will throw CoCoA::ERR::BadMatrixSetEntry

48.1.5 Operations on matrix

With sanity checks

• SwapRows(M,i1,i2) – swap rows i1 and i2

• SwapCols(M,j1,j2) – swap columns j1 and j2

• DeleteRow(M,i) – delete row i and moves up the following rows

• DeleteCol(M,j) – delete column j and moves up the following cols

Without sanity checks

• M->myResize(r,c) – change size of M to r-by-c (new entries are zero)

• M->myRowMul(i,r) – multiply row i by r

• M->myColMul(j,r) – multiply column j by r

• M->myAddRowMul(i1,i2,r) – add r times row i2 to row i1

• M->myAddColMul(j1,j2,r) – add r times column j2 to column j1

• M->mySwapRows(i1,i2) – swap rows i1 and i2

• M->mySwapCols(j1,j2) – swap columns j1 and j2

NOTE: these are not permitted on MatrixView (Sec.52) because of various problems which could arise e.g.
with aliasing in block matrices (see maintainer documentation). myResize simply truncates rows/columns if they
are too long, and any new entries are filled with zeroes. So, if you resize to a smaller matrix, you get just the ”top
left hand” part of the original.

At the moment assignment of matrices is not allowed. The only way to make a copy of a matrix (view) is by
calling a genuine constructor (so far only NewDenseMat comes into this category).

48.1.6 Utility functions

• IsRectangular(VV) – says whether a vector of vector is rectangular

90

48.2 Library contributor documentation

The classes ConstMatrixView , MatrixView and matrix are just reference counting smart-pointers to objects of
type derived from the abstract base classes ConstMatrixViewBase, MatrixViewBase and MatrixBase respectively;
this is analogous to the way ring (Sec.72)s are implemented. Consequently every concrete matrix class or matrix
view class must be derived from these abstract classes. At the moment, it is better to derive from MatrixViewBase

rather than ConstMatrixViewBase because of the way BlockMat is implemented.

The base class ConstMatrixViewBase declares the following pure virtual member fns:

• myBaseRing() – returns the ring to which the matrix entries belong

• myNumRows() – returns the number of rows in the matrix

• myNumCols() – returns the number of columns in the matrix

• myEntry(i,j) – returns ConstRefRingElem aliasing the value of entry (i,j)

• IamEqual(M) – true iff *this==M

• IamSymmetric() – true iff entry (i,j) == entry (j,i)

• IamAntiSymmetric() – true iff entry (i,j) == -entry (j,i)

• IamDiagonal() – true iff entry (i,j) == 0 for i!=j

• myMulByRow(v,w) – v = w.M, vector-by-matrix product

• myMulByCol(v,w) – v = M.w, matrix-by-vector product

• myIsZeroRow(i) – true iff row i is zero

• myIsZeroCol(j) – true iff column j is zero

• myDet(d) – computes determinant into d

• myRank() – computes rank (matrix must be over an integral domain)

• myOutput(out) – print out the matrix on ostream out

• myCheckRowIndex(i) – throws an exception ERR::BadRowIndex if i is too large

• myCheckColIndex(j) – throws an exception ERR::BadColIndex if j is too large

These are the additional virtual functions present in MatrixViewBase:

• myIsWritable(i,j) – true iff entry (i,j) can be modified; i & j are unchecked

• mySetEntry(i,j,value) – set entry (i,j)‘ to ‘‘value (integer, rational, RingElem)

• myAssignZero() – set all entries to zero

These are the additional virtual functions present in MatrixBase:

• myRowMul(i,r) – multiply row i by r

• myColMul(j,r) – multiply column j by r

• myAddRowMul(i1,i2,r) –add r times row i2 to row i1

• myAddColMul(j1,j2,r) –add r times column j2 to column j1

• mySwapRows(i1,i2) – swap rows i1 and i2

• mySwapCols(j1,j2) – swap columns j1 and j2

Default definitions:

• IamEqual, IamSymmetric, IamAntiSymmetric, IamDiagonal, myMulByRow, myMulByCol, myIsZeroRow,
myIsZeroCol, myOutput all have default dense definitions

• myDet and myRank have default definitions which use gaussian elimination

91

48.3 Maintainer documentation for the matrix classes

I shall assume that you have already read the User Documentation and Library Contributor Documentation.

The implementation underwent a big structural change in April 2008. I believe most of the design is sensible
now, but further important changes could still occur. The implementation of the three matrix classes is wholly
analogous to that of ring: they are simply reference counting smart-pointer classes (which may have derived classes).
If assignment of matrices becomes permitted then some extra complication will be needed – e.g. MakeUnique, and
the pointed object must be able to clone itself.

The only delicate part of the implementation is in myMulByRow and myMulByCol where a buffer is used for the
answer so that the fns can be exception clean and not suffer from aliasing problems between the args.

Recall that by convention member functions of the base class do not perform sanity checks on their arguments;
though it is wise to include such checks inside CoCoA ASSERT calls to help during debugging. The sanity check
should be conducted in the functions which present a nice user interface.

Q: Why did I create both MatrixView and ConstMatrixView?

A: Because the usual C++ const mechanism doesn’t work the way I want it to. Consider a function which
takes an argument of type const MatrixView&. One would not expect that function to be able to modify the
entries of the matrix view supplied as argument. However, you can create a new non const MatrixView using
the default copy ctor, and since MatrixView is a smart pointer the copy refers to the same underlying object.
Currently, a MatrixView object does not perform copy on write if the reference count of the underlying object is
greater than 1 – it is not at all clear what copy on write would mean for a matrix view (Should the underlying
object be duplicated??? I don’t like that idea!).

Q: Why are row, column and resizing operations which are allowed on matrix objects not allowed on MatrixView

objects?

A: I disallowed them because there are cases where it is unclear what should happen. For example, suppose
M is a true matrix, and someone creates the view MtM defined to be ConcatHor(M, transpose(M)) then there
is non-trivial aliasing between the entries of MtM. What should happen if you try to multiply the second row of
MtM by 2? What should happen if you try to add a new column to MtM? In general, resizing MtM would be
problematic. Here’s another case: it is not clear how a resize operation should work on a matrix view based on a
vector<RingElem> ; would the underlying vector be resized too?

I chose to offer member fns for checking indices so that error messages could be uniform in appearance. I chose
to have two index checking member fns myCheckRowIndex and myCheckColIndex rather than a single unified fn,
as a single fn would have to have the ugly possibility of throwing either of two different exceptions.

I declared (and defined) explicitly the default ctor and dtor of the three base classes, to prohibit/discourage
improper use of pointers to these classes.

The default dense definition of MatrixBase::myOutput seems a reasonable starting point – but see the bugs
section below!

48.4 Bugs, Shortcomings and other ideas

The use of std::vector<RingElem> should be replaced by ModuleElem which automatically guarantees that all
its components are in the same ring.

Should the default dense definitions of the output functions be removed? They could be quite inappropriate
for a large sparse matrix.

Should the OpenMath output function send the ring with every value sent (given that the ring is also specified
in the header)?

Should the index checking fns myCheckRowIndex and myCheckColIndex really throw? Perhaps there should be
an alternative which merely returns a boolean value? When would the boolean version be genuinely beneficial?

Why can you not simply write M(i,j) = NewValue;? It is non-trivial because if M is a sparse matrix then use
of M(i,j) in that context will require a structural modification to M if NewValue is non-zero and currently M has no
[i,j] element. This natural syntax could be made possible by using a proxy class for M(i,j); in a RHS context it
simply produces a ConstRefRingElem for the value of the entry; in a LHS context the appropriate action depends
on the implementation of the matrix.

I’m quite unsure about the signatures of several functions. I am not happy about requiring the user to use mem-
ber functions for self-modifying operations (e.g. swap rows, etc) since elsewhere member functions by convention
do not check the validity of their arguments.

Virtual member fn myIsWritable is not really intended for public use, but an arcane C++ rule prevents me

92

from declaring it to be protected. Apparently a protected name in the base class is accessible only through a
ptr/ref to the derived class (and not through one to the base class) – no idea why!

Should assignment of matrices be allowed? Ref counting should make this relatively cheap, but must beware
of the consequences for iterators (e.g. if it is possible to have a reference to a row/column of a matrix).

Would it be useful/helpful/interesting to have row-iterators and col-iterators for matrices?

48.5 Main changes

2012

• April: added SwapRows, SwapCols

• March: changed printing style

2011

• February: IsSymmetric, IsAntiSymmetric, IsDiagonal, operator== default and some optimized implementa-
tions.

• February (v0.9942): first release of MatrixSpecial (Sec.51) files

49 MatrixForOrdering (Anna Bigatti)

49.1 User Documentation

This is very preliminary documentation. These functions are about matrices which define term orderings. They
expect and return matrices over RingZZ (Sec.84).

49.1.1 Examples

• ex-OrderingGrading1.C

49.1.2 PseudoConstructors

• NewPositiveMat(M) – returns a matrix with non-negative entries which defines an equivalent term-ordering
(but grading may be different!)

• NewMatMinimize(M) – the (ordering) matrix obtained by removing linearly dependent rows

• NewDenseMatRevLex(n) – produce the n-by-n dense matrix over RingZZ (Sec.84) corresponding to the revlex
ordering on n indets

• NewMatCompleteOrd(ConstMatrixView M) – complete M to an ordering matrix; if M is suitable the resulting
matrix defines a term-ordering.

• NewMatCompleteOrd(ConstMatrixView M, ConstMatrixView NewRows) – concatenate M and NewRows,
and remove redundant rows.

• NewMatElim(NumIndets, IndetsToElim) – returns the dense matrix for the elimination ordering of the given
indets

• NewMatElim(GradingM, IndetsToElim, IsHomog) – ???

• NewHomogElimMat(GradingM, IndetsToElim) – ???

49.1.3 Queries

• IsTermOrdering(M) – true iff matrix M defines a term ordering

• IsPositiveGrading(M) – true iff M defines a positive grading (i.e. no null columns and first non-zero entry
in each column is positive)

• IsPositiveGrading(M, GradingDim) – true iff the first GradingDim rows of M define a positive grading

93

../../examples/index.html#ex-OrderingGrading1.C

49.2 Maintainer Documentation

49.3 Bugs, Shortcomings, and other ideas

Doc is woefully incomplete.

Definitely don’t like the name NewMatMinimize!

Fixed 2009-09-22: Naming convention not respected (”Matrix” should be ”Mat”)

50 MatrixOperations (John Abbott)

50.1 User documentation for MatrixOperations

MatrixOperations gathers together a number of operations on matrices; in most cases these operations are happy
to accept a MatrixView (see MatrixView (Sec.52)) as argument.

When not specified, a matrix argument is of type ConstMatrixView.

There are two ways of multiplying two matrices together. The infix operators return a DenseMatrix (Sec.18);
the procedural version may be slightly faster than the infix operator.

• mul(matrix& lhs, M1, M2) – a procedure equivalent to lhs = M1*M2;, note that lhs might be a SparseMatrix
(not yet implemented)

• operator*(M1, M2) – the product M1*M2

• operator+(M1, M2) – the sum M1+M2

• operator-(M1, M2) – the difference M1-M2

• power(M, n) compute n-th power of M; if n is negative then M must be invertible

• operator*(n, M1) – scalar multiple of M1 by n (integer or RingElem)

• operator*(M1, n) – scalar multiple of M1 by n (integer or RingElem)

• operator/(M1, n) – scalar multiple of M1 by 1/n (where n is integer or RingElem)

• operator-(M1) – scalar multiple of M1 by -1

Here are some matrix norms. The result is an element of the ring containing the matrix elements. Note that
FrobeniusNorm2 gives the square of the Frobenius norm (so that the value surely lies in the same ring).

• FrobeniusNorm2(M) – the square of the Frobenius norm

• OperatorNormInfinity(M) – the infinity norm, ring must be ordered

• OperatorNorm1(M) – the one norm, ring must be ordered

Here are some fairly standard functions on matrices.

• det(M) – determinant of M (M must be square)

• rank(M) – rank of M (the base ring must be an integral domain)

• inverse(M) – inverse of M as a DenseMatrix (Sec.18)

• adjoint(M) – adjoint of M as a DenseMatrix (Sec.18)

• PseudoInverse(M) – PseudoInverse of M as a DenseMatrix (Sec.18). I suspect that it requires that the
matrix be of full rank.

• LinSolve(M,rhs) – solve for x the linear system M*x = rhs; result is a DenseMatrix (Sec.18); if no soln
exists, result is the 0-by-0 matrix

• LinKer(M) – solve for x the linear system M*x = 0; returns a DenseMatrix (Sec.18) whose columns are a
base for ker(M)

94

Here are some standard operations where the method used is specified explicitly. It would usually be better to
use the generic operations above, as those should automatically select the most appropriate method for the given
matrix.

• void det2x2(RingElem& d, M) – for 2x2 matrices

• void det3x3(RingElem& d, M) – for 3x3 matrices

• void DetByGauss(RingElem& d, M)

• RankByGauss(std::vector<long>& IndepRows, M)

• InverseByGauss(M) – some restrictions (needs gcd)

• AdjointByDetOfMinors(M)

• AdjointByInverse(M) – base ring must be integral domain

• LinSolveByGauss(M,rhs) – solve a linear system using gaussian elimination (base ring must be a field),
result is a DenseMatrix (Sec.18)

• LinSolveByHNF(M,rhs) – solve a linear system using Hermite NormalForm (base ring must be a PID), result
is a DenseMatrix (Sec.18)

• LinSolveByModuleRepr(M,rhs) – solve a linear system using module element representation, result is a
DenseMatrix (Sec.18)

• void GrammSchmidtRows(MatrixView& M) – NYI

• void GrammSchmidtRows(MatrixView& M, long row) – NYI

50.2 Maintainer documentation for MatrixOperations

Most impls are quite straightforward.

power is slightly clever with its iterative impl of binary powering.

LinSolveByGauss is a little complicated because it tries to handle all cases (e.g. full rank or not, square or
more rows than cols or more cols than rows)

50.3 Bugs, Shortcomings and other ideas

Can we make a common ”gaussian elimination” impl which is caled by the various algorithms needing it, rather
than having several separate implementations?

Is the procedure mul really any faster than the infix operator?

50.4 Main changes

2012

• June: Added negation, multiplication and division of a matrix by a scalar.

• April: Added LinSolve family (incl. LinSolveByGauss, LinSolveByHNF, LinSolveByModuleRepr)

2011

• May: Added power fn for matrices: cannot yet handle negative powers.

• March: added multiplication by RingElem

95

51 MatrixSpecial (Anna Bigatti)

51.1 User documentation for MatrixSpecial

51.1.1 Examples

51.1.2 Special Matrices

Jacobian Matrix

The (i,j)-th element of the Jacobian matrix is defined as the derivative of i-th function with respect to the j-th
indeterminate.

• jacobian(f, indets) – where f (polynomials) and indets (indeterminates) are vectors of RingElem (Sec.75),
all belonging to the same PolyRing (Sec.60). Throws if both f and indets are empty (cannot determine the
ring (Sec.72) for constructing the 0x0 matrix (Sec.48)).

Tensor Product of matrices

a 11 B a 12 B ... a 1c B
a 21 B a 22 B ... a 2c B

...
a r1 B a r2 B ... a rc B

• TensorMat(A, B) – where A and B are matrices with the same BaseRing.

51.2 Maintainer documentation

51.3 Bugs, shortcomings and other ideas

51.4 Main changes

2011

• February (v0.9942): first release (jacobian)

• March (v0.9943): added TensorMat

52 MatrixView (John Abbott)

52.1 User documentation for MatrixView

A MatrixView offers a means to view one or more existing objects as though they were a matrix (Sec.48):

• if you change the entries in the objects then the MatrixView changes;

• if you change the entries in the MatrixView then the objects change;

• if you destroy or change the structure of the objects then the MatrixView may become invalid (and using it
could lead to the dreaded undefined behaviour, i.e. probably a crash).

52.1.1 Examples

• ex-matrix1.C

• ex-matrix2.C

NB Matrix views do not make copies, so be careful with temporaries! Look at these examples (val is a
RingElem (Sec.75)):

96

../../examples/index.html#ex-matrix1.C
../../examples/index.html#ex-matrix2.C

// OK

const vector<RingElem> v(3, val);

MatrixView MV = RowMat(v); // MV reads/writes in the vector v

// NO this compiles, but the vector disappears after the ";"!!

ConstMatrixView MVGhost = RowMat(vector<RingElem>(3, val));

// OK NewDenseMat makes a copy of the vector before it disappears

matrix M = NewDenseMat(RowMat(vector<RingElem>(3, val)));

52.1.2 Pseudo-constructors

Constant Matrix Views

NB no entry is writable

• ZeroMat(R, r, c) – constant r-by-c zero matrix over R

• IdentityMat(R, n) – constant n-by-n identity matrix over R

Matrix Views of a Vector

You can view a std::vector<RingElem> , all of whose entries belong to the same ring (Sec.72), as a matrix
in three ways:

• ColMat(v) – view a vector<RingElem> v as a column matrix

• RowMat(v) – view a vector<RingElem> v as a row matrix

• DiagMat(v) – view a vector<RingElem> v as a diagonal matrix (NB: only the diagonal entries are writable)

Matrix Views of a Matrix

• transpose(M) – transposed view of the matrix M

• submat(M, rows, cols)– submatrix view into M; the rows and columns visible in the submatrix are those
specified in the arguments rows and cols (which are of type std::vector)

Matrix Views of Several Matrices

The following pseudo-constructors assemble several matrices into a bigger one; the argument matrices must all
have the same BaseRing. Be careful about passing temporaries to these functions: they only make references
to the submatrices A, B etc

• ConcatVer(A, B) – matrix view with the rows of A above those of B

A
B

• ConcatHor(A, B) – matrix view with the cols of A before those of B

A B

• ConcatDiag(A,B) – block diagonal matrix view

A 0
0 B

97

• ConcatAntiDiag(A,B) – block antidiagonal matrix view

0 A
B 0

• BlockMat(A, B, C, D) – block matrix view

A B
C D

NB the boundaries of the four submatrices must be aligned.

52.1.3 Operations on ConstMatrixView, MatrixView

See matrix operations (Sec.48)

52.2 Maintainer documentation for MatrixView

Most of the implementations are quite straightforward; the tricky part was getting the design of the abstract classes
right (well, I hope it is right now). Below are a few comments on some less obvious aspects of the implementations.

Note: it is a mathematical fact that the determinant of the 0x0 matrix is 1.

ZeroMatImpl and IdentityMatImpl are both derived from MatrixViewBase rather than ConstMatrixViewBase

as one might naturally expect. The main reason for this is to simplify the implementation of BlockMat. I wanted
to be lazy and implement ConcatDiag and ConcatAntidiag using BlockMat; while this may not be the best
implementation, it is a natural approach and should certainly work as one might reasonably expect. However, the
pseudo-ctor BlockMat has just two signatures: if any one of the submatrices is const then whole result becomes
const. I didn’t want to implement sixteen different signatures for BlockMat, and the easy way out seemed to be
to make ZeroMatImpl and IdentityMatImpl non-const. As a consequence there are a number of useless member
functions in ZeroMatImpl and IdentityMatImpl. I believe this compromise is reasonable. It seemed reasonable to
allow ZeroMatImpl::myAssignZero to succeed.

There is a small problem with creating a matrix from an empty std::vector because there is no indication of
what the base ring should be. I have chosen to throw an error if one tries to create a matrix view from an empty
vector (in RowMat, ColMat and DiagMat).

The routines which access the (i,j) entry in a BlockMat are messy. I could not see an elegant way to make
them simpler (or to avoid repeating similar structure in several places in the code). See Bugs about implementing
BlockMat in terms of ConcatVer and ConcatHor.

52.3 Bugs, Shortcomings and other ideas

There is an appalling amount of code duplication in the implementations. I do not yet see a good way of reducing
this. I hope someone will sooner or later find an elegant way to avoid the duplication. Maybe a diagonal abstract
class for ZeroMatImpl, IdentityMatImpl, DiagMatImpl, ConstDiagMatImpl?

It is a great nuisance to have to implement two very similar classes: one for the const case, and the other for
the non-const case. Is there a better way?

Add ColMat, RowMat and DiagMat for a free module element?

Should submatrix allow repeated row/col indices? It could lead to some some funny behaviour (e.g. setting
one entry may change other entries), so perhaps it would be better to forbid it? Currently, it is forbidden.

The pseudo-ctor for submatrix ought to accept begin/end iterators instead of insisting that the caller put the
indices in std::vectors.

Should there be a more general version of BlockMat which allows non-aligned borders? BlockMat could be
eliminated and replaced by suitable calls to ConcatVer and ConcatHor.

Tensor product of two matrices: we implement it as a DenseMatrix instead of MatrixView because the latter
would give no practical advantage and hide the cost of accessing the entries.

52.4 Main changes

2014

98

• April (v0.99533)

– removed FilledMat

2011

• February (v0.9943):

– optimized implementations for IsSymmetric, IsAntiSymmetric, IsDiagonal, operator==

– added FilledMat -

53 MemPool (John Abbott)

53.1 User Documentation for MemPool

53.1.1 General description

A MemPool provides a simple and fast memory management scheme for memory blocks of fixed size. It is
particularly well-suited to cases where there are many interleaved allocations and deallocations. You probably do
not need to know about MemPool unless you plan to write some low-level code.

MemPools work by acquiring large loaves of memory from the system, and dividing these loaves into slices of
the chosen size. A simple free-list of available slices is maintained. New loaves are acquired whenever there are no
slices available to meet a request. Note that the space occupied by the loaves is returned to the system only when
the MemPool object is destroyed. Also note that a MemPool simply forwards to ::operator new any request for a
block of memory of size different from that specified at the creation of the MemPool object; wrong size deallocations
are similarly forwarded to ::operator delete.

53.1.2 Basic Use

The constructor for a MemPool requires that the size (in bytes) of the blocks it is to manage be specified (as the
first argument). We recommend that the MemPool be given a name (second argument as a string); the name is
useful only for debugging. The third argument may occasionally be useful for more advanced use.

MemPool workspace(16); // 16 byte slices used as temporary workspaces

MemPool MemMgr(sizeof(widget), "memmgr for widgets");

Once the MemPool has been created, a new block of memory is obtained via a call to the member function alloc,
and a block of memory is freed via a call to the member function free (only to be applied to blocks previously
allocated by the same MemPool). In fact, alloc and free have two variants:

MemPool::alloc() allocates a block of the default size for the ‘‘MemPool‘‘

MemPool::alloc(sz) allocates a block of ‘‘sz‘‘ bytes; if ‘‘sz‘‘ is not the

default size for the ‘‘MemPool‘‘ the request is passed on to ‘‘::operator new‘‘

MemPool::free(ptr) frees a default sized block with address ‘‘ptr‘‘

MemPool::free(ptr, sz) frees a block of ‘‘sz‘‘ bytes with address ptr, if

‘‘sz‘‘ is not the default size for the ‘‘MemPool‘‘ the request is passed on to

‘‘::operator delete‘‘

The variants taking an explicit block size permit MemPools to be used by a class specific operator new/delete pair
(see example program below). In particular, it is not an error to ask a MemPool for a block of memory whose
size differs from the size declared when the MemPool was constructed; indeed, this is a necessary capability if
the MemPool is to be used inside operator new/delete. Attempting to alloc too much memory will result in a
std::bad alloc exception being thrown.

If you encounter bugs which may be due to incorrect memory management then MemPool has some facilities to
help you detect various common bugs, and isolate their true causes. How to do this is described in the following
section Debugging with MemPools.

99

It is possible to get some crude logging information from a MemPool. The global variable MemPoolFast::ourInitialVerbosityLevel
indicates the verbosity level for newly created MemPools; the verbosity level of individual MemPool objects may be
set explicitly by calling the member function SetVerbosityLevel. The various verbosty levels are described below
in the section entitled The Verbosity Levels.

Technical note: MemPool is just a typedef for the true class name MemPoolFast (or MemPoolDebug if you enable
debugging).

53.1.3 Debugging with MemPools

The preprocessor variable CoCoA MEMPOOL DEBUG can be set at compile-time to perform run-time checks and obtain
debugging information and statistics. Note that recompilation of all source files depending on MemPool will be
necessary. When the preprocessor variable is set the typedef MemPool refers to the class MemPoolDebug – throughout
this section we shall speak simply of MemPool.

Each MemPool object maintains a record of its own level of verbosity and debug checks. Upon creation of a new
MemPool object these levels are set automatically to the values of these two global variables:

MemPoolDebug::ourInitialDebugLevel

MemPoolDebug::ourInitialVerbosityLevel

The values of these globals should be set before creating any MemPools, i.e. before creating the GlobalManager

(which creates the MemPools for the ring of integers and the rationals).

The ostream on which logging data is printed defaults to std::clog but may be changed to another ostream
via a call like MemPoolSetLogStream(LogFile); the logging stream is global, i.e. the same for all MemPools.

Similarly the ostream on which error logs are printed defaults to std::cerr but may be changed to another
ostream via a call like MemPoolSetErrStream(ErrFile); the error stream is global, i.e. the same for all MemPools.

After construction of a MemPool object its levels can be adjusted using the member functions:

MemPool MemMgr(...); // construct MemPool

MemMgr.SetDebugLevel(n); // change debug level for this object

MemMgr.SetVerbosityLevel(n);// change verbosity level for this object

You can arrange for a MemPool to print out some summary statistics at regular intervals. The interval (in seconds)
used for such messages is approximately the value of

MemPoolDebug::ourOutputStatusInterval

53.1.4 The Verbosity Levels

To help in debugging and fine tuning, you can get some logging messages out of a MemPool; these are printed on
GlobalLogput (see io (Sec.43)). Here is a description of the various levels of verbosity :

Level 0 No logging information is produced (but error messages may be produced if debugging is active, see below)

Level 1 A brief message is produced upon creation of each MemPool object; and another upon destruction (in-
cluding some summary statistics).

Level 2 In addition to level 1: a log message is produced for each new loaf allocated by a MemPool, including some
summary statistics. This may be useful to monitor how much memory is being allocated, and how quickly.

Level 3+ In addition to level 2: a log message is produced for each allocation and deallocation of a block by a
MemPool; this can be used to isolate memory leaks (see comment below).

53.1.5 Using Verbosity Level 3

This is a very verbose level: each allocation/deallocation gives rise to a printed message (on a single rather long
line). These messages can be analyzed to help isolate when a leaked block of memory is allocated; or, in conjunction
with debug level 1, it can help find when a block of memory which is written to after being freed was allocated.
Note that this can produce enormous amounts of output, so you are advised to send logging output to a file. The

100

output may be processed by the program leak checker (in this directory) to help track down memory leaks: see
the user documentation in leak checker.txt

Each message about an alloc/free contains a sequence number: there are separate counts for calls to alloc and
calls to free. If the leak checker program indicates that there is no matching free for the N-th call to alloc then
the N-th call to alloc for that particular MemPoolDebug object can be intercepted easily in a debugger by setting
a breakpoint in the function MemPoolDebug::intercepted, and by calling the member function InterceptAlloc

with argument N at some point before the N-th call to alloc. The N-th call to free can be intercepted in
an analogous way by calling instead the member function InterceptFree. It is probably a good idea to call
InterceptAlloc or InterceptFree as soon as you can after the MemPoolDebug object has been created; of course,
recompilation will be necessary.

53.1.6 Debug Levels in MemPools

If CoCoA MEMPOOL DEBUG was set during compilation then each MemPool object performs some debug check-
ing. If the checks reveal a problem then an error message is printed on GlobalErrput. Upon creation of a MemPool

object, the debug level is set to the value of the global variable:

MemPoolDebug::ourInitialDebugLevel

After creation the debug level can be adjusted by calling the member function SetDebugLevel; this must be called
before the MemPool has allocated any space. Any attempts to change the debug level are silently ignored after the
first allocation has been made.

Here are the meanings of the different levels of checking: (each higher level includes all lower levels)

Level 0 A count of the number of allocations, deallocations and active blocks is maintained: a block is active
if it has been allocated but not subsequently freed. The only check is that the number of active blocks is
zero when the MemPool object is destroyed; an error message is printed out only if there are some active
blocks. This level is rather faster than the higher levels of debugging, but should detect the existence of
leaked memory; higher levels of debugging will probably be necessary to isolate the cause of any leak.

Level 1 This level should detect several types of common error: writing just outside the allocated region, writing
to a block shortly after freeing it, perhaps reading from a block shortly after freeing it, trying to free a block
not allocated by the given MemPool object, perhaps reading from an uninitialized part of an allocated block.
Freeing a zero pointer via a MemPool is also regarded as worthy of a warning.

When a block of memory is allocated it is filled with certain values (including small margins right before
and after the requested block). The values in the margins are checked when the block is freed: anything
unexpected produces an error message. A freed block is immediately filled with certain other values to help
detect reading/writing to the block after it has been freed. These values are checked when the block is next
reallocated.

Level 2 This level has not been tested much. It will probably be very much slower than any lower level, and is
intended to help track down cases where a freed block is written to some time after it has been freed. A freed
block is never reallocated, and all freed blocks are checked for being written to each time alloc or free is
called; an error message is printed if a modified freed block is found. You need to be pretty desperate to use
this level. A corrupted freed block is cleared to its expected free state as soon as it is reported – so persistent
writing to a freed block can be detected.

53.1.7 Example: Using a MemPool as the memory manager for a class

Suppose you already have a class called MyClass. Here are the changes to make so that heap-located instances
of MyClass reside in slices managed by a MemPool; obviously stack-located instances cannot be managed by
MemPool.

Add in the definition of MyClass (typically in the file MyClass.H):

private:

static MemPool myMemMgr;

public:

static inline void operator delete(void* DeadObject, size_t sz)

{ myMemMgr.free(DeadObject, sz); }

101

inline void* operator new(size_t sz)

{ return myMemMgr.alloc(sz); }

The class static variable must be defined in some .C file, probably MyClass.C is the most suitable choice:

MemPool MyClass::myMemMgr = MemPool(sizeof(MyClass));

or

MemPool MyClass::myMemMgr = MemPool(sizeof(MyClass), PoolName);

or

MemPool MyClass::myMemMgr = MemPool(sizeof(MyClass), PoolName, NrWordsInMargin);

PoolName is a string: it is used only in logging and error messages in debugging mode, but it might be useful when
debugging even when CoCoA MEMPOOL DEBUG is not defined; the default name is Unnamed-MemPool.

NrWordsInMargin is used only with debugging, and can be used to alter the width of the buffer zones placed
before and after each slice (default=4).

Here is a simple example program showing how MemPools can be used, and how the debugging facilities can
be employed. Compile this program with CoCoA MEMPOOL DEBUG set, and then run it to see the error messages
produced indicating improper use of memory resources.

#include <cstddef>

#include <iostream>

#include <string>

#include "CoCoA/MemPool.H"

using CoCoA::MemPool;

using namespace std;

class Date

{

public:

static void operator delete(void* DeadObject, size_t sz);

void* operator new(size_t sz);

Date(int d=1, int m=1, int y=1900, char app[40]="??");

~Date() {};

Date& operator=(const Date& rhs);

friend ostream& operator << (ostream& cout, const Date& D);

private:

static MemPool date_mempool;

int day, month, year;

char appointment[40];

};

// Define new versions of new and delete for Date...

inline void Date::operator delete(void* DeadObject, size_t sz)

{

date_mempool.free(DeadObject, sz);

}

inline void* Date::operator new(size_t sz)

{

return date_mempool.alloc(sz);

}

// We must initialize the static member Date::date_mempool...

MemPool Date::date_mempool = MemPool(sizeof(Date), "Date_Pool", 4);

//--//

Date::Date(int d, int m, int y, char app[40])

{

102

day = d;

month = m;

year = y;

strcpy(appointment, app);

}

//--//

Date& Date::operator=(const Date& RHS)

{

if (this == &RHS) return *this;

day = RHS.day;

month = RHS.month;

year = RHS.year;

strcpy(appointment, RHS.appointment);

return *this;

}

ostream& operator << (ostream& cout, const Date& D)

{

cout << D.day << " " << D.month << ", " << D.year << " \t";

cout << "appointment: " << D.appointment;

return cout;

}

//------------------------------ main ------------------------------//

int main()

{

cout << endl << "== EXAMPLE ==" << endl << endl;

const int N = 4000;

Date *D1[N], *D2, *D3;

D2 = new Date;

(*D2) = Date(6,12,1965, "compleanno"); cout << "*D2 = " << *D2 << endl;

D3 = new Date; cout << "*D3 = " << *D3 << endl;

delete D2;

delete D2; // ERROR! D2 already freed

for (int i=0 ; i<N ; i++) D1[i] = new Date;

for (int i=N-1 ; i>=0 ; i--) delete D1[i];

Date *D8 = new Date[4];

D8[0] = Date(1,4,2001, "pesce d’Aprile");

delete D8; // ERROR! D8 not allocated by mempool

// D3 not deleted -- will be detected when mempool is destroyed

return 0;

}

53.2 Maintenance notes for the MemPool source code

The code for MemPoolFast and MemPoolDebug is exception-safe. The only exception this code could cause is
std::bad alloc in the member functions MakeNewLoaf or by a forwarded call to ::operator new inside the
member functions alloc.

The class MemPoolFake simply forwards all allocation/deallocation calls to ::operator new/delete. It was
added hastily to enable a threadsafe compilation (assuming that ::operator new and ::operator delete are
themselves threadsafe).

103

The idea of MemPools was taken from Effective C++ by Scott Meyers, but the code here has evolved considerably
from what was described in the book.

There are two virtually independent implementations: one for normal use, and one for use while debugging, the
selection between the two versions is determined by the preprocessor symbol CoCoA MEMPOOL DEBUG: if this
symbol is undefined then MemPool is a typedef for MemPoolFast otherwise it is a typedef for MemPoolDebug.

MemPoolDebug uses internally a MemPoolFast object to handle the genuine memory management operations
while MemPoolDebug performs validity checks and maintains counters for various sorts of operation.

53.2.1 MemPoolFast and loaf

The most important member functions of MemPoolFast are alloc and free for slices of the requested size; it is
vital that these be fast (on average). Amazingly, no worthwhile gain in speed was observed when I made these
functions inline; sometimes inline was noticeably slower (g++ oddity?). Anyway, for simplicity I have kept them
out-of-line.

The idea behind a MemPoolFast is quite simple: unused slices are strung together in a free list, the last unused
slice contains a null pointer. So alloc simply returns a pointer to the first slice in the free list, while free inserts
a new slice at the front of the free list. The ctor makes sure that each slice is big enough to hold at least a pointer;
the first part of a free slice is used to hold the pointer to the next free slice (any remaining space in a free slice is
unused).

Note that there is a conundrum in choosing the right C++ type for the slices of a loaf, since the values kept
in unused slices are pointers to slices, and there is no C++ type which is a pointer to itself. The type chosen
for these entries is void**: this conveys the information that they are not pointers to C++ objects while also
allowing pointer arithmetic (which is not allowed on values of type void*). Nonetheless the code is necessarily
peppered with casts (to convert a void*** into a void**); these are necessarily reinterpret casts but should be
absolutely safe since they are only ever applied to genuine pointers to values (or to the null pointer). Actually the
reinterpret casts could probably be replaced by two nested static castss passing via the type void* but this
would not help readability in the slightest.

What happens when a new slice is requested when the free list is empty? A new loaf is created, and cut
into slices which are linked together to form a free list. A loaf is little more than a large chunk of raw memory
acquired from the system (see below for more details). Note that if several loaves are in use then the freed slices
from different loaves are strung together in a single free list; no attempt is made to keep slices from different loaves
separate. In particular, no check is made for a loaf all of whose slices are unused; loaves are returned to the system
only when the MemPool is destroyed.

Most of the data members of MemPoolFast are simple and with an obvious role. Here are a few observations
about aspects which may not be completely obvious.

The data member myLoaves is an auto ptr so that the class dtor can be simple; it also expresses the idea that
the loaves pointed to are owned by the MemPoolFast object. Note that each loaf has a next pointer which is also
an auto ptr, so destroying the first loaf will destroy them all. I could not use a std::list because loaf does not
have a copy ctor.

The data member myFillNewLoaf is used only when a new loaf is created (in MakeNewLoaf). If the flag is set,
the slices in a new loaf are filled with the sentinel value expected by MemPoolDebug, i.e. MEMPOOL FREE WORD. This
seemed the least obnoxious way of achieving the necessary behaviour.

The data member myVerbosityLevel was added to allow some minimal logging of resource consumption even
with MemPoolFast objects: a brief message is output whenever a new loaf is acquired. It does complicate the class
rather, but may be useful sometimes.

The only member functions exhibiting some complexity are: myOutputStatus uses a loop to count how many
freed slices there are in each loaf, and the print out the results in GlobalLogput.

MakeNewLoaf first decides roughly how many slices the new loaf should have; creates the loaf, and inserts at
the front of the list of loaves; prints out a logging message if required.

The separation of the class loaf from the class MemPoolFast is partly a historical accident – a side-effect of
the tortuous search for a tolerably clean implementation. Overall, I regard it as a fairly happy accident because
no details of the the class loaf are visible in the header file.

The class loaf has a simple primary role: it owns the raw memory acquired from the system. Destroying a
loaf returns the raw memory to the system. Unfortunately the implementation became rather complicated. Each
loaf contains a next pointer so that loafs can be linked together in a list. I could not use a std::list since
a loaf does not have a copy ctor (nor assignment); I prefer not to play dangerous games with copy ctors which
destroy their arguments (non-standard semantics), and a clean copy ctor would probably be horribly inefficient.

104

The next pointer is an auto ptr so that destroying the first loaf in a list will actually destroy all of the loafs in
that list.

To fulfil a request for logging information about utilization of slices in each loaf, I added four member functions:

IamOriginator - true iff arg points to a slice of this loaf

myFreeCounterReset - reset counters to zero in this loaf list

myCountFreeSlice - incr my counter if slice is mine, o/w pass to next loaf

myOutputStatus - print out utilization stats.

Apart from IamOriginator, I would much rather these functions did not exist.

The implementation of a loaf is straightforward (but a bit messy).

53.2.2 MemPoolDebug

The idea behind MemPoolDebug is that it should offer the same interface as MemPoolFast but will additionally
perform validity checks and accumulate utilization statistics and print logging messages (if requested). The imple-
mentation is quite straightforward but rather long and messy as the code offers several levels of debug checks and
logging message verbosity.

The idea behind a MemPoolDebug is that it manages slices in a manner which should help uncover incorrect use
of memory: a newly allocated slice is filled with peculiar values (in case you read without first writing a sensible
value there), a freed slice is immediately filled with an other peculiar value (in case you read after freeing), each
slice has a small protective margin right before and after it (in case you write just outside the valid address range)...
(the fill values are intended to be invalid as pointers, to help detect pointer following in uninitialized memory)

A count is kept of the number of alloc and free calls. This can help discover that some value was never freed,
or maybe was freed twice. These counts are of type size t, so they could overflow; but then you’d be a bit daft
to try to debug such a large example, wouldn’t you?

The default initial debugging and verbosity levels can be modified by setting the values of certain global variables
– these value are respected only if you compiled with CoCoA MEMPOOL DEBUG set or if you used explicitly the class
MemPoolDebug rather than the typedef MemPool. These values are consulted only when a MemPoolDebug object is
created. Using global variables like this make its easy to vary the debug level (without having to recompile the
whole library).

• MemPoolDebug::ourInitialVerbosityLevel default verbosity level

• MemPoolDebug::ourInitialDebugLevel default debug level

• MemPoolDebug::ourDefaultMarginSize default margin size (see below)

• MemPoolDebug::ourOutputStatusInterval print utilization statistics at roughly this interval (in seconds)

All the genuine memory management operations are handled by myMemMgr, a MemPoolFast object belonging to
the MemPoolDebug object. This approach avoids having two similar copies of rather delicate code.

The margin size must be fixed in the ctor because myMemMgr needs to know what size slices it must manage.
The margin size for a MemPoolDebug object cannot be changed later. Distinct MemPoolDebug objects may have
different margin sizes.

The debug level may be changed after construction provided no slices have been issued; trying to make the
various debug levels compatible would require very careful checking (which I cannot be bothered to do).

The verbosity level can be changed at any time (since there is no reason not to allow this).

The data member myAliveOrDead was added to help protect against attempts to use an already deleted
MemPoolDebug object. All public member functions check that the field myAliveOrDead contains the expected value
before proceeding: a CoCoALib error is thrown if the value is wrong. The correct value for a live MemPoolDebug

object is the constant MemPoolDebug::AliveMark.

The data member myHeadOfUsedList is used at the highest level of debugging. All freed slices are placed on
this list so they cannot be reissued to the user. Every call then scans all these freed slices to make sure they contain
the correct fill value. This is intended to help discover writes to freed memory long after the slice has been freed.
This level gets very slow on larger examples.

105

53.3 Bugs, Shortcomings, etc

Idea for better locality of reference: keep two free lists, one for the most recent loaf, and one for all older loaves.
When most recent loaf fills up, create and use a new loaf unless the free list for all the older loaves exceeds 0.5
times the size of the most recent loaf. Not sure what to do if the freelist for old loaves is very long.

Add a new member function which tidies up the list of freed blocks? This might lead to better locality of
reference, and ultimately to better run-time performance if called judiciously.

Could it be worth trying to help preserve locality of reference? Maybe freed slices could be returned to their
own loaves. Properly nested alloc/free calls ought to preserve locality anyway.

Perhaps the globals ourInitialDebugLevel and ourInitialVerbosityLevel could be set inside the ctor for
GlobalManager??

Member functions of MemPoolFast/Debug do not have names in accordance with the coding conventions. Cannot
decide when I should use void* and when I should use slice t for the arg types.

A potentially useful function could be one which tells the MemPool to check that it is empty (i.e. all allocated
blocks have been freed). This is currently implicit in the debugging-mode dtor.

It might be an idea to maintain a registry of all existing MemPools, so that they can be told towards the end
of the run that they should all be empty. Otherwise any MemPool which is never destroyed can never give an
indication of any leaks of its own slices.

Could there be alignment problems with funny margin sizes? What about machines where pointers are a
different size from ints?

The code may silently increase the size of requested blocks so that their lengths are integer multiples of the size
of a slice t. This does mean that writes outside the requested block but within the silently extended block are
not detected (in debugging mode) – I guess that most block sizes are exact multiples anyway, so there is unlikely
to be any problem in most practical situations.

Is the function AlreadyFreed working as one would expect? Currently it checks that the margins are those of
a freed block, and uses that as the determining criterion. The argument is that an attempt to free a block suggests
that user probably thought it hadn’t been freed and so the user accessible data area is quite probably corrupted (i.e.
not simply full of MEMPOOL FREE WORD values). I have also added a call to OverwriteFreeCheck, so that freeing
an overwritten already freed block will cause two error messages to be printed. Previously, AlreadyFreed required
that the data area be in tact for the block to count as already having been freed; an overwritten freed block would
then be detected as an allocated block with corrupted margins. Maybe a memory map for an overwritten freed
block would be a useful addition? (similar to that produced for an allocated block with corrupt margins).

The periodical printing of stats is rather crude. To make it more sophisticated will just made the code even
more complex though (sigh).

AutoPtrSlice is still very experimental.

54 module (John Abbott)

54.1 User documentation for the classes module, ModuleBase, ModuleElem

You may also wish to look at the documentation for FGModule (Sec.30) the type which represents (explicitly)
Finitely Generated Modules.

The classes module, ModuleBase and ModuleElem are closely linked together (analogously to the triple ring,
RingBase and RingElem).

The class module is a reference counting smart pointer to an object of type derived from ModuleBase; all concrete
types for representing modules are derived from ModuleBase. For a library implementor the class ModuleBase

defines the minimal interface which every concrete module class must offer; indeed the concrete class must be
derived from ModuleBase.

A user of CoCoALib who does not wish to add to the library need know only what it is in this section.

Analogously to rings and RingElems, every ModuleElem belongs to some module. So before you can compute
with ModuleElems you must create the module(s) which contain them.

To create a module you must a pseudo-constructor for one of the concrete module classes (refer to their docu-
mentation for details): e.g.

NewFreeModule(R, n) -- create a new FreeModule of n components over R

106

The functions which one may apply directly to a module are:

NumCompts(M) -- the number of components an element of M has

BaseRing(M) -- the base ring of M (i.e. M is a module over this ring)

gens(M) -- a read only C++ vector containing the generators of M

zero(M) -- a read only ModuleElem which is the zero of M

M1 == M2 -- are the two modules identical (same repr in memory)?

M1 != M2 -- opposite of M1 == M2

As you can see there is not a lot one can do to a module. Primarily they exist to ”give the correct type” to module
elements; internally they play a crucial role in applying operations to module elements. A C++ value of type
ModuleElem represents an element of some concrete module. The module to which the value belongs is called the
owner of that value. The owner of an object of type ModuleElem must be specified (explicitly or implicitly) when it
is created, and cannot be changed during the lifetime of the object; the value it contains may, however, be changed
(C++ const rules permitting).

Functions on ModuleElems

Let v be a non-const ModuleElem, and v1, v2 be const ModuleElems all belonging to the same concrete
module M. Let R be the base ring of M, and r a const element of R. Then we summarize the possible operations
using C++ syntax:

owner(v1) // gives the module to which v1 belongs

-v1 // Usual arithmetic operations

v1 + v2 v1 - v2 // between ModuleElems and

r * v1 v1 * r // RingElems.

v1 / r

v = v1

v += v1 v -= v1

v *= r v /= r

v1 == v2 v1 != v2

IsZero(v1) cout << v1

v[pos] // throws if the module is not FGModule

In every case it is an error to combine/compare ModuleElems belonging to different modules. As you would
expect, instead of multiplying or dividing by a RingElem (Sec.75) you may also multiply or divide by a machine
integer, a BigInt (Sec.8) or a BigRat (Sec.9).

54.2 Maintainer documentation for the classes module, and ModuleElem

I shall suppose that the user documentation has already been read and digested. It could also be helpful to have
read the documentation for ring (Sec.72) since the design philosophy here imitates that used for rings.

The class module is simply a reference counting smart pointer class to a concrete module (i.e. an object
belonging to a class derived from ModuleBase).

A ModuleElem, like a RingElem, comprises two components: one specifying the algebraic structure to which the
value belongs, and the other being an opaque representation of the value which can be correctly interpreted only
by the owning module. The data members are:

module myM; // the module to which the ModuleElem belongs

ModuleRawValue myValue; // "opaque" representation of the value,

// concrete modules must "import" this value.

The design philosophy for modules follows closely that used for rings. This means that every operation on
ModuleElems is actually effected by calling the appropriate member function of the owning module. These member
functions expect raw values as input. A normal ModuleElem stores within itself both the identity of the module

to which it belongs and its value as an element of that particular module – we call the first datum the owner

and the second datum the RawValue. A RawValue can be correctly interpreted only if supplied as argument to a

107

member function of the owning module – calling module member functions for an incompatible concrete module
and RawValue will very likely have grave consequences (officially stated as undefined behaviour, and most probably
perceived as a program crash).

The member functions of a module do not check their arguments for being sensible. This decision is largely
just a design policy imitating that used for rings, but may also lead to some slight beneficial effect on run-time
performance. It does naturally imply that the programmer bears a considerable burden of responsibility.

(2.1) Member functions for operations on raw values [IGNORE THIS – OUT OF DATE]

For ring elements (especially those in a small finite field), noticeable speed gains arise from using directly raw
values and ring member functions. For modules the analogous effect exists in theory but will likely be negligible
in practice. Nevertheless we list here the member functions of a module; this list will be useful to library authors
who wish to create their own concrete module classes.

Let v be a non-const RawValue, and v1, v2 const RawValues belonging to M. Let r be a RingBase::RawValue
belonging to the base ring of M.

M.myNumCompts()

M.myBaseRing()

M.myGens() -- returns a const ref to a C++ vector of module:elems

M.myZero() -- returns a const ref to a ModuleElem

M.myNew(v) -- allocates resources, apply only to uninitialized RawValue

M.myNew(v, v1) -- allocates resources, apply only to uninitialized RawValue

M.myDelete(v) -- releases resources

M.mySwap(v, w)

M.myAssign(v, v1)

M.myNegate(v, v1)

M.myAdd(v, v1, v2)

M.mySub(v, v1, v2)

M.myMul(v, r, v1)

M.myDiv(v, r, v1) -- NOTE funny arg order!

M.myOutput(out, v1)

M.myOutputSelf(out)

M.myIsZero(v1)

M.myIsEqual(v1, v2)

54.3 Bugs, Shortcomings and other ideas

This code is too new, largely untried/untested. As soon as it gets some use, there will be some material to put
here :-)

The documentation is very incomplete. Will be fixed (eventually). Maintainer documentation is incompleter
than user doc.

55 ModuleTermOrdering (Anna Bigatti)

55.1 User documentation for ModuleTermOrdering

An object of the class ModuleTermOrdering represents an ordering on the module monoid of module terms, i.e.
such that the ordering respects the operation In CoCoALib orderings and gradings are intimately linked (for
gradings see also degree (Sec.17) and PPOrdering (Sec.63)).

Currently, the most typical use for a ModuleTermOrdering object is as a constructor argument to a concrete
FreeModule (Sec.34). At the moment there are ? functions which create new ModuleTermOrderings:

Pseudo-constructors: (where PPO is a PPOrdering (Sec.63), shifts is a vector<degree> , perm is std::vector<long> ,
NumComponents is a long)

NewWDegTOPos(PPO, NumComponents);

NewPosWDegTO(PPO, NumComponents);

108

NewWDegPosTO(PPO, NumComponents);

NewWDegTOPos(PPO, shifts);

NewWDegPosTO(PPO, shifts);

NewPosWDegTO(PPO, shifts);

NewWDegTOPos(PPO, perm);

NewWDegPosTO(PPO, perm);

NewWDegTOPos(PPO, shifts, perm);

NewWDegPosTO(PPO, shifts, perm);

where

WDeg is the degree (incl. the shifts)

TO is the PPOrdering (incl. the degree, i.e. the first GrDim rows)

Pos is the position (according to the "score" given by perm [NYI])

55.1.1 Example

P = Q[x,y] with StdDegLex (==> GradingDim = 1)

P(-2) (+) P(-1) i.e. P^2 with shifts = [(2), (1)], and WDegTOPos

v1 = [x,0], v2 = [0,y^2]:

WDeg(v1) = WDeg(x)+2 = 3, WDeg(v2) = WDeg(y^2)+1 = 3

x < y^2 according to StdDegLex (NB: not "Lex"!)

so v1 < v2

The operations on a ModuleTermOrdering object are:

out << MTO; // output the MTO object to channel out

const std::vector<degree>& shifts(const ModuleTermOrdering& O);

long NumComponents(const ModuleTermOrdering& MTO);

long GradingDim(const ModuleTermOrdering& MTO);

const PPOrdering& ModPPOrdering(const ModuleTermOrdering& MTO);

bool IsWDegTOPos(const ModuleTermOrdering& MTO);// true iff MTO is implemented as WDegTOPos

bool IsPosWDegTO(const ModuleTermOrdering& MTO);

bool IsWDegPosTO(const ModuleTermOrdering& MTO);

output and OpenMath output is still questionable.

55.2 Maintainer documentation for ModuleTermOrdering

The general ideas behind the implementations of ModuleTermOrdering and ModuleTermOrderingBase are anal-
ogous to those used for ring and RingBase. ModuleTermOrdering is a simple reference counting smart-pointer
class, while ModuleTermOrderingBase hosts the intrusive reference count (so that every concrete derived class will
inherit it). See

The only remaining observation to make about the simple class ModuleTermOrdering is that I have chosen to
disable assignment – I find it hard to imagine when it could be useful to be able to assign ModuleTermOrderings,
and suspect that allowing assignment is more likely to lead to confusion and poor programming style.

There are ? concrete ModuleTermOrderings in the namespace CoCoA::MTO. The implementations are all
simple and straightforward except for the matrix ordering which is a little longer and messier but still easy enough
to follow.

See also the CoCoAReport ”Free Modules”.

55.3 Bugs, shortcomings and other ideas

55.3.1 do we need a class ”shifts”?

109

SmartPtrIRC.txt

56 MorseGraph (Mario Albert)

56.1 Examples

• ex-MorseGraph.C

56.2 User documentation for Morse Graph

Via the Morse Graph we are able to compute a free resolution of a polynomial ideal via the JBMill if the polynomial
ideal has some special properties. The ideal must be in delta-regular coordinates (i.e. it has a Pommaret basis)
and the ordering must be degrevlex. If these conditions hold we can compute a free resolution and, if the ideal is
homogeneous, the minimal free resolution and the graded Betti numbers of the ideal.

56.2.1 Using the Morse Graph

In the following let mill a JBMill (Sec.44) with degrevlex order. Furthermore we assume that JBIsPommaretBasis(mill)
== true. The following command computes a free resolution as vector<matrix>

• JBResolution(mill)

Now we assume that mill contains a homogeneous ideal

• JBMinimalResolution(mill) – Returns the minimal free resolution of mill as vector<matrix>

• JBBettiDiagramm(mill) – Returns a matrix of ZZ, which represents the graded Betti numbers in Macaulay-
Style

56.3 Maintainer documentation for TmpMorseGraph.C, TmpMorseElement.C, Tmp-
MorsePaths.C, TmpResolutionMinimization.C

We only explain the basic structure because there is very much code. The implementation is divided in four parts:

56.3.1 TmpMorseElement.C

Here we define the MorseElements and the StandardRepresentationContainer. The MorseGraph consists of MorseEle-
ments. The StandardRepresentationContainer stores standard representations, to avoid redundant computations.

56.3.2 TmpMorsePaths.C

MorsePaths are maps between MorseElements.

56.3.3 TmpMorseGraph.C

Stores and computes the MorseGraph. Also there are some easy interfaces to access the resolution. It still waits
for a general free resolution object in CoCoALib.

56.3.4 ResolutionMinimization.C

Takes a free resolution of an homogeneous ideal an computes the minimal free resolutions. But only works for free
resolution which have already the correct length.

56.4 Bugs, Shortcomings and other ideas

56.4.1 ResolutionMinimization.C

Implementing a own specialized myAddRowMul function (skipping zeros...).

110

../../examples/index.html#ex-MorseGraph.C

56.4.2 TmpMorseGraph.C

Waiting for general free resolution object.

57 NumTheory (John Abbott)

57.1 User documentation

57.1.1 Generalities

The functions in the NumTheory file are predominantly basic operations from number theory. Most of the functions
may be applied to machine integers or big integers (i.e. values of type BigInt (Sec.8)). Please recall that compu-
tational number theory is not the primary remit of CoCoALib, so do not expect to find a complete collection of
operations here – you would do better to look at Victor Shoup’s NTL (Number Theory Library), or PARI/GP, or
some other specialized library/system.

See also IntOperations (Sec.42) for very basic arithmetic operations on integers, and BigRat (Sec.9) for very
basic arithmetic operations on rational numbers.

57.1.2 Examples

• ex-NumTheory1.C

57.1.3 The Functions Available For Use

Several of these functions give errors if they are handed unsuitable values: unless otherwise indicated below the
error is of type ERR::BadArg. All functions expecting a modulus will throw an error if the modulus is less than 2
(or an unsigned long value too large to fit into a long).

The main functions available are:

• gcd(m,n) computes the non-negative gcd of m and n. If both args are machine integers, the result is of type
long (or error if it does not fit); otherwise result is of type BigInt (Sec.8).

• ExtGcd(a,b,m,n) computes the non-negative gcd of m and n; also sets a and b so that gcd = a*m+b*n. If m
and n are machine integers then a and b must be of type (signed) long. If m and n are of type BigInt (Sec.8)
then a and b must also be of type BigInt (Sec.8).

• InvMod(r,m) computes the least positive inverse of r modulo m; returns 0 if the inverse does not exist.
Gives error if m < 2. Result is of type long if m is a machine integer; otherwise result is of type BigInt

(Sec.8).

• lcm(m,n) computes the non-negative lcm of m and n. If both args are machine integers, the result is of type
long; otherwise result is of type BigInt (Sec.8). Gives error ERR::ArgTooBig if the lcm of two machine
integers is too large to fit into an long.

• IsPrime(n) tests the positive number n for primality (may be very slow for larger numbers). Gives error if
n <= 0.

• IsProbPrime(n) tests the positive number n for primality (fairly fast for large numbers, but in very rare
cases may falsely declare a number to be prime). Gives error if n <= 0.

• IsProbPrime(n,iters) tests the positive number n for primality; performs iters iterations of the Miller-
Rabin test (default value is 25). Gives error if n <= 0.

• NextPrime(n) and PrevPrime(n) compute next or previous positive prime (fitting into a machine integer);
returns 0 if none exists. Gives error if n <= 0.

• NextProbPrime(N) and PrevProbPrime(N) compute next or previous positive probable prime (uses IsProbPrime).
Gives error if N <= 0.

• SmoothFactor(n,limit) finds small prime factors of n (up to & including the specified limit); result is a
factorization object. Gives error if limit is not positive or too large to fit into a long.

111

../../examples/index.html#ex-NumTheory1.C

• factor(n) finds the complete factorization of n (may be very slow for large numbers); NB implementation
incomplete

• valuation(p,n) find largest k such that power(p,k) divides n (error if p is not prime or n is not positive)

• EulerPhi(n) computes Euler’s totient function of the positive number n (i.e. the number of integers up to
n which are coprime to n, or the degree of the n-th cyclotomic polynomial). Gives error if n <= 0.

• PrimitiveRoot(p) computes the least positive primitive root for the positive prime p. Gives error if p is not
a positive prime. May be very slow for large p (because it must factorize p-1).

• MultiplicativeOrder(res,mod) computes multiplicative order of res modulo mod. Gives error if mod <
2 or gcd(res,mod) is not 1.

• PowerMod(base,exp,modulus) computes base to the power exp modulo modulus; result is least non-negative
residue. If modulus is a machine integer then the result is of type long (or error if it does not fit), otherwise
the result is of type BigInt (Sec.8). Gives error if modulus <= 1. Gives ERR::DivByZero if exp is negative
and base cannot be inverted. If base and exp are both zero, it produces 1.

• SimplestBigRatBetween(A,B) computes the simplest rational between A and B

• BinomialRepr(N,r) produces the repr of N as a sum of binomial coeffs with ”denoms” r, r-1, r-2, ...

• NumPartitions(n) computes number of partitions of n, i.e. how many distinct ways to write n as a sum of
positive integers (error if n is negative)

Continued Fractions

Several of these functions give errors if they are handed unsuitable values: unless otherwise indicated below the
error is of type ERR::BadArg.

Recall that any real number has an expansion as a continued fraction (e.g. see Hardy & Wright for definition
and many properties). This expansion is finite for any rational number. We adopt the following conventions which
guarantee that the expansion is unique:

• the last partial quotient is greater than 1 (except for the expansion of integers <= 1)

• only the very first partial quotient may be non-positive.

For example, with these conventions the expansion of -7/3 is (-3, 1, 2).

The main functions available are:

• ContFracIter(q) constructs a new continued fraction iterator object

• IsEnded(CFIter) true iff the iterator has moved past the last partial quotient

• IsFinal(CFIter) true iff the iterator is at the last partial quotient

• quot(CFIter) gives the current partial quotient as a BigInt (Sec.8) (or throws ERR::IterEnded)

• *CFIter gives the current partial quotient as a BigInt (Sec.8) (or throws ERR::IterEnded)

• ++CFIter moves to next partial quotient (or throws ERR::IterEnded)

• ContFracApproximant() for constructing a rational from its continued fraction quotients

• CFA.myAppendQuot(q) appends the quotient q to the continued fraction

• CFA.myRational() returns the rational associated to the continued fraction

• CFApproximantsIter(q) constructs a new continued fraction approximant iterator

• IsEnded(CFAIter) true iff the iterator has moved past the last ”partial quotient”

• *CFAIter gives the current continued fraction approximant as a BigRat (Sec.9) (or throws ERR::IterEnded)

• ++CFAIter moves to next approximant (or throws ERR::IterEnded)

• CFApprox(q,eps) gives the simplest cont. frac. approximant to q with relative error at most eps

112

Chinese Remaindering – Integer Reconstruction

CoCoALib offers the class CRTMill for reconstructing an integer from several residue-modulus pairs via Chinese
Remaindering. At the moment the moduli from distinct pairs must be coprime.

The operations available are:

• CRTMill() ctor; initially the residue is 0 and the modulus is 1

• CRT.myAddInfo(res,mod) give a new residue-modulus pair to the CRTMill

• residue(CRT) the combined residue with absolute value less than modulus(CRT)

• modulus(CRT) the product of the moduli of all pairs given to the mill

Rational Reconstruction

CoCoALib offers two heuristic methods for reconstructing rationals from residue-modulus pairs; they have
the same user interface but internally one algorithm is based on continued fractions while the other uses lattice
reduction. The methods are heuristic, so may (rarely) produce an incorrect result.

The constructors available are:

• RatReconstructByContFrac(threshold) ctor for continued fraction method mill with given threshold (0
–> use default)

• RatReconstructByLattice(SafetyFactor) ctor for lattice method mill with given SafetyFactor (0 –> use
default)

The operations available are:

• reconstructor.myAddInfo(res,mod) give a new residue-modulus pair to the reconstructor

• IsConvincing(reconstructor) gives true iff the mill can produce a convincing result

• ReconstructedRat(reconstructor) gives the reconstructed rational (or an error if IsConvincing is not
true).

There is also a function for deterministic rational reconstruction which requires certain bounds to be given in
input. It uses the continued fraction method.

• RatReconstructWithBounds(e,P,Q,res,mod) where e is upper bound for number of ”bad” moduli, P and Q

are upper bounds for numerator and denominator of the rational to be reconstructed, and (res[i],mod[i])

is a residue-modulus pair with distinct moduli being coprime.

57.2 Maintainer Documentation

Correctness of ExtendedEuclideanAlg is not immediately clear, because the cofactor variables could conceivably
overflow – in fact this cannot happen (at least on a binary computer): for a proof see Shoup’s book A Computational
Introduction to Number Theory and Algebra, in particular Theorem 4.3 and the comment immediately following it.
There is just one line where a harmless ”overflow” could occur – it is commented in the code.

Several functions are more complicated than you might expect because I wanted them to be correct for all
possible machine integer inputs (e.g. including the most negative long value).

In some cases the function which does all the work is implemented as a file local function operating on unsigned

long values: the function should normally be used only via the ”dispatch” functions whose args are of type
MachineInt (Sec.47) or BigInt (Sec.8).

The continued fractions functions are all pretty simple. The only tricky part is that the ”end” of the ContFracIter
is represented by both myFrac and myQuot being zero. This means that a newly created iterator for zero is already
ended.

CFApproximantsIter delegates most of the work to ContFracIter.

113

57.3 Bugs, Shortcomings, etc.

Several functions return long values when perhaps unsigned long would possibly be better choice (since it offers a
greater range, and in the case of gcd it would permit the fn to return a result always, rather than report ”overflow”).
The choice of return type was dictated by the coding conventions, which were in turn dictated by the risks of nasty
surprises to unwary users unfamiliar with the foibles of unsigned values in C++.

Should there also be procedural forms of functions which return BigInt (Sec.8) values? (e.g. gcd, lcm, InvMod,
PowerMod, and so on).

Certain implementations of PowerMod should be improved (e.g. to use PowerModSmallModulus whenever pos-
sible). Is behaviour for 0ˆ0 correct?

LucasTest should produce a certificate, and be made publicly accessible.

How should the cont frac iterators be printed out???

ContFracIter could be rather more efficient for rationals having very large numerator and denominator. One
way would be to compute with num and den divided by the same large factor (probably a power of 2), and taking
care to monitor how accurate these ”scaled” num and den are. I’ll wait until there is a real need before implementing
(as I expect it will turn out a bit messy).

CFApproximantsIter::operator++() should be made more efficient.

58 OpenMath (John Abbott)

58.1 User documentation for OpenMath

These files offer two types: OpenMathOutput for sending data in OpenMath format, and OpenMathInput for receiv-
ing data sent in OpenMath format. Since OpenMath specifies more than one encoding, you must specify which
encoding is to be used when creating one of these input/output channels. Here are two (ugly) examples:

OpenMathOutput OMOut(new OpenMathOutputXML(cout));

OpenMathInput OMIn(new OpenMathInputXML(cin));

These commands say that the XML encoding is to be used, and that cin/cout as the data transport mediums.
Once created, these OpenMath i/o channels can be used analogously to the standard C++ i/o channels.

58.2 Maintainer documentation for OpenMath

OpenMathInput and OpenMathOutput use the template class SmartPtrIRC (Sec.89) as their implementations. They
are reference counting ”smart pointers” (but I’m not sure why, perhaps just for simplicity?).

There are six different operator<< for built in integer types because I needed at least two (one for long and
one for unsigned long) and the compiler complained about ambiguities for other integral types because it could
have converted equally well to either long or unsigned long. There are only two corresponding member functions,
as the implementations of operator<< cast to either long or unsigned long.

58.3 Bugs, Shortcomings and other ideas

Use boost::shared ptr instead of SmartPtrIRC (Sec.89)?

Documentation woefully incomplete. Actually the whole implementation needs a thorough revision, perhaps in
collaboration with some others who are attemtping to implement OpenMath.

Code written hastily, so incomplete, largely untested, does not follow the coding standards (esp. member fn
names).

Need a safer way to send ”brackets” (e.g. OpenMath apply begin and end tokens).

Should OpenMathSymbol have ctors with one string and one char*?

OpenMath attributes completely ignored.

114

59 OrdvArith (John Abbott)

59.1 User documentation for OrdvArith

OrdvArith objects are ”low level” values, and thus probably of little interest to most users of CoCoALib. They
perform arithmetic operations on OrdvElem values, i.e. compressed vectors of non-negative small integers (which
represent ”order vectors” of power products). The main aim is fast multiplication and comparison of two power
products (using a specified PP ordering – see PPOrdering (Sec.63)).

All operations on OrdvElem values must be effected through an explicit OrdvArith member function call; this
design is similar to that of rings and RingElems. The main design aim was speed rather than convenience; as a
consequence the member fns listed below expect the caller to have allocated the memory used to contain the results
of computations (e.g. in the parameter ordv).

59.1.1 Initializers and Converters for OrdvElem

These fns are all member fns of OrdvArith.

• myAssignZero(ordv) set ordv to all zeros

• myAssignFromExpv(ordv, expv) set ordv from given exponent vector expv

• myComputeExpv(expv, ordv) extract exponent vector from ordv

Note: the two functions which convert between expv and ordv representations might be quite slow, especially
if a general ordering is used. Even with the simplest ordering (i.e. lex) the conversion is not instant because order
vectors are held in a packed representation.

59.1.2 Arithmetic operations on OrdvElem

These fns are all member fns of OrdvArith.

• myMul(ordv, ordv1, ordv2) put into ordv product of ordv1 and ordv2

• myMulIndetPower(ordv, x, n) multiply ordv by x^n

• myDiv(ordv, ordv1, ordv2) put into ordv quotient of ordv1 by ordv2

• myPower(ordv, ordv1, n) put into ordv the n-th power of ordv1

Note: since order vectors are linearly related to exponent vectors, the functions myMul and myDiv actually
compute the sum and difference of the order vectors. No check is made for over-/under-flow!

59.1.3 Other operations on OrdvElem

These fns are all member fns of OrdvArith.

• myCmp(ordv1, ordv2) compare ordv1 with ordv2; result is -1,0,+1 according as ordv1 < = > ordv2

• myStdDeg(ordv1) compute std degree of ordv1

• myWDeg(D, ordv1) put into D weighted degree of ordv1

• myCmpWDeg(ordv1, ordv2) compare weighted degrees of ordv1 and ordv2

• myCmpWDegPartial(ordv1, ordv2, GrDim) compare weighted degrees of ordv1 and ordv2

• myIsZero(ordv1) test whether ordv1 is zero

• myIsIndet(x, ordv1) test whether ordv1 is an indet; if so, put index into x

115

Background about matrices and PP orderings

This section is for the curious.

To better understand the what an OrdvArith object does, let us begin by setting the scene. We recall that
for all practical purposes an arithmetic ordering on power products can be specified by a matrix of integers M

as follows: Let t1 = x 1^e 1 * x 2^e 2 * ... * x n^e n be a power product, and t2 = x 1^f 1 * x 2^f 2 *

... * x n^f n be another. Then we call (e 1, e 2,..., e n) the exponent vector for t1, and similarly for
t2. For brevity we shall write expv(t1), etc.

The matrix M determines the ordering thus: we say that t1 < t2 iff M*expv(t1) comes before M*expv(t2) in
lex ordering. We call the product M*expv(t1) the order vector for t1, and for brevity we shall write ordv(t1)

to denote it; similarly for t2.

Typically the matrix M is subject to some suitability criteria, e.g. M should be square and invertible. We shall
assume henceforth that M has been chosen so that all order vectors contain only non-negative entries. While reading
the rest of these notes it may be convenient to think of M as being non-singular, so that there is a 1-1 correspondence
between power products and their order vectors.

Now the scene has been set, we can explain what an OrdvArith object does. It can effect the conversion
from exponent vector to order vector, and vice versa. It can also operate directly on order vectors. Certain special
orderings are recognized, so that special relationships between the exponent vector and order vector can be exploited
to enable faster computation.

59.2 Maintainer documentation for OrdvArith

See subsection below about thread-safety!

The base class OrdvArith::base just contains several handy values related to the number of indets and the
packing mechanism. The ctor does some sanity checking on the supplied parameters, and computes some handy
values for packing/unpacking vectors.

Mem fns myMul, myDiv and myCmp are inline for speed. Recall that myMul and myDiv do not check for over-
/under-flow (for speed).

The mem fns myCompress and myDecompress have to check whether myPackingDensity is 1 because C++ shift
operators work ”strangely” if the shift size equals the wordsize.

There are several derived classes which supply efficient ”short-cut” impls for some operations when specific
knowledge of the ordering permits this.

Data member myNumIndets is required when dealing with exponent vectors (since C vectors do not record their
own length). It is the number of valid entries in a C vector representing an exponent vector.

Data member myGradingDim specifies how many initial components of an order vector comprise the grading.
It is needed in myWDeg.

Data member myOrdvWords is used only to supply the return value to the friend function OrdvWords. This
value is needed so that a caller can allocate the correct amount of space in which to build a new order vector value.
By default this is initialized to a huge value, so that it will quickly become evident at run-time if it hasn’t been
initialized to a sane value.

Data member myOrdvWordsForCmp is used in myMul, myDiv and myCmp to choose between an inline function
and a virtual call. Its value may be non-zero and different from myOrdvWords if a redundant representation is
being used (e.g. for a StdDegRevLex ordering). By default this is initialized to a huge value, so that it will quickly
become evident at run-time if it hasn’t been initialized to a sane value.

The member functions myMul, myDiv, and myCmp are non-virtual so that the compiler can implement them inline:
at run-tme they check the data member myOrdvWordsForCmp to decide whether to the use the inline function or
delegate to a ”shadow” virtual function. This rather ugly arrangement was necessary to achieve acceptable run-time
performance.

The member function myMulIndetPower is not pure because a reasonable generic implementation exists. Simi-
larly, myOutput(OMOut, ordv) is not pure.

Threadsafety and CoCoA THREADSAFE HACK

The code contains some #if blocks to distinguish between single-threaded and multi-threaded run-time envi-
ronments. In a single-threaded environment the base class contains two ”global” buffers used when converting

116

between exponent vectors and compressed order vectors; in a multi-threaded environment these buffers are not
used, but each function needing to do such conversions creates appropriate buffers in local variables (so there are
lots of #if directives).

59.3 Bugs, Shortcomings and other ideas

In some ways, myCmp could simply be operator(); thus calls would look like ord(ordv1, ordv2) where ord is an
object of type PPOrdering.

We need a way to handle order vectors which have large integer entries! (also ordering matrices with large
integer entries). Recall that some ordvs may involve mpz t integers! Note that the polynomial type needs to know
how big an ordv can be: that’s what the OrdvWords member function is for.

Should StdDegRevLex actually store an extra component so that deg(...,x[0]) can be calculated easily?
Do we really need this to be quick? It would be needed for computing GCDs, testing divisibility etc, but these
operations would normally be done only on ”rich PP” objects – talk to Anna!

The restriction to order compatible gradings may not be wholly necessary. The PPs in a polynomial ho-
mogeneous with respect to a k-dimensional grading are completely specified by n-k of the entries in the order
vector, though precisely which entries must be retained depends on the grading and the ordering. Thus a later
generalization to non order compatible gradings may not be too painful.

ANNA: must add a section about modular order matrix JOHN: yes, you must! Where does 46336 come from???

The default implementation of myIsIndet is not very efficient, but is it really worth writing many different
(efficient) implementations?

60 PolyRing (John Abbott)

60.1 User documentation for PolyRing

PolyRing is an abstract class (inheriting from ring (Sec.72)) representing rings of polynomials with coefficients in
a commutative ring (Sec.72) R.

The polynomials may be (dense) univariate or (sparse) multivariate.

See RingElem PolyRing (Sec.75) for operations on its elements, but only a few operations are available at
this level of abstraction: see RingElem SparsePolyRing (Sec.75) or RingElem DenseUPolyRing (Sec.75) for more
operations on polynomials of SparsePolyRing (Sec.92) or DenseUPolyRing (Sec.20).

60.1.1 Examples

• ex-PolyRing1.C

• ex-PolyRing2.C

• ex-PolyIterator1.C

• ex-PolyIterator2.C

• ex-PolyInput1.C

• ex-factor1.C

60.1.2 Pseudo-constructors

Currently there are several functions to create polynomial rings: see SparsePolyRing constructors (Sec.92) for the
sparse implementation and DenseUPolyRing constructors (Sec.20) for the dense implementation (currently only
for univariate polynomials).

- CoeffRing is the ring of coefficients (must be commutative), - NumIndets specifies how many indeterminates
there are; by default the indet names will be x[0],..x[NumIndets-1], and the ordering is StdDegRevLex – see
PPOrdering (Sec.63).

• If the third parameter is specified then it is used in place of x in the indet names; we advise you to restrict
to names comprising only letters (to be sure of future compatibility).

117

../../examples/index.html#ex-PolyRing1.C
../../examples/index.html#ex-PolyRing2.C
../../examples/index.html#ex-PolyIterator1.C
../../examples/index.html#ex-PolyIterator2.C
../../examples/index.html#ex-PolyInput1.C
../../examples/index.html#ex-factor1.C

60.1.3 Queries and views

Let R be an object of type ring (Sec.72).

• IsPolyRing(R) – true if R is actually PolyRing

• AsPolyRing(R) – if R is a PolyRing view it as such

60.1.4 Operations on a PolyRing

In addition to the standard ring operations (Sec.72), a PolyRing (Sec.60) may be used in other functions.

Let P be an object of type PolyRing. Let R be an object of type ring (Sec.72).

• NumIndets(P) – the number of indeterminates in P

• CoeffRing(P) – the ring of coefficients of P

• indets(P) – a const std::vector of RingElem (Sec.75)s whose i-th element is the i-th indeterminate in P

• indets(P, str) – a std::vector of RingElem (Sec.75)s with all indeterminates in P whose head is the string
str

• indet(P,i) – the i-th indet of P as a RingElem (Sec.75)

• IndetPower(P,i,n) – the n-th power of the i-th indet of P as a RingElem (Sec.75)

60.1.5 Homomorphisms

Let P be an object of type PolyRing. Let R be an object of type ring (Sec.72).

CoeffEmbeddingHom(P) the homomorphism which maps CoeffRing(P) into P

PolyRingHom(P, R, CoeffHom, IndetImages) the homomorphism from P to R which maps the coeffs using
CoeffHom, and maps the k-th indet into IndetImages[k]

EvalHom(P, IndetImages) the evaluation homomorphism from P to CoeffRing(P) which is the identity on the
coeffs, and maps the kth indet into IndetImages[k]

PolyAlgebraHom(P, R, IndetImages) must have CoeffRing(P) = R or CoeffRing(P) = CoeffRing(R) this is
the identity on coeffs, and maps the k-th indet into IndetImages[k]

60.2 Maintainer documentation for PolyRing

The hard part has been deciding which member functions should be in PolyRingBase and which should be in
less abstract classes. If you want to modify the code here, you should probably also look at SparsePolyRing and
DUPolyRing before messing with the code!

The implementations in PolyRing.C are all very simple: they just conduct some sanity checks on the function
arguments before passing them to the PolyRing member function which will actually do the work.

60.3 Bugs, Shortcomings and other ideas

What precisely should the fancy version of deriv do? What are permitted values for the second arg? Must coeff=1?
What if the second arg does not have precisely one term?

The range of member functions on RawValues is rather a hotch-potch. Hopefully, experience and use of the
code will bring some better order to the chaos.

Verify the true need for myRemoveBigContent, myMulByCoeff, myDivByCoeff. If the coeff ring has zero divisors
then myMulByCoeff could change the structure of the poly!

Maintainer doc is largely absent.

118

61 PPMonoid (John Abbott)

61.1 User documentation for the classes PPMonoid, PPMonoidElem and PPMonoid-
Base

The classes PPMonoid and PPMonoidElem are analogous to ring (Sec.72) and RingElem. A PPMonoid represents
a (multiplicative) power product monoid with grading and compatible total arithmetic ordering; a PPMonoidElem

represents an element of a PPMonoid, i.e. a power product.

PPMonoid and PPMonoidElem are used inside the implementation of SparsePolyRing (Sec.92) (multivariate
polynomial rings).

You do not have to deal directly with PPMonoid unless you want to work solely with power-products, or use
some particular implementation for a specific need in your SparsePolyRing (Sec.92) – e.g. huge exponents, very
sparse power-products, fast ordering or fast access to exponents.

The implementations of PPMonoids are optimized for different uses:

• PPMonoidEv: stores the Exponent vector ; it is good for accessing the exponents, but slow for ordering; with
optional 3rd arg BigExps the exponents are stored as BigInt (Sec.8)’s

• PPMonoidOv: stores the Order vector ; it is good for ordering, but slow for accessing the exponents

• PPMonoidEvOv: stores the Exponent vector and the Order vector ; it is good for accessing the exponents and
for ordering but uses more memory and takes more time to assign.

61.1.1 Examples

• ex-PPMonoidElem1.C

• ex-PPMonoidElem2.C

61.1.2 Operations PPMonoids

Recall that every PPMonoid is graded, and has a degree-compatible total arithmetical ordering; the grading and
ordering must be specified when the PPMonoid is created. For convenient input and output, also the names of the
indeterminates generating the monoid must be specified when the monoid is created.

If you expect to use large exponents then you should use only the special PPMonoid created by PPMonoidBigEv.
The other PPMonoids should usually be fine for exponents up to 1000 or more; the true limit depends on the specific
monoid, the number of indeterminates, and the PPOrdering (Sec.63). At the moment there is no way to find out
what the true limit is (see Bugs section), and no warning is given should the limit be exceeded: you just get a
wrong answer.

Pseudo-constructors of PPMonoid

To create a PPMonoid use the function NewPPMonoid (the default currently chooses PPMonoidEv). To create a
PPMonoid object of a specific type use one of the pseudo-constructors related to the concrete monoid classes:

Given PPO a PPOrdering (Sec.63) or PPOrderingCtor (i.e. lex, StdDegLex, or StdDegRevLex), and IndetNames

a vector of symbol (Sec.95)

• NewPPMonoid(IndetNames, PPO) – same as NewPPMonoidEv

• NewPPMonoidEv(IndetNames, PPO)

• NewPPMonoidEv(IndetNames, PPO, BigExps) – BigExps is just an enum member.

• NewPPMonoidOv(IndetNames, PPO)

• NewPPMonoidEvOv(IndetNames, PPO)

119

../../examples/index.html#ex-PPMonoidElem1.C
../../examples/index.html#ex-PPMonoidElem2.C

Operations

• cout << PPM – print PPM on cout

• NumIndets(PPM) – number of indeterminates

• ordering(PPM) – the PPOrdering (Sec.63) inherent in PPM

• GradingDim(PPM) – the dimension of the grading (zero if ungraded)

• symbols(PPM) – std::vector of the symbol (Sec.95)s in PPM (i.e. names of the indets)

• IndetSymbol(PPM, i) – the symbol (Sec.95) for the i-th indeterminate

• PPM1 == PPM2 – true iff PPM1 and PPM2 are identical (i.e. same addr)

• PPM1 != PPM2 – true unless PPM1 and PPM2 are identical

• IsPPMonoidOv(PPM) – true iff PPM is internally implemeneted as a PPMonoidOv

These pseudo-constructors are described in the section about PPMonoidElems

• one(PPM)

• indet(PPM, i)

• IndetPower(PPM, i, exp)

• indets(PPM)

61.1.3 Summary of functions for PPMonoidElems

See also some example programs in the CoCoALib/examples/ directory.

When a new object of type PPMonoidElem is created the monoid to which it belongs must be specified either
explicitly as a constructor argument, or implicitly as the monoid associated with some constructor argument. Once
the PPMonoidElem object has been created it is not possible to make it belong to any other monoid. Comparison
and arithmetic between objects of type PPMonoidElem is permitted only if they belong to the same identical monoid.

Note: when writing a function which has an argument of type PPMonoidElem, you should specify the argument
type as ConstRefPPMonoidElem, or RefPPMonoidElem if you want to modify its value.

Let PPM be a PPMonoid; for convenience, in comments we shall use x[i] to refer to the i-th indeterminate in PPM.
Let pp be a non-const PPMonoidElem, and pp1 and pp2 be const PPMonoidElem (all belonging to PPM). Let expv

be a vector<long> of size equal to the number of indeterminates.

• PPMonoidElem t(PPM) – create new PP in PPM, value is 1

• PPMonoidElem t(PPM, expv) – create new PP in PPM, value is product x[i]ˆexpv[i]

• PPMonoidElem t(pp1) – create a new copy of pp1, belongs to same PPMonoid as pp1

• one(PPM) – the 1 belonging to PPM

• indet(PPM, i) – create a new copy of x[i] the i-th indeterminate of PPM

• IndetPower(PPM, i, n) – create x[i]ˆn, n-th power of i-th indeterminate of PPM

• indets(PPM) – std::vector (reference) whose n-th entry is n-th indet as a PPMonoidElem

• owner(pp1) – returns the PPMonoid to which pp1 belongs

• IsOne(pp1) – returns true iff pp1 = 1

• IsIndet(i, pp1) – returns true iff pp1 is an indet; if true, puts index of indet into i

• IsIndetPosPower(i, N, pp1) – returns true iff pp1 is a positive power of some indet; when the result is true
(signed long) i and (BigInt (Sec.8)) N are set so that pp1 == IndetPower(owner(pp), i, N); (otherwise
unchanged) if pp1 == 1 then the function throws ERR::BadArg

120

• IsIndetPosPower(i, n, pp1) – same as above, where n is long

• cmp(pp1, pp2) – compare pp1 with pp2 using inherent ordering; result is integer <0 if pp1 < pp2, =0 if
pp1 == pp2, and >0 if pp1 > pp2

• pp1 == pp2 – the six standard comparison operators...

• pp1 != pp2 – ...

• pp1 < pp2 – ... (inequalities use the ordering inherent in PPM)

• pp1 <= pp2 – ...

• pp1 > pp2 – ...

• pp1 >= pp2 – ...

• pp1 * pp2 – product of pp1 and pp2

• pp1 / pp2 – quotient of pp1 by pp2, quotient must be exact (see the function IsDivisible below)

• colon(pp1, pp2) – colon quotient of pp1 by pp2, i.e. pp1/gcd(pp1,pp2)

• gcd(pp1, pp2) – gcd of pp1 and pp2

• lcm(pp1, pp2) – lcm of pp1 and pp2

• radical(pp1) – radical of pp1

• power(pp1, n) – n-th power of pp1 (NB: you cannot use pp1^n, see below)

• IsCoprime(pp1, pp2) – tests whether pp1 and pp2 are coprime

• IsDivisible(pp1, pp2) – tests whether pp1 is divisible by pp2

• IsRadical(pp1) – test whether pp1 is radical, i.e. if pp1 == radical(pp1)

• AssignOne(pp) – sets pp = 1

• swap(pp, pp other) – swaps the values of pp and pp other

• pp = pp1 – assignment (pp and pp1 must belong to same PPMonoid)

• pp *= pp1 – same as pp = pp * pp1

• pp /= pp1 – same as pp = pp / pp1

• StdDeg(pp1) – standard degree of pp1; result is of type long

• wdeg(pp1) – weighted degree of pp1 (using specified grading); result is of type degree (Sec.17)

• CmpWDeg(pp1, pp2) – result is integer <0 =0 >0 according as wdeg(pp1) < = > wdeg(pp2); order on
weighted degrees is lex, see degree (Sec.17)

• CmpWDegPartial(pp1, pp2, i) – result is integer <0 =0 >0 as CmpWDeg wrt the first i components of the
weighted degree

• exponent(pp1, i) – exponent of x[i] in pp1 (result is a long)

• BigExponent(pp1, i) – exponent of x[i] in pp1 (result is a BigInt (Sec.8))

• exponents(expv, pp) – fills vector (of long) expv so that expv[i] = exponent(pp, i) for i=0,..,NumIndets(PPM)-
1

• BigExponents(expv, pp) – fills vector (of BigInt) expv so that expv[i] = BigExponent(pp, i) for i=0,..,NumIndets(PPM)-
1

• cout << pp1 – print out the value of pp1

Operations on collections of PPMonoidElem

• IsFactorClosed(S) – says whether the std::vector<PPMonoidElem> S is factor closed; error if S is empty.

121

61.2 Library Contributor Documentation

This section comprises two parts: the first is about creating a new type of PP monoid; the second comments about
calling the member functions of PPMonoidBase directly.

61.2.1 To add a new type of concrete PPMonoid class

My first suggestion is to look at the code implementing PPMonoidEv. This is a simple PP monoid implementation:
the values are represented as C arrays of exponents. Initially you should ignore the class CmpBase and those derived
from it; they are simply to permit fast comparison of PPs in certain special cases.

First, a note about ”philosophy”. As far as we can tell, the programming language C++ does not have a
built-in type system sufficiently flexible (and efficient) for our needs, consequently we have to build our own type
system on top of what C++ offers. The way we have chosen to do this is as follows (note that the overall scheme
used here is similar to that used for rings and their elements).

To fit into CoCoALib your new class must be derived from PPMonoidBase. Remember that any operation on
elements of your PP monoid will be effected by calling a member function of your new monoid class.

The monoid must be a cartesian power of N, the natural numbers, with the monoid operation (called ”multi-
plication”) being vector addition – the vector should be thought of as the vector of exponents in a power product.
The monoid must have a total arithmetic ordering; often this will be specified when the monoid is created. The
class PPOrdering (Sec.63) represents the possible orderings.

Here is a summary of the member functions which must be implemented. All the functions may be called for
a const PPMonoid, for brevity the const qualifier is omitted. I use two abbreviations:

RawPP is short for PPMonoidElemRawPtr
ConstRawPP is short for PPMonoidElemConstRawPtr

Note: all arithmetic functions must tolerate argument aliasing (i.e. any pair of arguments may be identical).

Constructors: these all allocate memory which must eventually be freed (by calling myDelete); the result is
a pointer to the memory allocated.

• PPMonoidElemRawPtr PPMonoidBase::myNew() – initialize pp to the identity

• PPMonoidElemRawPtr PPMonoidBase::myNew(const vector<int>& expv) – initialize pp from exponent
vector expv

• PPMonoidElemRawPtr PPMonoidBase::myNew(const RawPP& pp1) – initialize pp from pp1

Destructor: there is only one of these, its argument must be initialized

• void PPMonoidBase::myDelete(PPMonoidElemRawPtr pp) – destroy pp, frees memory

Assignment etc:

• void PPMonoidBase::mySwap(RawPP pp1, RawPP pp2) – swap the values of pp1 and pp2

• void PPMonoidBase::myAssign(RawPP pp, ConstRawPP pp1) – assign the value of pp1 to pp

• void PPMonoidBase::myAssign(RawPP pp, const vector<int>& expv) – assign to pp the PP with ex-
ponent vector expv

Arithmetic: in all cases the first arg is where the answer is placed, aliasing is permitted (i.e. arguments need
not be distinct); myDiv result is undefined if the quotient does not exist!

• const PPMonoidElem& myOne() – reference to 1 in the monoid

• void myMul(RawPP pp, ConstRawPP pp1, ConstRawPP pp2) – effects pp = pp1*pp2

• void myMulIndetPower(RawPtr pp, long i, unsigned long exp) – effects pp *= indet(i)ˆexp

• void myDiv(RawPP pp, ConstRawPP pp1, ConstRawPP pp2) – effects pp = pp1/pp2 (if it exists)

122

• void myColon(RawPP pp, ConstRawPP pp1, Const RawPP pp2) – effects pp = pp1/gcd(pp1,pp2)

• void myGcd(RawPP pp, ConstRawPP pp1, ConstRawPP pp2) – effects pp = gcd(pp1, pp2)

• void myLcm(RawPP pp, ConstRawPP pp1, ConstRawPP pp2) – effects pp = lcm(pp1, pp2)

• void myPower(RawPP pp, ConstRawPP pp1, int exp) – effects pp = pp1ˆexp

Comparison and testing: each PP monoid has associated with it a term ordering, i.e. a total ordering
which respects the monoid operation (multiplication)

• bool myIsCoprime(ConstRawPP pp1, ConstRawPP pp2) – true iff gcd(pp1, pp2) is 1

• bool myIsDivisible(ConstRawPP t1, ConstRawPP t2) – true iff t1 is divisible by t2

• int myCmp(ConstRawPP t1, ConstRawPP t2) – result is <0, =0, >0 according as t1 < ,=,> t2

• NYI int myHomogCmp(ConstRawPP t1, ConstRawPP t2) – as cmp, but assumes t1 and t2 have the same
degree

Sundries:

• degree myDeg(ConstRawPP t) – total degree

• long myExponent(ConstRawPtr rawpp, long i) – exponent of i-th indet in pp

• void myBigExponent(BigInt& EXP, ConstRawPtr rawpp, long i) – EXP = degree of i-th indet in pp

• void myExponents(vector<long>& expv, ConstRawPP t) – get exponents, put them in expv

• void myBigExponents(vector<BigInt>& expv, ConstRawPP t) – get exponents, put them in expv

• ostream& myOutput(ostream& out, const RawPP& t) – prints t on out; default defn in PPMonoid.C

Query functions:

• long myNumIndets() – number of indeterminates generating the monoid

• const symbol& myIndetName(long var) – name of indet with index var

61.2.2 To add a new member function to PPMonoidBase

You will have to edit PPMonoid.H and possibly PPMonoid.C (e.g. if there is to be a default definition). Arguments
representing PPs should be of type RawPP if they may be modified, or of type ConstRawPP if they are read-only.
See also the Coding Conventions about names of member functions.

If you do add a new pure virtual member function, you will have to add definitions to all the existing concrete
PP monoid classes (otherwise they will become uninstantiable). Don’t forget to update the documentation too!

61.2.3 Calculating directly with raw PPs

Values of type PPMonoidElem are intended to be simple and safe to use but with some performance penalty. There
is also a ”fast, ugly, unsafe” option which we shall describe here.

The most important fact to heed is that a PPMonoidElemRawPtr value is not a C++ object – it does not generally
know enough about itself even to destroy itself. This places a considerable responsibility on the programmer, and
probably makes it difficult to write exception clean code. You really must view the performance issue as paramount
if you plan to use raw PPs! In any case the gain in speed will likely be only slight.

The model for creation/destruction and use of raw PPs is as follows: (NB see Bugs section about exception-
safety) - (1) an uninitialized raw PP is acquired from the system; - (2) the raw PP is initialized by calling an
initialization function (typically called myNew) – this will generally acquire further resources; - (3) now the RawPP
may be used for i/o, arithmetic, and so forth; - (4) finally, when the value is no longer required the extra resources
acquired during initialization should be released by calling the myDelete function – failure to call myDelete will
probably result in a memory leak.

Here is some pseudo C++ code to give an idea

123

const PPMonoid& M = ...; // A PPMonoid from somewhere

PPMonoidElemRawPtr t; // A wrapped opaque pointer; initially points into hyperspace.

t = M->myNew(); // Allocate resources for a new PP belonging to M;

// there are two other myNew functions.

.... operations on t; always via a member function of the monoid M ...

M->myDelete(t); // "destroy" the value t held; t points into hyperspace again.

NOTE: the only functions which take a pointer into hyperspace are PPMonoidBase::myNew; many functions,
e.g. PPMonoidBase::myMul, write their result into the first argument and require that that first argument be
already allocated/initialized.

NOTE: if an exception is thrown after M->myNew and before M->myDelete then there will be a memory leak
(unless you correctly add a try...catch block). If t is just to hold a temporary local value then it is better to
create a full PPMonoidElem and then let t be its RawPtr; this should avoid memory leaks.

61.3 Maintainer documentation for PPMonoid, PPMonoidElem, and PPMonoid-
Base

See subsection below about thread-safety in PPMonoidOV.

The general structure here mirrors that of rings and their elements, so you may find it helpful to read ring.txt if
the following seems too opaque. At first sight the design may seem complex (because it comprises several classes),
but there’s no need to be afraid.

The class PPMonoid is a reference counting smart pointer to an object derived from PPMonoidBase. This
means that making copies of a PPMonoid is very cheap, and that it is easy to tell if two PPMonoids are identical.
Assignment of PPMonoids is disabled because I am not sure whether it is useful/meaningful. operator-> allows
member functions of PPMonoidBase to be called using a simple syntax.

The class PPMonoidBase is what specifies the class interface for each concrete PP monoid implementation, i.e.
the operations that it must offer. It includes an intrusive reference count for compatibility with PPMonoid. Since
it is inconceivable to have a PP monoid without an ordering, there is a data member for memorizing the inherent
PPOrdering. This data member is protected so that it is accessible only to friends and derived classes.

The function PPMonoidBase::myOutput for printing PPs has a reasonable default definition.

The situation for elements of a PP monoid could easily appear horrendously complicated. The basic idea is that
a PP monoid element comprises two components: one indicating the PPMonoid to which the value belongs, and
the other indicating the actual value. This allows the user to employ a notationally convenient syntax for many
operations – the emphasis is on notational convenience rather than ultimate run-time efficiency.

For an element of a PP monoid, the owning PPMonoid is specified during creation and remains fixed throughout
the life of the object; in contrast the value may be varied (if C++ const rules permit). The value is indicated by an
opaque pointer (essentially a wrapped void*): only the owning PPMonoid knows how to interpret the data pointed
to, and so all operations on the value are effected by member functions of the owning PPMonoid.

I do not like the idea of having naked void* values in programs: it is too easy to get confused about what is
pointing to what. Since the value part of a PPMonoidElem is an opaque pointer (morally a void*), I chose to wrap
it in a lightweight class; actually there are two classes depending on whether the pointed to value is const or not.
These classes are PPMonoidElemRawPtr and PPMonoidElemConstRawPtr; they are opaque pointers pointing to a
value belonging to some concrete PP monoid (someone else must keep track of precisely which PP monoid is the
owner).

The constructors for PPMonoidElemRawPtr and PPMonoidElemConstRawPtr are explicit to avoid potentially
risky automatic conversion of any old pointer into one of these types. The naked pointer may be accessed via the
member functions myRawPtr. Only implementors of new PP monoid classes are likely to find these two opaque
pointer classes useful.

I now return to the classes for representing fully qualified PPs. There are three very similar yet distinct classes
for elements of PP monoids; the distinction is to keep track of constness and ownership. I have used inheritance
to allow natural automatic conversion among these three classes (analogously to RingElem, ConstRefRingElem)

• A PPMonoidElem is the owner of its value; the value will be deleted when the object ceases to exist.

• A RefPPMonoidElem is not the owner of its value, but the value may be changed (and the owner of the value

124

will see the change too).

• A ConstRefPPMonoidElem is not the owner of its value, and its value may not be changed (through this
reference).

The data layout is determined in ConstRefPPMonoidElem, and the more permissive classes inherit the data
members. I have deliberately used a non-constant PPMonoidElemRawPtr for the value pointer as it is easier for
the class ConstRefPPMonoidElem to add in constness appropriately than it is for the other two classes to remove
it. The four assignment operators must all be defined since C++ does not allow polymorphism in the destination
object (e.g. because of potential problems with slicing). Ideally it would be enough to define assignment just
from a ConstRefPPMonoidElem, but I have to define also the ”homogeneous” assignment operator since the default
definition would not work properly. It is a bit tedious to have four copies of the relevant code (but it is only a
handful of lines each time).

By convention the member functions of PPMonoidBase which operate on raw PP values assume that the values
are valid (e.g. belong to the same PP monoid, division is exact in myDiv). The validity of the arguments is checked
by the syntactically nice equivalent operations (see the code in PPMonoid.C). This permits a programmer to choose
between safe clean code (with nice syntax) or faster unsafe code (albeit with uglier syntax).

Thread-safety and CoCoA THREADSAFE HACK

The impl in PPMonoidOV using the CPP flag CoCoA THREADSAFETY HACK to select between two impl strategies.
If the CPP flag is not set, then ”single-threaded” code is compiled which uses some ”global” buffers to gain speed;
if the flag is set then buffers are allocated locally in several functions.

61.4 Bugs, Shortcomings and other ideas

The section on ”Advanced Use” is a bit out of date and too long.

• (1) Should more operations on PPMonoidElems be inlined? With the current design, since speed is not so
important for PPMonoidElems.

• (2) We would like a way of performing divisibility tests faster when there are few indeterminates and relatively
high degrees. In this case the DivMask is useless. The ”gonnet” example is slow because it entails many
divisibility tests. One suggestion would be to maintain a ”randomly weighted” degree and use that as a
simple heuristic for deciding quickly some cases.

• (3) I’ve fixed the various arithmetic functions for PPMonoidElems so that they are obviously exception safe,
BUT they now make an extra copy of the computed value (as it is returned from a local variable to the caller).
Here is an idea for avoiding that extra copy. Create a new type (say PPMonoidElem local) which offers just
raw(..) and a function export(..) which allows the return mechanism to create a full PPMonoidElem (just by
copying pointers) and empty out the PPMonoidElem local. If the PPMonoidElem local is not empty then
it can destroy the value held within it. By not attempting to make PPMonoidElem locals behave like full
PPMonoidElems I save a lot of ”useless” function definitions. Indeed the ”export” function need not exist:
an implicit ctor for a PPMonoidElem from a PPMonoidElem local could do all the work. I’ll wait to see
profiling information before considering implementing.

• (4) Is assignment for PPMonoids likely to be useful to anyone? I prefer to forbid it, as I suspect a program
needing to use it is really suffering from poor design...

• (5) I have chosen not to use operator^ for computing powers because of a significant risk of misunderstanding
between programmer and compiler. The syntax/grammar of C++ cannot be changed, and operator^ binds
less tightly than (binary) operator*, so any expression of the form a*b^c will be parsed as (a*b)^c; this
is almost certainly not what the programmer intended. To avoid such problems of misunderstanding I have
preferred not to define operator^; it seems too dangerous.

• (6) The absence of a deg function for PPMonoidElems is deliberate; you should choose either StdDeg or wdeg
according to the type of degree you want to compute. This is unnatural; is is a bug?

• (7) I have deliberately not made the destructors for ConstRefPPMonoidElem and its descendants virtual. This
is marginally risky: it might be possible to leak memory if you convert a raw pointer to PPMonoidElem into
a raw pointer to ConstRefPPMonoidElem; of course, if you do this you’re asking for trouble anyway.

• (8) Should exponents give an error if the values exceed the limits for long?

• (9) Offer the user some means of checking for and handling exponent overflow.

125

62 PPMonoidHom (John Abbott)

62.1 User documentation for the class PPMonoidHom

The class PPMonoidHom is used for representing homomorphisms between PPMonoids. Each indeterminate in the
domain monoid maps into an element of the codomain (i.e. a power product).

62.1.1 Examples

• ex-PPMonoidHom.C

62.1.2 Functions for PPMonoidHoms

Here is a list of the (pseudo-)ctors for PPMonoidHom

• IdentityHom(PPM) the identity

• GeneralHom(PPM, images) where images is a vector of PPMonoidElem whose i -th entry is the image of the
i -th indet in PPM

• RestrictionHom(PPM, IndetIndexes) where IndetIndexes is a vector of indices of the indets which map
to themselves, the others map to 1.

The PPMonoidHom object may be applied to a value by using normal function call syntax: for instance

PPMonoidElem t = ...;

PPMonoidHom phi = ...;

cout << "phi applied to t gives " << phi(t) << endl;

Given a PPMonoidHom you can find out its domain and codomain:

domain(phi) the domain of phi as a PPMonoid

codomain(phi) the codomain of phi as a PPMonoid

62.2 Library Contributor Documentation

62.3 Maintainer documentation for PPMonoid, PPMonoidElem, and PPMonoid-
Base

62.4 Bugs, Shortcomings and other ideas

Add some more special cases: e.g. permutations of the indets, and the ”identity” between PPMonoids which differ
only in their orderings.

Should we allow partial homs? e.g. one which maps x^2 to y (so odd powers of x have no image).

63 PPOrdering (John Abbott)

63.1 Examples

• ex-PPMonoidElem2.C

• ex-OrderingGrading1.C

63.2 User documentation

An object of the class PPOrdering represents an arithmetic ordering on the (multiplicative) monoid of power
products, i.e. such that the ordering respects the monoid operation (viz. s < t => r*s < r*t for all r,s,t in the
monoid).

In CoCoALib orderings and gradings are intimately linked – for gradings see also degree (Sec.17). If you want
to use an ordering to compare power products then see PPMonoid (Sec.61).

126

../../examples/index.html#ex-PPMonoidHom1.C
../../examples/index.html#ex-PPMonoidElem2.C
../../examples/index.html#ex-OrderingGrading1.C

63.2.1 Pseudo-constructors

Currently, the most typical use for a PPOrdering object is as an argument to a constructor of a concrete PPMonoid

(Sec.61) or PolyRing (Sec.60), so see below Convenience constructors.

These are the functions which create new PPOrderings:

• NewLexOrdering(NumIndets) – GradingDim = 0

• NewStdDegLexOrdering(NumIndets) – GradingDim = 1

• NewStdDegRevLexOrdering(NumIndets) – GradingDim = 1

• NewMatrixOrdering(NumIndets, GradingDim, OrderMatrix)

The first three create respectively lex, StdDegLex and StdDegRevLex orderings on the given number of inde-
terminates. Note the use of Std in the names to emphasise that they are only for standard graded polynomial
rings (i.e. each indet has degree 1).

The last function creates a PPOrdering given a matrix. GradingDim specifies how many of the rows of
OrderMatrix are to be taken as specifying the grading.

Convenience constructors

For convenience there is also the class PPOrderingCtor which provides a handy interface for creating PPMonoid

(Sec.61) and SparsePolyRing (Sec.92), so that lex, StdDegLex, StdDegRevLex may be used as shortcuts instead
of the proper constructors, e.g.

NewPolyRing(RingQQ(), symbols("a","b","c","d"), lex);

is the same as

NewPolyRing(RingQQ(), symbols("a","b","c","d"), NewLexOrdering(4));

63.2.2 Queries

• IsLex(PPO) – true iff PPO is implemented as lex

• IsStdDegLex(PPO) – true iff PPO is implemented as StdDegLex

• IsStdDegRevLex(PPO) – true iff PPO is implemented as StdDegRevLex

• IsMatrixOrdering(PPO) – true iff PPO is implemented as MatrixOrdering

• IsTermOrdering(PPO) – true iff PPO is a term ordering

63.2.3 Operations

The operations on a PPOrdering object are:

• out << PPO – output the PPO object to channel out

• NumIndets(PPO) – number of indeterminates the ordering is intended for

• GradingDim(PPO) – the dimension of the grading associated to the ordering

• GetMatrix(PPO) – a matrix defining the ordering

CoCoALib supports graded polynomial rings with the restriction that the grading be compatible with the PP
ordering: i.e. the grading comprises simply the first k entries of the order vector. The GradingDim is merely the
integer k (which may be zero if there is no grading).

A normal CoCoA library user need know no more than this about PPOrderings. CoCoA Library contributors
and the curious should read on.

There is also a member function (M a matrix) ... Don’t use it yet!

• PPO.myMatrixCopy(M) – fill M with a matrix which specifies the ordering PPO

127

63.3 Maintainer documentation for PPOrdering

A PPOrdering is just a smart pointer to an instance of a class derived from PPOrderingBase; so PPOrdering is a
simple reference counting smart-pointer class, while PPOrderingBase hosts the intrusive reference count (so that
every concrete derived class will inherit it).

There are four concrete PPOrderings in the namespace CoCoA::PPO. The implementations are all simple and
straightforward except for the matrix ordering which is a little longer and messier but still easy enough to follow.

63.4 Bugs, shortcomings and other ideas

Must resolve the restrictions on order matrices in NewMatrixOrdering (matrix must be square).

We need better ways to compose PPOrderings, i.e. to build new ones starting from existing ones. Max knows
the sorts of operation needed here. Something similar to CoCoA4’s BlockMatrix command is needed.

64 PPVector (Anna Bigatti)

modernise

64.1 class PPVector

WARNING THIS IS STILL A PRELIMINARY IMPLEMENTATION as indicated by the names of the
implementation files: TmpPPVector.H and TmpPPVector.C.

This class is for dealing with lists of power-products.

This class has been designed to be used by monomial ideal operations, Hilbert, and Mayer-Vietoris trees.

The key functions interpret the list as generators of a monomial ideal: interreduction, divisibility test (ideal
membership), lcms (ideal intersection).

The elements are PPWithMask (Sec.65), to make fast divisibility tests. Constructor requires a PPMonoid (Sec.61)
and a DivMaskRule (see DivMask (Sec.23)), so that the user can choose the best suited implementations (mostly
depending on the number of indeterminates and on the size of the exponents).

64.1.1 Examples

• ex-PPVector.C

64.2 Fields and main functions

Member fields are

PPMonoid myPPM;

DivMaskRule myDMR;

std::vector<PPWithMask> myVec;

64.2.1 Utility functions

• PPMonoid PPM(const PPVector& PPs)

• DivMaskRule DMR(const PPVector& PPs)

• std::ostream& operator<<(std::ostream&, PPVector)

• bool IsEmpty(const PPVector& PPs)

• long len(const PPVector& PPs)

• void convert(std::vector<RingElem>& v, ring P, const PPVector& PPs) converts PP’s into RingElem’s

• void convert(PPVector PPs, const std::vector<RingElem>& v) converts vector<RingElem> (if mono-
mial!) into PPVector

128

../../examples/index.html#ex-PPVector.C

• void PushBack(PPVector& PPs, ConstRefPPMonoidElem pp) if owner(pp) != PPM(PPs) it maps it

• void PushBackPopBack(PPVector& ToPPs, PPVector& FromPPs) move last PP from FromPPs into ToPPs

• void swap(PPVector& PPs1, PPVector& PPs2) swap PPs1 and PPs1

64.2.2 Mathemetical functions

• bool IsDivisible(const PPWithMask& pp, const PPVector& ByL); true is pp is divisible by an element
of L

• bool IsDivisible(ConstRefPPMonoidElem pp, const PPVector& ByL); true is pp is divisible by an ele-
ment of L

• void interreduce(PPVector& PPs); interreduce PPs (NOT exception clean)

• void InterreduceSort(PPVector& PPs); interreduce and sort PPs (NOT exception clean)

• void lcms(PPVector& PPs, const PPVector& PPs1, const PPVector& PPs2); all the lcm between ele-
ments of PPs1 and PPs2, effectively the generators of the intersection ideal

64.3 Bugs, Shortcomings and other ideas

64.3.1 Abstract Class

There was an attempt to make it an abstract class, PPVectorBase, made of abstract PPVectorElem, with the plan
to have concrete classes a vector of PPWithMask (Sec.65), of PPMonoidElem, and of square-free pps (which cannot
make a PPMonoid (Sec.61) because x*x is not square-free).

But this failed because most operations would need to know the type of the elements in the vector making it
more suitable for templates. But

• (1) I much prefer inheritance (mathematically cleaner) and

• (2) probably all this generality is useless.

So it was sadly abandoned.

65 PPWithMask (Anna Bigatti)

65.1 Examples

• ex-PPWithMask1.C

• ex-PPWithMask2.C

65.2 User documentation

WARNING: THIS IS STILL ONLY A PRELIMINARY INTERFACE

friend bool IsDivisibleFast(const PPWithMask& pm1, const PPWithMask& pm2); ///< suffix ”Fast” because
it does not check compatibility

65.3 constructor

A value of type PPWithMask is an ”enriched” power product: it also contains a ”divmask” so that divisibility tests
between PPWithMask values can be effected quickly (on average, and assuming they are only rarely divisible).

To create a PPWithMask value:

PPWithMask(pp, DMRule) -- pp is a power product, DMRule is a divmask rule

129

../../examples/index.html#ex-PPWithMask1.C
../../examples/index.html#ex-PPWithMask2.C

Given a PPWithMask value you can extract the power product and DivMaskRule using the following accessor
functions:

PP(ppwm) -- get a reference to the internal power product

DivMaskImpl(ppwm) -- get the div mask rule

Implementation of PPMonoidElem with DivMask for fast divisibility test

This type is not intended for ”public use”: it must be fast, so we cannot guarantee safety checks. It does some
compatibility tests with CoCoA ASSERT (i.e. only with CoCoA DEBUG on)

It is to be used ONLY when speed on divisibility tests is crucial (Buchberger, Toric, Hilbert, ...).

Constructor and assignment from pp might be expensive.

65.4 Maintainer documentation for files BuildInfo

65.5 Bugs, Shortcomings and other ideas

Both impl and doc are very incomplete!

66 ProgressReporter (John Abbott)

66.1 Examples

• ex-ProgressReporter1.C

66.2 User documentation

ProgressReporter is a simple utility to help keep track of progress in a long iterative computation; it prints out
a short ”progress report” at roughly the indicated time intervals.

ProgressReporter assumes that successive iterations do not vary wildly in computational cost.

66.2.1 Constructors and pseudo-constructors

• ProgressReporter(t) – create a reporter which prints at intervals of roughly t seconds

66.2.2 Operations

There is essentially one operation: let report be a ProgressReporter

• report() – print a progress report if enough time has elapsed

• report(arg1) – print a progress report (incl. value of arg1) if enough time has elapsed

• report(arg1, arg2) – print a progress report (incl. values of arg1, arg2) if enough time has elapsed

These calls are designed to be cheap when it is not time to produce a report.

66.3 Maintainer documentation

The only ”tricky part” was trying to make reports appear at round values of the internal counter. It is a little
messy, but not hard.

The mem fns operator() are inline so that most non-printing calls should be very cheap. It seems useful to
let the user supply some extra values to be printed.

increase125 increases its arg to next number of the form 10ˆn, 2*10ˆn or 5*10ˆn; decrease125 decreases the
arg to the next lowest number of that form.

Initially I tried to make the printed times close to multiples of the specified interval, but this led to ”surprising”
behaviour if some CPU time had been used before starting the loop – the first report could be printed after much

130

../../examples/index.html#ex-ProgressReporter1.C

less than the chosen interval (and the corresponding number of iterations would be much smaller than expected).
Now the code simply says next print time is one interval from the previous print time (so average print intervals
will be slightly longer than desired).

66.4 Bugs, shortcomings and other ideas

Should increase125 and decrease125 be moved to utils?

66.5 Main changes

2014

• april (v0.99534): first release

67 QBGenerator (John Abbott)

67.1 User documentation for QBGenerator

The name QBGenerator derives from its intended use as a (monomial) quotient basis generator, that is a way of
generating a factor closed (vector space) basis of power products for the quotient of a polynomial ring by a zero-
dimensional ideal. It is used in the implementation of the FGLM and the Buchberger-Moeller algorithms
– in fact these are really the same algorithm (for computing a Groebner basis of an intersection of one or more
zero-dimensional ideals).

Background theory

Let P denote a polynomial ring (Sec.72) (with coefficients in a field k), and let I be a zero-dimensional ideal
(Sec.40) in P. Then mathematically the quotient P/I is a finite dimensional vector space over k. We seek a basis
QB for P/I which is a factor closed set of power products; i.e. if the power product t is in QB then any factor of
t is in QB too. Groebner basis theory guarantees that such bases exist; actually it was first proved by Macaulay (a
person, not a computer algebra system).

The elements of QB are determined one at a time, obviously starting with the trivial power product, 1. Moreover,
at every stage the set of elements in the partially formed QB is factor closed, and this implies that only certain
PPs are candidates for being adjoined to the QB (we call these corners). When a new element is adjoined to the
QB new elements may appear in the corner set, these newly adjoined elements form the new corner set (this is
always a subset of the corner set, and may be empty).

During the determination of the QB, some power products will be discovered which cannot be in the QB (usually
based on the failure of a linear independence criterion). Such PPs form the avoid set: the QBGenerator will
exclude all multiples of all elements of the avoid set from subsequent consideration.

67.1.1 Constructors and Pseudo-constructors

• QBGenerator(PPM) where PPM is the PPMonoid (Sec.61) in which we shall calculate; initially the quotient basis
is empty, and the corner set contains just 1.

67.1.2 Operations on QBGenerator

There are 3 accessor functions, and 2 true operations:

• QBG.myQB() gives the current elements of the quotient basis (as a vector) in the order they were added;

• QBG.myCorners() gives the current elements of the corner set (as a list);

• QBG.myNewCorners() gives the newly added elements to the corner set (as a list);

• QBG.myCornerPPIntoQB(pp) move the element pp of the corner set into the quotient basis (this updates both
the corner set and the new corner set);

• QBG.myCornerIntoAvoidSet(pp) move the element pp of the corner set into the avoid set (all multiples of
pp will skipped hereafter).

131

67.2 Maintainer documentation for QBGenerator

The tricky part was designing a good interface. The implementations themselves are relatvely straightforward (and
actually contain some useful comments!)

The function QBGenerator::myCornerPPIntoQB makes local copies of some fields to permit full exception safety.
This may adversely affect execution speed, but I believe that in the context of FGLM & Buchberger-Moeller the
slow-down will be negligible (but I have not actually tested my guess).

67.3 Bugs, Shortcomings and other ideas

Class QBGenerator could offer a ctor which accepts a (good) estimate of the dimension of the quotient, i.e. final
number of elements in the QB. It could use this value to reserve space for myQBList.

68 QuotientRing (John Abbott, Anna M. Bigatti)

68.1 User documentation for QuotientRing

A QuotientRing is an abstract class (inheriting from ring (Sec.72)) representing quotients of a ring (Sec.72) by
an ideal (Sec.40).

See RingElem QuotientRing (Sec.75) for operations on its elements.

68.1.1 Examples

• ex-RingFp1.C

• ex-RingFp2.C

Extended example of use:

RingZZ ZZ = RingZZ(); // a copy of the ring of integers

ring ZZmod10 = NewZZmod(10); // represents ZZ/(10) integers modulo 10

ring ZZmod10a = NewQuotientRing(ZZ, ideal(ZZ, 10)); // same as ZZmod10

RingHom phi = QuotientingHom(ZZmod10); // ring hom from ZZ to ZZmod10

RingElem r(ZZmod10, -3); // an element of ZZmod10

RingElem preimage = CanonRepr(r); // an element of ZZ = BaseRing(ZZmod10)

ring S = NewZZmod(2); // another ring S, details do not matter much

RingHom theta = QuotientingHom(S); // any ring hom from ZZ to S will do instead

RingHom theta_bar = NewInducedHom(ZZmod10, theta); // induced ring hom from ZZmod10 to S

68.1.2 Constructors and Pseudo-constructors

• NewQuotientRing(R, I) – creates a new ring (Sec.72) representing the quotient R/I. I must be an ideal of
R; odd things may happen if I=R. If I is zero then the result is isomorphic to R but not equal to R; arithmetic
in R is more efficient than arithmetic in R/ideal(0).

• NewZZmod(n) – creates a new ring (Sec.72) representing the quotient ZZ/ideal(n) where ZZ is the ring of
integers RingZZ (Sec.84) and n is an integer. A CoCoALib error will be thrown if n=1 or n=-1. Currently
an error will be thrown also if n=0 (see BUGS).

NewZZmod or NewRingFp?

If n is a small prime then NewZZmod(n) produces the same result as NewRingFp(n) (or perhaps NewRingFpDouble(n)).
If n is not a small prime then NewRingFp(n) throws an exception whereas NewZZmod(n) will produce a working
quotient ring.

132

../../examples/index.html#ex-RingFp1.C
../../examples/index.html#ex-RingFp2.C

68.1.3 Query and cast

• IsQuotientRing(R) returns true iff R is implemented as a QuotientRing

• AsQuotientRing(R) returns a QuotientRing identical to the ring R if R is implemented as a QuotientRing,
otherwise throws ERR::NotQuotientRing.

68.1.4 Operations on QuotientRing

In addition to the standard ring operations (Sec.72), a QuotientRing may be used in other functions.

Given RmodI a QuotientRing (representing R/I) built as NewQuotientRing(R,I) with I is an ideal (Sec.40)
of the ring (Sec.72) R.

• BaseRing(RmodI) – a reference to the base ring of RmodI i.e. R

• DefiningIdeal(RmodI) – a reference to the ideal used to create RmodI i.e. I

68.1.5 Homomorphisms

• QuotientingHom(RmodI) – a reference to the quotienting homomorphism from R to RmodI

• NewInducedHom(RmodI, phi) – where phi is a RingHom (Sec.80) from R to S, creates a new RingHom (Sec.80)
from RmodI to S. Two types of error may occur:

– ERR::BadInducingHom – if domain(phi) is not BaseRing(RmodI)

– ERR::BadInducingHomKer – if phi does not map the gens of I to zero.

68.2 Maintainer documentation for QuotientRing, QuotientRingBase, GeneralQuo-
tientRingImpl

While considering the design of this code it may help to keep in mind these two canonical implementations:

GeneralQuotientRingImpl internally elements are represented as elements of a ”representation ring” (which may
differ from the base ring) which are kept reduced modulo some ideal (which may differ from the defining ideal)

RingFpImpl internally elements are represented by machine integers (see doc for RingFpImpl), a representation
incompatible with that used for elements of the ring of integers (which is probably the base ring)

QuotientRingBase is an abstract class derived from RingBase, and is the base class for all quotient rings. It
adds the following four new pure virtual member functions which must be defined in every concrete quotient ring:

virtual RingElem myCanonRepr(ConstRawValue r) const;

virtual void myReduction(RawValue& image, ConstRawValue arg) const;

virtual const RingHom& myQuotientingHom() const;

virtual RingHom myInducedHomCtor(const RingHom& InducingHom) const;

The member function myCanonRepr has to return a copy of the value since we cannot be sure that the internal
representation is compatible with the internal representation of elements of the base ring.

68.3 Bugs, Shortcomings and other ideas

IamTrueGCDDomain always returns false. We can be clever in some easy cases, but it is hard in general (think of
rings of algebraic integers which are gcd domains, but not euclidean domains).

Should NewZZmod(n) allow the case n==0? There’s no mathematical reason to forbid it, but forbidding it
may help detect programmer errors more quickly – it seems unlikely that one would really want to quotient by
ideal(0).

FAIRLY SERIOUS CONFUSION: the code seems to make REPEATED sanity checks see

133

QuotientRingBase::QuotientRingBase

NewQuotientRing

QuotientRingHomBase::QuotientRingHomBase

NewInducedHom

I suspect that the C++ ctors should use CoCoA ASSERT instead of checking always (and throwing an exception).

FURTHER SERIOUS CONFUSION: there is ambiguity about the difference between myBaseRing and myReprRing
esp. for creating induced homomorphisms: given ring R, and ring S = R/I, create ring T = S/J An induced hom
from T should start from a hom with domain S; or is it reasonable to accept a hom with domain R? In this case
for T myReprRing is R but myBaseRing is S.

Given a RingHom from a QuotientRing it is not generally possible to obtain a reference to an ”inducing hom”:
consider the hom from ZZ/(2) to ZZ/(2)[x] created by CoeffEmbeddingHom. A RingHom equivalent to the inducing
hom can be produced by composing QuotientingHom with the given hom.

20 March 2004: I have added the possibility of making a trivial ring by quotienting: previously this was
disallowed for no good reason that I could discern.

69 RandomSource (code: John Abbott; doc: John Abbott, Anna M.
Bigatti)

69.1 Examples

• ex-RandomSource1.C

• ex-RandomSource2.C

• ex-RandomLong1.C

• ex-RandomBool1.C

• ex-RandomBigInt1.C

Here is a typical example of how to use a RandomSeqLong; note that we create the generator before entering
the loop, then inside the loop we use the function NextValue to get 100 successive random values (between -9 and
9) from the generator:

RandomSeqLong rnd(-9,9);

for (int i=0; i < 100; ++i)

cout << NextValue(rnd) << endl;

69.2 User documentation

Below, in random RandomSourceOperations (Sec.??) we list these handy functions for generating random values:

RandomBool(), RandomLong(lo, hi), RandomBigInt(lo, hi)

they are probably just what you want in a simple program, but using them will make your code thread-
unsafe (which is quite acceptable in a small program for personal use).

For a thread-safe solution you should create your own random generator. If you just want to generate many
random values of the same type, you should consider using one of the three specialized random sequence generators
(which are faster than the more general RandomSource):

• The class RandomSeqLong is for representing generators of (independent) uniformly distributed random in-
tegers (long) in a given range; the range is specified when creating the generator (and cannot later be
changed).

• The class RandomSeqBigInt is for representing generators of (independent) uniformly distributed random
integers (BigInt (Sec.8)) in a given range; the range is specified when creating the generator (and cannot
later be changed).

134

../../examples/index.html#ex-RandomSource1.C
../../examples/index.html#ex-RandomSource2.C
../../examples/index.html#ex-RandomLong1.C
../../examples/index.html#ex-RandomBool1.C
../../examples/index.html#ex-RandomBigInt1.C

• The class RandomSeqBool models a binary random variable (with independent bool samples, each having
50% probability of being true and 50% of being false).

• The class RandomSource is for representing general sources of (pseudo-)randomness: you can use it to produce
random bool, long, and BigInt values.

69.2.1 Constructors

All constructors have an optional argument which is the initial seed – it determines the initial state of the generator.
If you do not give a seed, the default is 0.

If you create several random sequence generators of the same kind and with the same seed, they will each
produce exactly the same sequence of values. If you want to obtain different results each time a program is run,
you can seed the generator with the system time (e.g. by supplying as argument time(0)); this is likely desirable
unless you’re trying to debug a randomized algorithm.

For RandomSource see also the reseed function documented below in RandomSource Operations.

RandomSource

RandomSource() seeded with 0

RandomSource(n) seeded with n

For convenience, there is a global RandomSource object (belonging to GlobalManager (Sec.38)); you can get a
reference to it by calling GlobalRandomSource(), but using it will make your code thread-unsafe.

RandomSeqXXXX

RandomSeqBigInt(lo,hi) seeded with 0

RandomSeqLong(lo,hi) seeded with 0

RandomSeqBool() seeded with 0

RandomSeqBigInt(lo,hi, n) seeded with abs(n)

RandomSeqLong(lo,hi, n) seeded with abs(n)

RandomSeqBool(n) seeded with abs(n)

Each RandomSeqBigInt (or RandomSeqLong) will produce (pseudo) random values uniformly distributed in the
range from lo to hi (with both extremes included). An ERR::BadArg exception is thrown if lo > hi; the case
lo == hi is allowed.

69.2.2 RandomSource Operations

These are the most convenient functions for generating random values; but they use GlobalRandomSource, so they
are thread-unsafe:

• RandomBool() – returns true with probability 50%

• RandomBiasedBool(P) – returns true with probability P

• RandomLong(lo, hi) – in range lo..hi (both ends included)

• RandomBigInt(lo, hi) – in range lo..hi (both ends included)

A cleaner way is to pass as an argument the specific RandomSource object to be used (in these examples we
call it RndSrc):

• RandomBool(RndSrc)

• RandomLong(RndSrc, lo, hi) – in range lo..hi (both ends included)

• RandomBigInt(RndSrc, lo, hi) – in range lo..hi (both ends included)

135

A RandomSource object may be reseeded at any time; immediately after reseeding it will generate the same
random sequence as a newly created RandomSource initialized with that same seed. The seed must be an integer
value.

• reseed(RndSrc, seed)

Note about thread-safety: the various operations on a fixed RandomSource object are not thread-safe; to
achieve thread safety, you should use different objects in different threads. In particular, it is best not to use
GlobalRandomSource() in a multi-threaded environment.

69.2.3 RandomSeqXXXX Operations

Once you have created a RandomSeqXXXX you may perform the following operations on it:

• *rnd – get the current value of rnd (as a boolean).

• ++rnd – advance to next value of rnd.

• rnd++ – advance to next value of rnd INEFFICIENTLY.

• NextValue(rnd) – advance and then return new value; same as *++rnd

• out << rnd – print some information about rnd.

• rnd.myIndex() – number of times rnd has been advanced, (same as the number of random bools generated).

Note that a RandomSeqXXXX supports input iterator syntax.

Moreover, for RandomSeqBool there is a special function

• NextBiasedBool(RndBool, P) – use several samples from RndBool to produce a boolean with probability P

of being true; may consume many values from RndBool but on average consumes less than 2 values per call.

You may assign or create copies of RandomSeqXXXX objects; the copies acquire the complete state of the original,
so will go on to produce exactly the same sequence of values as the original will produce.

69.3 Maintainer documentation

RandomSource

The impl is mostly quite straightforward since almost all the work is done by GMP.

RandomLong(RndSrc, lo, hi) is a bit messy for two reasons:

1. CoCoALib uses signed longs while GMP uses unsigned longs;

2. the case when (lo,hi) specify the whole range of representable longs requires special handling.

RandomSeqLong and RandomSeqBigInt

The idea is very simple: use the pseudo-random number generator of GMP to generate a random machine
integer in the range 0 to myRange-1 (where myRange was set in the ctor to be 1+myUpb-myLwb) and then add that
to myLwb. The result is stored in the data member myValue so that input iterator syntax can be supported.

There are two non essential data members: mySeed and myCounter. I put these in to help any poor blighter
who has to debug a randomized algorithm, and who may want to fast forward the random sequence to the right
place.

The data member myState holds all the state information used by the GMP generator. Its presence makes the
ctors, dtor and assignment messier than they would have been otherwise.

The advancing and reading member functions (i.e. operator++ and operator*) are inline for efficiency, as is
the NextValue function.

myGetValue is a little messy because the value generated by the GMP function gmp urandomm ui cannot generate
the full range of unsigned long values. Instead I have to call gmp urandomb ui if the full range is needed.

The data members myLwb, myUpb and myRange are morally constant, but I cannot make them const because I
wanted to allow assignment of RandomSeqLong objects.

136

RandomSeqBool

The idea is very simple: use the pseudo-random number generator of GMP to generate a random integer, and
then give out the bits of this integer one at at time; when the last bit has been given out, get a new random integer
from the GMP generator. The random integer is kept in the data member myBuffer, and myBitIndex is used to
read the bits one at a time.

The condition for refilling myBuffer is when the index goes beyond the number of bits held in myBuffer.

myFillBuffer also sets the data member myBitIndex to zero; it seemed most sensible to do this here.

The function prob is nifty; if you think about it for a moment, it is obviously right (and economical on random
bits). It would be niftier still if the probability were specified as an unsigned long – on a 64-bit machine this
ought to be sufficient for almost all purposes. If the requested probability is of the form N/2ˆk for some odd
integer N, then the average number of bits consumed by prob is 2-2ˆ(1-k), which always lies between 1 and 2. If
the requested probability is 0 or 1, no bits are consumed.

69.4 Bugs, shortcomings and other ideas

The printing function gives only partial information; e.g. two RandomSource objects with different internal states
might be printed out identically.

The implementation simply calls the GMP pseudo-random generator; this generator is deterministic (so always
produces the same sequence), but if you change versions of GMP, the sequence of generated values may change.
You will have to read the GMP documentation to know more.

Discarded idea: have a ctor which takes a ref to a RandomSource (Sec.69), and which uses that to obtain
randomness. I discarded the idea because of the risks of an invisible external reference (e.g. a dangling
reference, or problems in multithreaded code). Instead of passing a reference to a RandomSource (Sec.69) to the
ctor, you can use the RandomSource (Sec.69) to create an initial seed which is handed to the ctor – this gives better
separation.

Why can RandomSource be seeded with a BigInt but the others not? Does anyone really care?

69.4.1 Doubts common to RandomSeqBigInt, RandomSeqBool, RandomSeqLong

It might be neater to put ++myCounter inside myGenValue, though this would mean that myCounter gets incre-
mented inside the ctor.

Should NextValue advance before or after getting the value?

Is the information printed by myOutputSelf adequate? Time will tell.

Is there a better way of writing the four ctors (for RandomSeqBigInt) without repeating many lines of essentially
identical source code?

Are there too many inline fns? Is run-time speed so important here? How many algorithms really consume
millions of random bits/numbers? Surely the computations on the random values should exceed the cost of
generating them, shouldn’t they?

69.5 Main changes

• December 2012 (v0.9953)

– major rewriting: now all classes are defined in one single file random.[HC]

– some classes and functions have been renamed: RandomXXXXSource to RandomSeqXXXX, and sample to
NextValue

– documentation is unified in random.txt

• October 2012 (v0.9952)

– clarified doc; added comments about thread-safety.

• February 2011 (v0.9949)

– removed RandomLong(src) (i.e. with no range)

– added RandomBool(), RandomLong(lo,hi), RandomBigInt(lo,hi) (i.e. with no RandomSource)

• April 2011 (v0.9943) first release

137

70 ReductionCog (Anna Bigatti)

70.1 class ReductionCogBase

ReductionCogBase is an abstract class to perform a full reduction:

it contains two parts: ”IgnoredPPs” summands whose PPs are to be ignored ”Active” the part which will be
reduced Thanks to the limited operations allowed on a ReductionCog, all PP in IgnoredPPs are gueranteed bigger
than the PPs in the Active part.

with a ReductionCog F you can compute:

ActiveLPP(F) the LPP of the Active part IsActiveZero(F) is the Active part zero?

F.myMoveToNextLM() move the LM of the Active part to the IgnoredPPs F.myReduce(f) reduce the Active
part with f F.myAssignReset(f) the Active part gets f; f and IgnoredPPs get 0 F.myAssignReset(f, fLen) same as
above but faster for geobucket implementation F.myRelease(f) F gets the total value of f; f gets 0 F.myOutput(out)

The idea is that LM will be reduced first, if the result is not 0 it will be ”set aside and ignored” and the new
LM of the Active part will be reduced, and so on.

The result of myReduce is defined up to a constant (in the coefficients ring)

Constructors are

ReductionCog NewRedCogPolyField(const SparsePolyRing& P);

ReductionCog NewRedCogPolyGCD(const SparsePolyRing& P);

ReductionCog NewRedCogGeobucketField(const SparsePolyRing& P);

ReductionCog NewRedCogGeobucketGCD(const SparsePolyRing& P);

If ”GCD” myRelease makes poly content free, but if ”Field: myRelease does NOT make poly monic. ... I can’t
remember why I made this choice....

example

ReductionCog F = ChooseReductionCogGeobucket(myGRingInfoValue);

F->myAssignReset(f, fLen);

while (!IsActiveZero(F))

{

(..) // find reducer g or break

F->myReduce(g);

}

F->myRelease(f);

70.2 implementations

in general the geobucket implementation are to be preferred

RedCog::PolyFieldImpl this implementation contains two RingElem.

RedCog::PolyGCDImpl this implementation contains two polynomials [RingElem] two coefficients [RingElem] and
a counter

RedCog::GeobucketFieldImpl this implementation contains a RingElem for the IgnoredPPs and a geobucket for
the Active part

RedCog::GeobucketGCDImpl this implementation contains a RingElem for the IgnoredPPs and a geobucket for
the Active part two coefficients [RingElem] and a counter

138

71 RegisterServerOps (Anna Bigatti)

71.1 User documentation

71.1.1 Quick and easy way to add a single operation

When you want to have some operation accessible from CoCoA-4 you need to make these steps:

• integrate your operation into CoCoALib

– make TmpMyFile.[HC]

– add TmpMyFile.C to src/AlgebraicCore/Makefile

– add TmpMyFile.H to include/library.H

• make a ServerOpBase for it in RegisterServerOpsUser.C (see ServerOp (Sec.85))

• register it in RegisterServerOps.C (see below)

Register your ServerOpBase in bool RegisterOps() at the end of the file:

void RegisterOp(const std::string& s, ServerOp o);

where s is the ”OpenMath name” of the operation for the communication with CoCoA-4 (used in cocoa5.cpkg).

Properly, you need to choose 3 names for your operation:

• the CoCoALib name for the ServerOp (following the CoCoALib coding conventions)

• the ”OpenMath” name used only for computer communication

• the CoCoA-4 name for the CoCoA-4 user (following the CoCoA-4 conventions and ending with a ”5” to
mean CoCoA-5)

71.1.2 Proper way to add a library

You should make a dedicated file RegisterServerOpsMyOperations.C (see, for example, src/AlgebraicCore/RegisterServerOpsFrobby.C)

Then you should choose a meaningful name for the namespace of your operations (for example CoCoAServerOperationsFromFrobby)
and define your own RegisterOps and copy the function RegisterOpsOnce:

namespace NamespaceForMyOperations

{

bool RegisterOps()

{

RegisterOp("OpenMathName1", ServerOp(new CoCoALibName1()));

RegisterOp("OpenMathName2", ServerOp(new CoCoALibName2()));

...

return true;

}

bool RegisterOpsOnce()

{

static bool EvalOnce = RegisterOps();

return EvalOnce;

}

}

Then add in src/server/RegisterServerOps.H the registration of your operations simply copying these lines:

namespace NamespaceForMyOperations

{

bool RegisterOpsOnce();

bool GlobalDummyVar = RegisterOpsOnce();

}

139

or make a dedicated file MyRegisterServerOps.H (see, for example, src/server/RegisterServerOpsFrobby.H)
and include it in src/server/CoCoAServer.C

71.2 Mantainer documentation

How does this work? When CoCoAServer.C is compiled the global variables are initialized.

Therefore NamespaceForMyOperations::GlobalDummyVar which is declared in the included file RegisterServerOps.H
is initialized by calling NamespaceForMyOperations::RegisterOpsOnce() with the side effect of registering your
operations.

71.3 Main changes

71.3.1 2009

Cleaned up the documentation after integration of the Frobby library.

72 ring (John Abbott, Anna M. Bigatti)

72.1 User documentation

The primary use for a variable of type ring is simply to specify the ring to which RingElem (Sec.75) variables are
associated. CoCoALib requires that the user specify first the rings in which to compute, then values in those rings
can be created and manipulated. We believe that this explicit approach avoids any possible problem of ambiguity.

The file ring.H introduces several classes used for representing rings and their elements. A normal user of the
CoCoA library will use principally the classes ring and RingElem (Sec.75): an object of type ring represents a
mathematical ring with unity, and objects of type RingElem (Sec.75) represent values from some ring. To make
the documentation more manageable it has been split into two: this file describes operations directly applicable to
rings, whereas a separate file describes the operations on a RingElem (Sec.75). Documentation about the creation
and use of homomorphisms between rings can be found in RingHom (Sec.80).

The documentation here is very general in nature: it applies to all rings which can be created in the CoCoA
library. To find out how to create rings, and for more specific documentation about the various special types of
ring CoCoALib offers, look at the relevant file: see the subsection below about Types of Ring .

While the CoCoA library was conceived primarily for computing with commutative rings, the possibility of
creating and using certain non-commutative rings exists. The documentation for these rings is kept separately in
RingWeyl (Sec.83).

72.1.1 Examples

Here is a list of example programs (to be found in the examples/ subdirectory) illustrating the creation and use
of various sorts of ring and their elements

• ex-ring1.C

• ex-ring2.C

• ex-RingElem1.C

• ex-RingFp1.C

• ex-RingFp2.C

• ex-RingQ1.C

• ex-RingTwinFloat1.C

• ex-RingWeyl1.C

• ex-RingZZ1.C

140

../../examples/index.html#ex-ring1.C
../../examples/index.html#ex-ring2.C
../../examples/index.html#ex-RingElem1.C
../../examples/index.html#ex-RingFp1.C
../../examples/index.html#ex-RingFp2.C
../../examples/index.html#ex-RingQ1.C
../../examples/index.html#ex-RingTwinFloat1.C
../../examples/index.html#ex-RingWeyl1.C
../../examples/index.html#ex-RingZZ1.C

72.1.2 Types of ring (inheritance structure)

• RingZZ (Sec.84)

• RingTwinFloat (Sec.82)

• FractionField (Sec.33)

– generic

– RingQQ (Sec.81)

• QuotientRing (Sec.68)

– generic

– RingFp (Sec.77)

– RingFpLog (Sec.79)

– RingFpDouble (Sec.78)

– Simple algebraic extensions (not yet implemented)

• PolyRing (Sec.60)

– DenseUPolyRing (Sec.20)

∗ DenseUPolyClean (Sec.19)

– SparsePolyRing (Sec.92)

∗ RingWeyl (Sec.83)

∗ DistrMPoly (Sec.21)

∗ DistrMPolyInlPP

∗ DistrMPolyInlFpPP (Sec.??)

72.1.3 Pseudo-constructors

The default initial value for a ring is the ring of integers (RingZZ).

You can specify explicitly the initial value using one of the various ring pseudo-constructors:

RingZZ() see RingZZ constructors (Sec.84)
RingQQ() see RingQQ constructors (Sec.81)
NewZZMod(n) see QuotientRing constructors (Sec.68)
NewRingTwinFloat(n) see RingTwinFloat constructors (Sec.82)
NewFractionField(R) see FractionField constructors (Sec.33)
NewQuotientRing(R,I) see QuotientRing constructors (Sec.68)

72.1.4 Operations on Rings

Let R and R2 be two variable of type ring.

• characteristic(R) – the characteristic of R (as a BigInt (Sec.8))

• symbols(R) – a std::vector of the symbols in R (e.g. Q(a)[x,y] contains the symbols a, x, and y)

• R = R2 – assign R2 to R (so they both refer to the same identical internal impl)

• R == R2 – test whether R and R2 are identical (i.e. they refer to the same internal impl)

• R != R2 – the logical negation of R == R2

zero(R) the zero element of R
one(R) the one element of R

141

Queries

In some cases the best algorithm to use may depend on whether the ring in which we are computing has certain
properties or not; so CoCoALib offers some functions to ask a ring R about its properties:

• IsCommutative(R) – a boolean, true iff R is commutative

• IsIntegralDomain(R) – a boolean, true iff R has no zero divisors

• IsIntegralDomain3(R) – a 3-state boolean, like IsIntegralDomain but fast, gives uncertain3 if cannot
determine proper answer quickly

• IsTrueGCDDomain(R) – a boolean, true iff R is a true GCD domain (note: fields are not true GCD domains)

• IsOrderedDomain(R) – a boolean, true iff R is arithmetically ordered

• IsField(R) – a boolean, true iff R is a field

• IsFiniteField(R) – a boolean, true iff R is a finite field

• LogCardinality(R) – the integer k such that card(R) = pˆk where p is char(R)

NOTE: a pragmatic approach is taken: e.g. IsOrderedDomain is true only if comparisons between elements
can actually be performed using the CoCoA library.

Queries and views

It may also be important to discover practical structural details of a ring (e.g. some algorithms make sense
only for a polynomial ring). The following query functions Is... tell you how the ring is implemented, and the
view functions As... give access to the specific operations:

• IsZZ(R) – see RingZZ query (Sec.84)

• IsQQ(R) – see RingQQ query (Sec.81)

• IsDenseUPolyRing(R) – see DenseUPolyRing query (Sec.20)

• IsFractionField(R) – see FractionField query (Sec.33)

• IsPolyRing(R) – see PolyRing query (Sec.60)

• IsQuotientRing(R) – see QuotientRing query (Sec.68)

• IsSparsePolyRing(R) – see SparsePolyRing query (Sec.92)

In general the function ”IsXYZ” should be read as ”Is internally implemented as XYZ”: for instance IsQuotientRing
is true only if the internal implementation is as a quotient ring, so if ZZ denotes the ring of integers and R =

ZZ[x]/ideal(x) then R and ZZ are obviously isomorphic but IsZZ(R) gives false and IsZZ(Z) gives true, while
conversely IsQuotientRing(R) gives true and IsQuotientRing(ZZ) gives false.

72.1.5 ADVANCED USE OF RINGS

The rest of this section is for more advanced use of rings (e.g. by CoCoA library contributors). If you are new to
CoCoA, you need not read this subsection.

Writing C++ classes for new types of ring

An important convention of the CoCoA library is that the class RingBase is to be used as an abstract base
class for all rings. You are strongly urged to familiarize yourself with the maintainer documentation if you want
to understand how and why rings are implemented as they are in the CoCoA library.

The first decision to make when implementating a new ring class for CoCoALib is where to place it in the ring
inheritance structure. This inheritance structure is a (currently) tree with all concrete classes at the leaves, and all
abstract classes being internal nodes. Usually the new concrete ring class is attached to the structure by making

142

it derive from one of the existing abstract ring classes. You may even decide that it is appropriate to add a new
abstract ring class to this structure, and to make the new concrete class derive from this new abstract class.

Note: I have note used multiple inheritance in the structure, largely because I do not trust multiple inheritance
(not doubt due in part to my ignorance of the topic).

Once you have decided where to attach the new concrete class to the structure, you will have to make sure that
all pure virtual functions in the abstract class are implemented. Almost all instances of concrete rings are built
through pseudo-constructors (the rings ZZ and QQ are exceptional cases).

An important detail of the constructor for a new concrete ring is that the reference count of the new ring
object must be incremented to 1 at the start of the constructor body (or more precisely, before any self references
are created, e.g. when creating the zero and one elements of the ring); without this ”trick” the constructor is not
exception safe.

NOTE Every concrete ring creates a copy of its zero and one elements (kept in auto ptrs myZeroPtr and
myOnePtr). This common implementation detail cannot (safely) be moved up into RingBase because during
destruction by default the data members of RingBase are destroyed after the derived concrete ring. It seems much
safer simply to duplicate the code for each ring implementation class.

72.2 Maintainer documentation

(NB consider consulting also QuotientRing (Sec.68), FractionField (Sec.33) and PolyRing (Sec.60))

The design underlying rings and their elements is more complex than I would have liked, but it is not as complex
as the source code may make it appear. The guiding principles are that the implementation should be flexible and
easy/pleasant to use while offering a good degree of safety; extreme speed of execution was not a goal (as it is
usually contrary to good flexibility) though an interface offering slightly better run-time efficiency remains.

Regarding flexibility: in CoCoALib we want to handle polynomials whose coefficients reside in (almost) any
commutative ring. Furthermore, the actual rings to be used will be decided at run-time, and cannot restricted
to a given finite set. We have chosen to use C++ inheritance to achieve the implementation: the abstract class
RingBase defines the interface that every concrete ring class must offer.

Regarding ease of use: since C++ allows the common arithmetic operators to be overloaded, it is essential that
these work as expected for elements of arbitrary rings – with the caveat that / means exact division, as this is
the only reasonable interpretation. Due to problems of ambiguity, arithmetic between elements of different rings
is forbidden: e.g. let f be in QQ[x,y] and g in ZZ[y,x], where should f+g reside?

The classes in the file ring.H are closely interrelated, and there is no obvious starting point for describing them
– you may find that you need to read the following more than once to comprehend it. Here is a list of the classes:

ring value represents a ring; it is a smart pointer
RingBase abstract class defining what a ring is
RingElem value represents an element of a ring
ConstRefRingElem const-reference to a RingElem
RingElemConstRawPtr raw pointer to a const ring value
RingElemRawPtr raw pointer to a ring value

The class RingBase is of interest primarily to those wanting to implement new types of ring (see relevant section
below); otherwise you probably don’t need to know about it. Note that RingBase includes an intrusive reference
counter – so every concrete ring instance will have one. RingBase also includes a machine integer field containing a
unique numerical ID – this is so that distinct copies of otherwise identical rings can be distinguished when output
(e.g. in OpenMath).

The class ring is used to represent mathematical rings (e.g. possible values include ZZ, QQ, or QQ[x,y,z]). An
object of type ring is just a reference counting smart pointer to a concrete ring implementation object – so copying
a ring is fairly cheap. In particular two rings are considered equal if and only if they refer to the same identical
concrete ring implementation object. In other files you will find classes derived from ring which represent special
subclasses of rings, for instance PolyRing is used to represent polynomial rings. The intrusive reference count,
which must be present in every concrete ring implementation object, is defined as a data member of RingBase.

For the other classes see RingElem (Sec.75).

Further comments about implementation aspects of the above classes.

143

Recall that ring is essentially a smart pointer to a RingBase object, i.e. a concrete implementation of a ring.
Access to the implementation is given via operator-> . If necessary, the pointer may also be read using the
member function myRingPtr: this is helpful for defining functions such as IsPolyRing where access to the pointer
is required but operator-> cannot be used.

The class RingBase declares a number of pure virtual functions for computing with ring elements. Since these
functions are pure they must all be fully defined in any instantiable ring class (e.g. RingZZImpl or RingFpImpl).
These member functions follow certain conventions:

RETURN VALUES: most arithmetic functions return no value, instead the result is placed in one of the ar-
guments (normally the first argument is the one in which the result is placed), but functions which return
particularly simple values (e.g. booleans or machine integers) do indeed return the values by the usual
function return mechanism.

ARG TYPES: ring element values are passed as raw pointers (i.e. a wrapped void* pointing to the actual
value). A read-only arg is of type RingElemConstRawPtr, while a writable arg is of type RingElemRawPtr.
When there are writable args they normally appear first. For brevity there are typedefs ConstRawPtr and
RawPtr in the scope of RingBase or any derived class.

ARG CHECKS: sanity checks on the arguments are not conducted (e.g. the division function assumes the
divisor is non-zero). These member functions are supposed to be fast rather than safe. However, if the
compilation flag CoCoA DEBUG was set then some checks may be performed.

In a few cases there are non-pure virtual member functions in RingBase. They exist either because there is a
simple universal definition or merely to avoid having to define inappropriate member functions (e.g. gcd functions
when the ring cannot be a gcd domain). Here is a list of them:

IamTrueGCDDomain() defaults to not IamField()
IamOrderedDomain() defaults to false

72.3 Bugs, Shortcomings and other ideas

Printing rings is unsatisfactory. Need a mechanism for specifying a print name for a ring; and also a mechanism
for printing out the full definition of the ring avoiding all/some print names. For instance, given the definitions R

= QQ(x) and S = R[a,b] we see that S could be printed as S, R[a,b] or QQ(x)[a,b]. We should allow at least
the first and the last of these possibilities.

Should (some of) the query functions return bool3 values? What about properties which are hard to determine?

The fn IsFiniteField is not very smart; it recognises only prime finite fields, and simple algebraic extensions
of them.

73 RingDistrMPoly (John Abbott)

73.1 User documentation for the class RingDistrMPoly

RingDistrMPoly implements a ring of distributed multivariate polynomials: you may think of the elements as
being ordered lists of coefficient and power product pairs (with the additional guarantee that the coefficients are
non-zero, and that the power products are all distinct. The best way to create a RingDistrMPoly is to use the
function NewPolyRing (see PolyRing (Sec.60))

A RingDistrMPoly is a concrete instance of a SparsePolyRing (Sec.92).

73.2 Maintainer documentation for the class RingDistrMPoly

I have implemented HomImpl and IdealImpl as private subclasses since their existence should not be known outside
the scope of the class RingDistrMPolyImpl.

73.2.1 Bugs and Shortcomings

Documentation almost completely absent.

The implementation of RingDistrMPolyImpl::HomImpl::myApply is very poor. I simply needed some easy
code that would work. A major overhaul will be needed when I have understood how best to implement it.

144

74 empty (John Abbott, Anna M. Bigatti)

74.1 Examples

• ex-empty.C

74.2 User documentation

RingDistrMPolyInlPP implements a ring of distributed multivariate polynomials: you may think of the elements
as being ordered lists of coefficient and power product pairs (with the additional guarantee that the coefficients are
non-zero, and that the power products are all distinct. The best way to create a RingDistrMPolyInlPP is to use
the function NewPolyRing DMPI (see SparsePolyRing (Sec.92))

A RingDistrMPolyInlPP is a concrete instance of a SparsePolyRing (Sec.92).

Internally polynomials have a ”compact” representation: the power products are held ”in-line”. To allow this
the PPMonoid (Sec.61) must be of type PPMonoidOv.

74.2.1 Constructors and pseudo-constructors

There is a single ctor which is normally called by one of the pseudo-ctors called NewPolyRing DMPI.

74.2.2 Operations

See SparsePolyRing (Sec.92) and PolyRing (Sec.60) for operations.

74.3 Maintainer documentation

Most of the real work is delegated to DistrMPolyInlPP (Sec.22); pratically all member fns forward to DistrMPolyInlPP.

Note that the PPM must be of type PPMonoidOv!

74.4 Bugs, shortcomings and other ideas

74.5 Main changes

2014

• January (v0.99531): first documentation

74.6 Main changes

2014

• Jan (v0.99531): added ability to create a RingDistMPolyInlPP with specified PPMonoid.

75 RingElem (John Abbott)

75.1 Examples

• ex-RingElem1.C

• ex-RingFp1.C

• ex-RingFp2.C

• ex-RingQ1.C

• ex-RingTwinFloat1.C

• ex-RingWeyl1.C

145

../../examples/index.html#ex-empty.C
../../examples/index.html#ex-RingElem1.C
../../examples/index.html#ex-RingFp1.C
../../examples/index.html#ex-RingFp2.C
../../examples/index.html#ex-RingQ1.C
../../examples/index.html#ex-RingTwinFloat1.C
../../examples/index.html#ex-RingWeyl1.C

• ex-RingZZ1.C

• ex-PolyRing3.C

• ex-NF.C

75.2 User documentation

The file ring.H introduces several classes used for representing rings and their elements. A normal user of the
CoCoA library will use principally the classes ring (Sec.72) and RingElem: an object of type ring (Sec.72)
represents a mathematical ring with unity, and objects of type RingElem represent values from some ring. To
make the documentation more manageable it has been split into two: this file describes operations on a RingElem,
whereas a separate file describes the operations directly applicable to ring (Sec.72)s. Documentation about the
creation and use of homomorphisms between rings can be found in RingHom (Sec.80).

An object of type RingElem comprises two internal parts: the ring to which the value belongs, and the value
itself. For instance, this means that the zero elements of different rings are quite different objects.

75.2.1 Constructors

Normally when creating a new RingElem we specify both the ring to which it belongs, and its initial value in that
ring. Let R be a ring (Sec.72). Let n be a machine integer or a BigInt (Sec.8). Let q be a rational, i.e. a value of
type BigRat (Sec.9). Let r2 be a ring element.

RingElem r; the zero element of RingZZ() (special case)
RingElem r(R); an element of R, initially 0
RingElem r(R, n); an element of R, initially the image of n
RingElem r(R, q); an element of R, initially the image of q (or error)
RingElem r(R, s); an element of R, initially the value of symbol (Sec.95) s
RingElem r(R, r2); an element of R, maps r2 into R via CanonicalHom

RingElem r(R, MPZ); an element of R, initially the value of mpz t MPZ

RingElem r(R, MPQ); an element of R, initially the value of mpq t MPQ (or error)

Note 1: To create a RingElem from a value of type mpz class you must do RingElem(R, MPZ.get mpz t());
analogously for mpq class.

Note 2: Construction from a rational may fail, e.g. if the denominator is a zero divisor in the ring; if it does
fail then an exception is thrown (with code ERR::DivByZero).

You can create a copy of a ring element in the usual way:

RingElem r(r2); a copy of r2, element of the same ring
RingElem r = r2; (alternative syntax, discouraged)

Naturally the last constructor works only if the denominator of the rational q is 1.

These are not really constructors: you can get the zero and one of a ring (Sec.72) directly using the following:

zero(R) the zero element of R
one(R) the one element of R

75.2.2 Operations on RingElems

RingElems are designed to be easy and safe to use; the various checks do incur a certain run-time overhead,
so a faster alternative is offered (see below in the section Fast and Ugly Code). Arithmetic operations between
RingElems will fail if they do not belong to the same ring (the exception has code ERR::MixedRings).

Assignment & Swapping

Assigning an integer or rational to a RingElem wil automatically map the value into the ring to which the
RingElem belongs.

146

../../examples/index.html#ex-RingZZ1.C
../../examples/index.html#ex-PolyRing3.C
../../examples/index.html#ex-NF.C

r = n; map n into owner(r) and assign the result
r = q; map q into owner(r) and assign the result
r = r2; r becomes a copy of r2 – afterwards owner(r)==owner(r2)

swap(r,s); exchange the values (and the owning rings)

Arithmetic

Arithmetic operations between RingElems will fail if they do not belong to the same ring (the exception has
code ERR::MixedRings). You may perform arithmetic between a RingElem and a machine integer, a BigInt value
or a BigRat value – the integer/rational is automatically mapped into the same ring as the RingElem.

Let r be a non-const RingElem, and r1, r2 be potentially const RingElems. Assume they are all associated to
the same ring. Then the operations available are: (meanings are obvious)

• cout << r1 – output value of r1 (decimal only, see notes)

• r1 == r2 – equality test

• r1 != r2 – not-equal test

• -r1 – negation (unary minus)

• r1 + r2 – sum

• r1 - r2 – difference

• r1 * r2 – product

• r1 / r2 – quotient, division must be exact (see IsDivisible)

• r += r1 – equivalent to r = r + r1

• r -= r1 – equivalent to r = r - r1

• r *= r1 – equivalent to r = r * r1

• r /= r1 – equivalent to r = r / r1 division must be exact (see IsDivisible)

• power(r1, n) – n-th power of r1; n any integer, NB power(0,0) gives 1

• r^n – THIS DOES NOT WORK!!! it does not even compile, you must use power

Attempting to compute a gcd or lcm in a ring which not an effective GCD domain will produce an exception
with code ERR::NotTrueGCDDomain. If r1 or r2 is a BigRat then an error is signalled at compile time.

• gcd(r1, r2) – an associate of the gcd

• lcm(r1, r2) – an associate of the lcm

• GcdQuot(&gcd, "1, "2, r1, r2) – procedure computes gcd and quot1=r1/gcd and quot2=r2/gcd,
here r1 and r2 must be RingElem.

Queries

CoCoALib offers functions for querying various properties of RingElems, and about relationships between
RingElems.

Let r1 and r2 be a (possibly const) RingElems, and let N be a variable of type BigInt (Sec.8), and q a variable
of type BigRat (Sec.9)

• owner(r1) – the ring to which r1 is associated

• IsZero(r1) – true iff r1 is zero

• IsOne(r1) – true iff r1 is one

• IsMinusOne(r1) – true iff -r1 is one

147

• IsInvertible(r1) – true iff r1 has a multiplicative inverse

• IsZeroDivisor(r1) – true iff r1 is zero-divisor

• IsDivisible(r1, r2) – true iff r1 is divisible by r2 (throws ERR::DivByZero if r2 is a zero-divisor)

• IsDivisible(r, r1, r2) – r = r1/r2 and returns true iff r1 is divisible by r2

• IsInteger(N, r1) – true iff r1 is the image of an integer (if true, a preimage is placed in N, otherwise it is
left unchanged)

• IsRational(q, r1) – true iff r1 is the image of a rational (if true, a preimage is placed in q, otherwise it is
left unchanged)

• IsDouble(d, r1) – true iff r1 is the image of a rational whose approx is put into d (false if overflow and d

unchanged)

Note that IsDivisible tests divisibility in the ring containing the values: so 1 is not divisible by 2 in RingZZ

(Sec.84), but their images in RingQQ (Sec.81) are divisible.

Ordering

If the ring is an ordered domain then these functions may also be used. You can discover whether CoCoALib
thinks that the ring R is arithmetically ordered by calling IsOrderedDomain(R): the value is true iff R is arith-
metically ordered.

Note that comparison operations between RingElems will fail if they do not belong to the same ring (the
exception has code ERR::MixedRings). You may perform comparisons between a RingElem and an integer or a
rational – the integer/rational is automatically mapped into the same ring as the RingElem.

Let r1 and r2 belong to an ordered ring. Trying to use any of these functions on elements belonging to a ring
which is not ordered will produce an exception with code ERR::NotOrdDomain.

• sign(r1) – value is -1, 0 or +1 according as r1 is negative, zero or positive

• abs(r1) – absolute value of r1

• floor(r1) – greatest integer <= r1

• ceil(r1) – least integer >= r1

• NearestInteger(r1) – returns nearest integer (BigInt (Sec.8)) to r1 (halves round as in round, see BigRat

(Sec.9)).

• cmp(r1, r2) – returns a value <0, =0, >0 according as r1-r2 is <0, =0, >0

• CmpDouble(r1, z) – compare a ring elem with a double, result is <0, =0, >0 according as r1-z is <0, =0,
>0

• r1 < r2 – standard inequalities

• r1 > r2 – ...

• r1 <= r2 – ...

• r1 >= r2 – ...

More operations on RingElems of a finite field

If owner(r) is a finite field, or a polynomial ring whose coeffs are ini a finite field then the following functions
may be used. The P in the names of these function refers to the characteristic of the ring.

• IsPthPower(r1) – true iff r1 has a p-th root where p is the ring characteristic (see also PthRoot)

• PthRoot(r1) – returns the p-th root of r1 (error if no p-th root exists)

148

More operations on RingElems of a FractionField

If owner(r) is a fraction field then the following functions may be used. You can find out whether CoCoALib
thinks that the ring R is a fraction field by calling IsFractionField(R): the result is true iff R is a fraction field.

Let K denote a FractionField (Sec.33) Let r denote an element of K.

• num(r) – gives a copy of the numerator of r as an element of BaseRing(K)

• den(r) – gives a copy of the denominator of r as an element of BaseRing(K)

Note: the numerator and denominator are defined only upto multiples by a unit: so it is (theoretically) possible
to have two elements of FrF which are equal but which have different numerators and denominators, for instance,
(x-1)/(x-2) = (1-x)/(2-x)

More operations on RingElems of a QuotientRing

If owner(r) is a quotient ring then the following function may be called. You can find out whether CoCoALib
thinks that the ring R is a quotient ring by calling IsQuotientRing(R): the result is true iff R is a quotient ring.

In addition to the standard RingElem operations, elements of a QuotientRing (Sec.68) may be used in other
functions.

Let RmodI denote a quotient ring. Let r denote a non-const element of RmodI.

• CanonicalRepr(r) – produces a RingElem (Sec.75) belonging to BaseRing(RmodI) whose image under
QuotientingHom(RmodI) is r. For instance, if r = -3 in ZZ/(10) then this function could give 7 as an
element of RingZZ (Sec.84).

More operations on RingElems of a RingTwinFloat

You can determine if an element belongs to a twin-float ring by calling IsRingTwinFloat(owner(r)): this
yields true iff r belongs to a twin-float ring.

Let x, y be RingElem belonging to a RingTwinFloat

• DebugPrint(out, x) – print out both components of x

• IsPracticallyEqual(x, y) – returns true if IsZero(x-y) otherwise false.

In contrast the test x==y may throw a RingTwinFloat::InsufficientPrecision while IsPracticallyEqual

will never throw this exception. IsPracticallyEqual is intended for use in a termination criterion for an iterative
approximation algorithm (e.g. see test-RingTwinFloat4.C).

More operations on RingElems of a PolyRing

You can determine whether an element belongs to a PolyRing by calling IsPolyRing(owner(r)): the result is
true iff r belongs to a poly ring.

Let P denote a polynomial ring. Let f denote a non-const element of P. Let f1, f2 denote const elements of P.
Let v denote a const vector of elements of P.

• IsMonomial(f); – true iff f is non zero and of the form coeff*pp

• AreMonomials(v); – true iff v is non zero and of the form coeff*pp (if v is empty it returns true)

• IsConstant(f); – true iff f is ”constant”, i.e. the image of an element of the coeff ring.

• IsIndet(f); – equivalent to f == x[i] for some index i

• IsIndet(index, f); – equivalent to f == x[i]; and sets index = i

• IsIrred(f) – true iff f is irreducible in P

149

• owner(f1) – the owner of f as a ring (Sec.72); NB to get the owner as a PolyRing (Sec.60) use AsPolyRing(owner(f1)).

• NumTerms(f1) – the number of terms in f1.

• StdDeg(f1) – the standard degree of f1 (deg(x[i])=1); error if f1 is 0.

• deg(f1) – same as StdDeg(f1).

• deg(f1, var) – maximum degree of var-th indet in f1 where var is the index of the indet in P (result is of
type long).

• LC(f1) – the leading coeff of f1; it is an element of CoeffRing(P).

• content(f1) – gcd of the coeffs of f1; it is an element of CoeffRing(P). (content of zero poly is zero; if coeffs
are in a field the content is 0 or 1)

• CommonDenom(f1) – the simplest common denominator for the coeffs of f1; it is an element of BaseR-
ing(AsFractionField(CoeffRing(P))). (CoeffRing must be a FractionField of a GCD domain, otherwise error)

• ClearDenom(f1) – f1*CommonDenom(f1) (same restrictions as above)

• ClearDenom(Rx, f1) – like ClearDenom(f1) but puts result in (SparsePoly)ring Rx

• deriv(f1, var) – formal derivative of f1 wrt. indet having index var.

• deriv(f1, x) – derivative of f1 w.r.t. x, x must be an indeterminate (also works for f1 in FractionField

of a PolyRing)

NOTE: to compute the weighted degree of a polynomial use the function wdeg defined for RingElem of a
SparsePolyRing (Sec.92) (see below).

More operations on RingElems of a SparsePolyRing

You can determine whether an element belongs to a sparse poly ring by calling IsSparsePolyRing(owner(r)):
the result is true iff r belongs to a poly ring.

Let P denote a SparsePolyRing. Let f denote a non-const element of P. Let f1, f2 denote const elements of
P. Let expv be a vector<long> of size equal to the number of indeterminates.

• owner(f1) – the owner of f1 as a ring; NB to get the owner as a SparsePolyRing (Sec.92) use AsSparsePolyRing(owner(f1)).

• NumTerms(f1) – the number of terms in f1 with non-zero coefficient.

• UnivariateIndetIndex(f) – if f is univariate in j-th indet returns j, o/w returns -1

• LPP(f1) – the leading PP of f1; it is an element of PPM(P). Also known as LT(f) or in(f)

• LF(f1) – the leading form of f1; sum of all summands of highest weighted degree (Sec.17)

• wdeg(f1) – the weighted degree (Sec.17) of the leading PP of f1 (see [KR] Sec.4.3); error if f1 is 0. NB
result is of type CoCoA::degree (see degree (Sec.17)). (contrast with StdDeg(f1) and deg(f1) defined for
general PolyRing (Sec.60))

• CmpWDeg(f1, f2) – compare the weighted degrees of the LPPs of f1 and f2; result is <0 =0 >0 according
as deg(f1) < = > deg(f2)

• IsHomog(f) – says whether f is homogeneous wrt weighted degree (Sec.17).

• homog(f, h) – returns f homogenized with indet h (requires GrDim=1 and wdeg(h)=1)

• NR(f, v) – returns the (normal) remainder of the Division Algorithm by v. If v is a GBasis this is the
Normal Form

• monomial(P,c,pp) – returns c*pp as an element of P where c is in CoeffRing(P) and pp is in PPM(P).

• monomial(P,c,expv) – returns c*x[0]^exps[0]*x[1]^exps[1]*... where c is in CoeffRing(P), and x[i]
are the indets of P.

Let X be an indet (i.e. a RingElem in P) or a vector of indices (vector<long>)

150

• ContentWRT(f, X) – the content of f wrt the indet(s) X; result is a RingElem in P

• CoefficientsWRT(f, X) – returns a vector<CoeffPP> : each CoeffPP has fields myCoeff and myPP where
myCoeff is an element of P and myPP is in PPM(P) being a power product of the indets in X; the entries are
in decreasing order of myPP.

• CoeffVecWRT(f, x) – x must be an indet; returns a vector<RingElem> whose k-th entry contains the
coeff of x^k as an element of P; NB the coeff may be zero!

NB For running through the summands (or terms) of a polynomial use SparsePolyIters (see SparsePolyRing
(Sec.92)).

We have still doubts on the usefulness of these two functions:

• CmpWDegPartial(f1, f2, i) – compare the first i weighted degrees of the LPPs of f1 and f2; result is <0
=0 >0 according as deg(f1) < = > deg(f2)

• IsHomogPartial(f,i) – says whether f is homogeneous wrt the first i components of the weighted degree

Use the following two functions with great care: they throw an error if the PPOrdering (Sec.63) is not respected:
(the coefficient c may be 0)

• PushFront(f, c, t)– add to f the term c*t where t is a PP belonging to PPM(owner(f)) and assuming
that t > LPP(f) or f==0

• PushBack(f, c, t) – add to f the term c*t where t is a PP belonging to PPM(owner(f)) and assuming
that t < t’ for all t’ appearing in f.

• PushFront(f, c, expv)– add to f the term c*t where t is the PP with exponent vector expv, and assuming
that t > LPP(f) or f==0

• PushBack(f, c, expv) – add to f the term c*t where t is the PP with exponent vector expv, and assuming
that t < t’ for all t’ appearing in f.

The corresponding member functions myPushFront/myPushBack will not check the validity of these assumpions:
they should have a CoCoA ASSERT to check in DEBUG mode.

More operations on RingElems of a DenseUPolyRing

You can determine whether an element belongs to a DenseUPolyRing by calling IsDenseUPolyRing(owner(r)):
the result is true iff r belongs to a poly ring.

Let P denote a DenseUPolyRing. Let f denote an element of P.

• monomial(P,c,exp) – c*xˆexp as an element of P with c an integer or in CoeffRing(P) exp a MachineInt

(Sec.47)

• coeff(f,d) – the d-th coefficient of f (as a ConstRingElem, read-only)

WARNING Use this functions with great care: no checks on size and degree

Let f denote a non-const element of P.

• myAssignCoeff(f,c,d) – assigns the d-th coefficient in f to c

• myAssignZeroCoeff(f,d)

• myAssignNonZeroCoeff(f,c,d)

151

75.2.3 Notes on operations

Operations combining elements of different rings will cause a run-time error.

In all functions involving two RingElems either r1 or r2 may be replaced by a machine integer, or by a big
integer (an element of the class BigInt (Sec.8)). The integer value is automatically mapped into the ring owning
the RingElem in the same expression.

The exponent n in the power function may be zero or negative, but a run-time error will be signalled if one
attempts to compute a negative power of a non-invertible element. NB You cannot use ^ to compute powers – see
Bugs section.

An attempt to perform an inexact division or to compute a GCD not in a GCD domain will produce a run-time
error.

The printing of ring elements is always in decimal regardless of the ostream settings (this is supposed to be a
feature rather than a bug).

At this point, if you are new to CoCoALib, you should probably look at some of the example programs in the
examples/ directory.

75.2.4 Writing functions with RingElems as arguments

One would normally expect to use the type const RingElem& for read-only arguments which are RingElems, and
RingElem& for read-write arguments. Unfortunately, doing so would lead to problems with the CoCoA library.
INSTEAD you should use the types:

ConstRefRingElem x for read-only arguments: morally const RingElem& x

RingElem& x for read-write arguments
RingElem x for read-only arguments which make a local copy

If you are curious to know why this non-standard quirk has to be used, read on.

When accessing matrix elements or coefficients in a polynomial CoCoALib uses proxies: these are objects
which should behave much like const RingElem values. To allow easy use of such proxies in functions which
want a read-only RingElem we use the type ConstRefRingElem (which is actually const RingElemAlias&) for the
formal parameter.

Internally, ring element values are really smart pointers to the true value. Now the const keyword in C++
when applied to a pointer makes the pointer const while the pointed-to value remains alterable – this is not the
behaviour we want for const RingElem&. To get the desired behaviour we have to use another type: the type we
have called ConstRefRingElem.

75.2.5 ADVANCED USE OF RingElem

The rest of this section is for more advanced use of ring (Sec.72)s and RingElems (e.g. by CoCoA library
contributors). If you are new to CoCoA, you need not read beyond here.

Fast and Ugly Code

WE DO NOT RECOMMEND that you use what is described in this section. If you are curious to know
a bit more how rings are implemented, you might find this section informative.

RingElems are designed to be easy and pleasant to use, but this convenience has a price: a run-time performance
penalty (and a memory space penalty too). Both penalities may be avoided by using raw values but at a considerable
loss of programming convenience and safety. You should consider using raw values only if you are desperate for
speed; even so, performance gains may be only marginal except perhaps for operations on elements of a simple ring
(e.g. a small finite field).

A RingElem object contains within itself an indication of the owning ring, and a raw value which is a pointer
to where the real representation of the ring element value lies. These raw values may be accessed via the raw
function. They may be combined arithmetically by calling member functions of the owning ring. For instance, if
x,y,z are all RingElem objects all BELONGING TO EXACTLY THE SAME RING then we can achieve

x = y+z;

152

slightly faster by calling

owner(x)->my.Add(raw(x), raw(y), raw(z));

It should now be clear that the syntax involved is cumbersome and somewhat obscure. For the future maintain-
ability of the code the simpler x = y+z; has many advantages. Furthermore, should x,y,z somehow happen not all
to lie in the same ring then x = y+z; will act in a reasonable way, whereas the supposedly faster call will likely
lead to many hours of debugging grief. The member functions for arithmetic (e.g. myAdd) DO NOT PERFORM
sanity checks on their arguments: e.g. attempting to divide by zero could well crash the program.

If you use a debugging version of the CoCoA Library then some member functions do use assertions to check
their arguments. This is useful during development, but must not be relied upon since the checks are absent from
the non-debugging version of the CoCoA Library. See the file config.txt for more information.

This fast, ugly, unsafe way of programming is made available for those who desperately need the speed. If
you’re not desperate, don’t use it!

Fast, Ugly and Unsafe operations on raw values

Read the section Fast and Ugly Code before using any of these!

Let r be a non-const raw value (e.g. raw(x), with x a RingElem), and r1, r2 potentially const raw values.
Assume they are all owned by the ring R. Then the functions available are:

• R->myNew() – construct a new element of R, value=0

• R->myNew(n) – construct a new element of R, value=n

• R->myNew(N) – construct a new element of R, value=N

• R->myNew(r1) – construct a new element of R, value=r1

• R->myDelete(r) – destroy r, element of R (frees resources)

• R->mySwap(r, s) – swaps the two values (s is non-const raw value)

• R->myAssignZero(r) – r = 0

• R->myAssign(r, r1) – r = r1

• R->myAssign(r, n) – r = n (n is a long)

• R->myAssign(r, N) – r = n (N is a BigInt (Sec.8))

• R->myNegate(r, r1) – r = -r1

• R->myAdd(r, r1, r2) – r = r1+r2

• R->mySub(r, r1, r2) – r = r1-r2

• R->myMul(r, r1, r2) – r = r1*r2

• R->myDiv(r, r1, r2) – r = r1/r2 (division must be exact)

• R->myIsDivisible(r, r1, r2) – r = r1/r2, and returns true iff division was exact

• R->myIsUnit(r1) – IsUnit(r1)

• R->myGcd(r, r1, r2) – r = gcd(r1, r2)

• R->myLcm(r, r1, r2) – r = lcm(r1, r2)

• R->myPower(r, r1, n) – r = power(r1, n) BUT n MUST be non-negative!!

• R->myIsZero(r1) – r1 == 0

• R->myIsZeroAddMul(r, r1, r2) – ((r += r1*r2) == 0)

• R->myIsEqual(r1, r2) – r1 == r2

• R->myIsPrintAtom(r1) – true iff r1 does not need brackets when a num or denom of a fraction

153

• R->myIsPrintedWithMinus(r1) – true iff the printed form of r1 begins with a minus sign

• R->myOutput(out, r1) – out << r1

• R->mySequentialPower(r, r1, n) – normally it is better to use R->myPower(r, r1, n)

• R->myBinaryPower(r, r1, n) – normally it is better to use R->myPower(r, r1, n)

75.3 Maintainer documentation

(NB consider consulting also QuotientRing (Sec.68), FractionField (Sec.33) and PolyRing (Sec.60))

The design underlying rings and their elements is more complex than I would have liked, but it is not as complex
as the source code may make it appear. The guiding principles are that the implementation should be flexible and
easy/pleasant to use while offering a good degree of safety; extreme speed of execution was not a goal (as it is
usually contrary to good flexibility) though an interface offering slightly better run-time efficiency remains.

Regarding flexibility: in CoCoALib we want to handle polynomials whose coefficients reside in (almost) any
commutative ring. Furthermore, the actual rings to be used will be decided at run-time, and cannot restricted
to a given finite set. We have chosen to use C++ inheritance to achieve the implementation: the abstract class
RingBase defines the interface that every concrete ring class must offer.

Regarding ease of use: since C++ allows the common arithmetic operators to be overloaded, it is essential
that these work as expected for elements of arbitrary rings – with the caveat that / means exact division, being
the only reasonable interpretation. Due to problems of ambiguity arithmetic between elements of different rings is
forbidden: e.g. let f in Q[x,y] and g in Z[y,x], where should f+g reside?

The classes in the file ring.H are closely interrelated, and there is no obvious starting point for describing them
– you may find that you need to read the following more than once to comprehend it. Here is a list of the classes:

ring value represents a ring; it is a smart pointer
RingBase abstract class defining what a ring is
RingElem value represents an element of a ring
RingElemAlias reference to a RingElem belonging to someone else
ConstRefRingElem C++ const-reference to a RingElemAlias

RingElemConstRawPtr raw pointer to a const ring value
RingElemRawPtr raw pointer to a ring value

For the first two see ring (Sec.72).

The classes RingElem and RingElemAlias are related by inheritance: they are very similar but differ in one
important way. The base class RingElemAlias defines the data members which are inherited by RingElem. The
essential difference is that a RingElem owns the value whereas a RingElemAlias does not. The two data members
are myR and myRawValue: the first is the identity of ring to which the element belongs, and the second is the value
in that ring (the value is stored in a format that only the owning ring can comprehend). All operations on ring
elements are effected by member functions of the ring to which the value belongs.

The differing ownership inherent in RingElemAlias and RingElem lead to several consequences. The destructor
of a RingElem will destroy in the internal representation of the value; in contrast, the destructor of a RingElemAlias

does nothing. A RingElemAlias object becomes meaningless (& dangerous) if the owner of the value it aliases is
destroyed.

Why did I create RingElemAlias? The main reason was to allow matrices and iterators of polynomials to be
implemented cleanly and efficiently. Clearly a matrix (Sec.48) should be the owner of the values appearing as
its entries, but we also want a way of reading the matrix entries without having to copy them. Furthermore, the
matrix can use a compact representation: the ring to which its elements belong is stored just once, and not once
for each element. Analogous comments apply to the coefficients of a polynomial.

As already stated above, the internal data layouts for objects of types RingElem and RingElemAlias are
identical – this is guaranteed by the C++ inheritance mechanism. The subfield indicating the ring to which the
value belongs is simply a ring, which is just a reference counting smart pointer. The subfield indicating the value
is a raw pointer of type void*; however, when the raw pointer value is to be handled outside a ring element object
then it is wrapped up as a RingElemRawPtr or RingElemConstRawPtr – these are simply wrapped copies of the
void*.

The classes RingElemRawPtr and RingElemConstRawPtr are used for two reasons. One is that if a naked void*

were used outside the ring element objects then C++ would find the call RingElem(R,0) ambiguous because the
constant 0 can be interpreted either as an integer constant or as a null pointer: there are two constructors which

154

match the call equally well. The other reason is that it discourages accidentally creating a ring element object from
any old pointer; it makes the programmer think – plus I feel uneasy when there are naked void* pointers around.
Note that the type of the data member RingElemConstRawPtr::myPtr is simply void* as opposed to void const*

which one might reasonably expect. I implemented it this way as it is simpler to add in the missing constness in
the member function RingElemConstRawPtr::myRawPtr than it would be to cast it away in the myRawPtr function
of RingElemRawPtr.

Further comments about implementation aspects of the above classes.

The class RingBase declares a number of pure virtual functions for computing with ring elements. Since these
functions are pure they must all be fully defined in any instantiable ring class (e.g. RingZZImpl or RingFpImpl).
These member functions follow certain conventions:

RETURN VALUES: most arithmetic functions return no value, instead the result is placed in one of the ar-
guments (normally the first argument is the one in which the result is placed), but functions which return
particularly simple values (e.g. booleans or machine integers) do indeed return the values by the usual
function return mechanism.

ARG TYPES: ring element values are passed as raw pointers (i.e. a wrapped void* pointing to the actual
value). A read-only arg is of type RingElemConstRawPtr, while a writable arg is of type RingElemRawPtr.
When there are writable args they normally appear first. For brevity there are typedefs ConstRawPtr and
RawPtr in the scope of RingBase or any derived class.

ARG CHECKS: sanity checks on the arguments are NOT CONDUCTED (e.g. the division function assumes
the divisor is non-zero). These member functions are supposed to be fast rather than safe.

In a few cases there are non-pure virtual member functions in RingBase. They exist either because there is a
simple universal definition or merely to avoid having to define inappropriate member functions (e.g. gcd functions
when the ring cannot be a gcd domain). Here is a list of them:

• myIsUnit(x) – default checks that 1 is divisible by x

• myGcd(lhs, x, y) – gives an error: either NotGcdDom or NYI

• myLcm(lhs, x, y) – gives an error: either NotGcdDom or NYI

• myGcdQuot(lhs, xquot, yquot, x, y) – gives an error: either NotGcdDom or NYI

• myExgcd(lhs, xcofac, ycofac, x, y) – gives an error: either NotGcdDom or NYI

• myIsPrintAtom(x) – defaults to false

• myIsPrintedWithMinus(x) – gives SERIOUS error

• myIsMinusOne(x) – defaults to myIsOne(-x); calculates -x

• myIsZeroAddMul(lhs, y, z) – computes lhs += y*z in the obvious way, and calls myIsZero

• myCmp(x, y) – gives NotOrdDom error

• mySign(x) – simply calls myCmp(x, 0), then returns -1,0,1 accordingly

There are three non-virtual member functions for calculating powers: one uses the sequential method, the
other two implement the repeated squaring method (one is an entry point, the other an implementation
detail). These are non-virtual since they do not need to be redefined; they are universal for all rings.

For the moment I shall assume that the intended meaning of the pure virtual functions is obvious (given the
comments in the source code).

Recall that arithmetic operations on objects of type ConstRefRingElem (which matches RingElem too) are
converted into member function calls of the corresponding owning ring. Here is the source code for addition of ring
elements – it typifies the implementation of operations on ring elements.

155

RingElem operator+(ConstRefRingElem x, ConstRefRingElem y)

{

const ring& Rx = owner(x);

const ring& Ry = owner(y);

if (Rx != Ry)

error(CoCoAError(ERR::MixedRings, "RingElem + RingElem"));

RingElem ans(Rx);

Rx->myAdd(raw(ans), raw(x), raw(y));

return ans;

}

The arguments are of type ConstRefRingElem since they are read-only, and the return type is RingElem since
it is new self-owning value (it does not refer to a value belonging to some other structure). Inside the function we
check that the rings of the arguments are compatible, and report an error if they are not. Otherwise a temporary
local variable is created for the answer, and the actual computation is effected via a member function call to the
ring in which the values lie. Note the use of the raw function for accessing the raw pointer of a ring element. In
summary, an operation on ring elements intended for public use should fully check its arguments for compatibility
and correctness (e.g. to avoid division by zero); if all checks pass, the result is computed by passing raw pointers
to the appropriate member functions of the ring involved – this member function assumes that the values handed
to it are compatible and valid; if not, undefined behaviour will result (i.e. a crash if you are lucky).

Most of the member functions of a ring are for manipulating raw values from that same ring, a few permit
one to query properties of the ring. The type of a raw value is RingBase::RawValue, which helpfully abbreviates
to RawValue inside the namespace of RingBase. Wherever possible the concrete implementations should be
exception safe, i.e. they should offer either the strong exception guarantee or the no-throw guarantee (according
to the definitions in Exceptional C++ by Sutter).

75.4 Bugs, Shortcomings and other ideas

I have chosen not to use operator^ for computing powers because of a significant risk of misunderstanding between
programmer and compiler. The syntax/grammar of C++ cannot be changed, and operator^ binds less tightly
than (binary) operator*, so any expression of the form a*b^c will be parsed as (a*b)^c; this is almost certainly
not what the programmer intended. To avoid such problems of misunderstanding I have preferred not to define
operator^; it seems too dangerous.

Note about comparison operators (< ,<=,> ,>=, and !=). The C++ STL does have templates which will
define all the relational operators efficiently assuming the existence of operator< and operator==. These are
defined in the namespace std::rel ops in the standard header file <utility> . I have chosen NOT to use these
because they can define only homogeneous comparisons; so the comparisons between ConstRefRingElem and int

or BigInt (Sec.8) would still have to be written out manually, and I prefer the symmetry of writing them all out.
See p.69ff of Josuttis for details.

The function myAssignZero was NECESSARY because myAssign(x, 0) was ambiguous (ambiguated by the
assignment from an mpz t). It is no longer necessary, but I prefer to keep it (for the time being).

The requirement to use the type ConstRefRingElem for function arguments (which should normally be const

RingElem& is not ideal, but it seems hard to find a better way. It is not nice to expect users to use a funny type
for their function arguments. How else could I implement (noncopying) access to coefficients in a polynomial via
an iterator, or access to matrix elements?

Would we want ++ and – operators for RingElems???

Should (some of) the query functions return bool3 values? What about properties which are hard to determine?

How to generate random elements from a ring?

Anna thinks that NearestInteger could handle specially elements of RingZZ (Sec.84) rather than doing the
full wasteful computation. Not sure if the extra code and complication would really make a difference in practice.

gcd and lcm: there is no guarantee on sign/monic because it may be costly to compute and generally useless.

75.5 Main changes

2013

• May (v0.9953):

156

– added IsZeroDivisor -

76 RingElemInput (Anna M. Bigatti)

76.1 Examples

• ex-PolyInput2.C

76.2 User documentation

These are the functions for RingElem (Sec.75) input. Let in be a string or stream (e.g. reading from file), and R

any ring (Sec.72). They both return the expression read from in and evaluated in R.

• ReadExpr(in, R) – keeps reading to the end of input (so it’s convenient for reading from a string)

• ReadExprSemicolon(in, R) – stops at the semicolon (convenient for reading from file or standard input)

Recognized operations are

+ - * / ^ ()

76.3 Maintainer documentation

Code is so nice it does not need any documentation! ;-)

76.4 Bugs, shortcomings and other ideas

76.5 Main changes

2014

• January (v0.99533): first release

77 RingFp (John Abbott)

77.1 User documentation for the class RingFpImpl

The usual way to perform arithmetic in a (small, prime) finite field is to create the appropriate ring via the pseudo-
constructors NewZZmod (or NewQuotientRing if you prefer) which are documented in QuotientRing (Sec.68). These
functions will automatically choose a suitable underlying implementation, and you should normally use them.

In some special circumstances, you may wish to choose explicitly the underlying implementation. CoCoALib
offers three distinct implementations of small prime finite fields: RingFp (described here), and RingFpLog (Sec.79)
and RingFpDouble (Sec.78). Of these RingFp is probably simplest and fastest implementation – this file describes
how to create a RingFp implementation.

To create a ring (Sec.72) of this specific type use one of the pseudo-constructors:

NewRingFp(p) -- p a machine integer or BigInt

NewRingFp(I) -- I an ideal of RingZZ

NewRingFp(p, res) -- p a machine integer, res is either ‘‘GlobalSettings::SymmResidues‘‘ or ‘‘GlobalSettings::NonNegResidues‘‘

These pseudo-constructors are for creating small prime finite fields; they will fail if the characteristic is not prime
or is too large: the error signalled by throwing a CoCoA::ErrorInfo whose code is CoCoA::ERR::BadSmallFpChar.
You can test whether an argument is suitable by calling IsGoodForRingFp.

The default convention for printing residues is specified when you create the GlobalManager (Sec.38); you can
also specify explicitly which convention to use by giving a second argument to the pseudo-ctor NewRingFp. Note
that the internal representation is always least non-negative regardless of the output convention chosen.

157

../../examples/index.html#ex-PolyInput2.C

If you seek a means for fast arithmetic in small finite fields consult the documentation about SmallFpImpl

(Sec.87), SmallFpLogImpl (Sec.88), and SmallFpDoubleImpl (Sec.86). All arithmetic on elements of a RingFp is
actually carried out by a SmallFpImpl object.

NewZZmod or NewRingFp?

If n is a small prime then NewZZmod(n) produces the same result as NewRingFp(n) (or perhaps NewRingFpDouble(n)).
If n is not a small prime then NewRingFp(n) throws an exception whereas NewZZmod(n) will produce a working
quotient ring.

77.1.1 Examples

• ex-RingFp1.C

• ex-RingFp2.C

77.2 Maintainer documentation for the class RingFpImpl

The class RingFpImpl is a low-level implementation of (small prime) finite fields; it is not intended for direct use
by casual CoCoA library users.

The class RingFpImpl is intended to implement small, prime finite fields. The constructor is more complicated
than one might expect, this is because the RingFpImpl object must store a little extra information to fulfil its role
as a QuotientRingBase. Currently, the characteristic must be prime (otherwise it wouldn’t be a field) and must
also be small enough that its square fits into a SmallFpElem t (probably unsigned long, see the file config.H); if
not, an error is signalled.

Extreme efficiency is NOT one of the main features of this version; contrast this with SmallFpImpl.

The class RingFpImpl derives from QuotientRingBase, which in turn is derived from RingBase: see QuotientRing
(Sec.68) and ring (Sec.72) for more details. Note that there is no RingFp class; a RingFpImpl object can only be
accessed as a QuotientRing (Sec.68).

Note the use of ”argument checking” static member functions in the ctor: this is because const data members
must be initialized before the main body of the ctor is entered.

A member typedef RingFpImpl::value t specifies the type used for representing the value of an element of
a RingFpImpl: this is a typedef for SmallFpElem t which is defined in config.H (to facilitate tuning for different
platforms).

The data members are those of a QuotientRingBase (which are used only for answering queries about a
QuotientRing (Sec.68)), plus the characteristic of the field (held as an value t in myModulus), and an auto-
pointer to a copy of the zero and one elements of the ring.

The zero and one elements of the ring is held in an auto ptr<> for consistency with the implementation of
other rings – in this simple class it is not really necessary for exception safety.

This implementation is very simplistic: almost every operation is delegated to the class SmallFpImpl. The
implementation class has been separated so that its inline member functions can be used directly by some other
special case code (e.g. polynomials with SmallFp coeffs). See SmallFpImpl (Sec.87) for details. I note that the
residues are represented internally as the least non-negative value in the residue class regardless of the user’s choice
of type of residue.

The largest permitted modulus for a RingFpImpl may depend on the platform. On a 32-bit machine the
modulus must surely be less than 65536 – refer to SmallFpImpl (Sec.87) for details. A 64-bit machine may allow
larger characteristics.

Although it may seem wasteful to use heap memory for the values of elements in a RingFpImpl, trying to make
them ”inline” leads to lots of problems. Originally we had implemented the values as ”inline”, and the resulting
problems delayed CoCoALib by almost a year.

77.3 Bugs, shortcomings and other ideas

Why does the class RingFp not exist? Well, my current thoughts are that since a RingFp would not do anything
special which a QuotientRing (Sec.68) cannot do, it seems needless extra complication to create a ”useless” class.

158

../../examples/index.html#ex-RingFp1.C
../../examples/index.html#ex-RingFp2.C

In particular, it cannot offer better run-time performance. If you want to compute quickly modulo a small prime
you must use SmallFpImpl (Sec.87) directly.

Probably RingFp, RingFpLog (Sec.79) and RingFpDouble (Sec.78) could be replaced by instances of a template
class – the template parameter would be SmallFpImpl, SmallFpLogImpl or SmallFpDoubleImpl accordingly.

Why do all the member functions blindly forward their calls to the SmallFpImpl member functions? This
means that the error message for division by zero (say) will refer to SmallFpImpl rather than RingFpImpl. Does
this really matter that much? Obviously the much same applies to RingFpLogImpl and RingFpDoubleImpl.

78 RingFpDouble (John Abbott)

78.1 User documentation for the class RingFpDoubleImpl

The usual way to perform arithmetic in a (small, prime) finite field is to create the appropriate ring via the pseudo-
constructors NewZZmod (or NewQuotientRing if you prefer) which are documented in QuotientRing (Sec.68). These
functions will automatically choose a suitable underlying implementation, and you should normally use them.

In some special circumstances, you may wish to choose explicitly the underlying implementation. CoCoALib
offers three distinct implementations of small prime finite fields: RingFp (Sec.77), and RingFpLog (Sec.79) and
RingFpDouble (Sec.78) (described here). Of these RingFpDouble may offer the highest limit on the characteristic
(e.g. on 32-bit machines) – this file describes how to create a RingFpDouble implementation.

To create a ring (Sec.72) of this specific type use one of the pseudo-constructors:

NewRingFpDouble(p) -- p a machine integer or BigInt

NewRingFpDouble(I) -- I an ideal of Z

NewRingFpDouble(p, res) -- p a machine integer, res is either ‘‘GlobalSettings::SymmResidues‘‘ or ‘‘GlobalSettings::NonNegResidues‘‘

These pseudo-constructors are for creating small prime finite fields; they will fail if the characteristic is not prime
or is too large: the error signalled by throwing a CoCoA::ErrorInfo whose code is CoCoA::ERR::BadSmallFpChar.
You can test whether an argument is suitable by calling IsGoodFoRingFpDouble.

In the directory examples/ there is a small example program showing how small finite fields (with known
implementation) can be created and used: ex-RingFp2.C.

The default convention for printing residues is specified when you create the GlobalManager (Sec.38); you can
also specify explicitly which convention to use by giving a second argument to the pseudo-ctor NewRingFp. Note
that the internal representation is always least non-negative regardless of the output convention chosen.

If you seek a means for fast arithmetic in small finite fields consult the documentation about SmallFpImpl

(Sec.87), SmallFpLogImpl (Sec.88), and SmallFpDoubleImpl (Sec.86). All arithmetic on elements of a RingFp is
actually carried out by a SmallFpImpl object.

78.2 Maintainer documentation for the class RingFpDoubleImpl

The class RingFpDoubleImpl is a low-level implementation of (small prime) finite fields; it is not intended for
direct use by casual CoCoA library users. Internally values are represented using doubles: this may permit a
higher maximum characteristic on some computers (e.g. 32-bitters).

The class RingFpDoubleImpl is intended to represent small, prime finite fields. The constructor is more com-
plicated than one might expect; this is because the RingFpDoubleImpl object must store a little extra information
to fulfil its role as a QuotientRing (Sec.68). Currently, the characteristic must be prime (otherwise it wouldn’t
be a field). Furthermore, the characteristic p must also be small enough that all integers up to p*(p-1) can be
represented exactly as doubles. Creating a RingFpDoubleImpl takes almost constant time (except for the primality
check). An error is signalled (i.e. a CoCoA::ErrorInfo is thrown) if the characteristic is too large or not prime.

Extreme efficiency is NOT one of the main features of this version: contrast with SmallFpDoubleImpl (Sec.86).

The class RingFpDoubleImpl derives from QuotientRingBase, which in turn is derived from RingBase: see
QuotientRing (Sec.68) and ring (Sec.72) for more details. Note that there is no RingFpDouble class; a RingFpDoubleImpl
object can only be accessed as a QuotientRing.

Note the use of ”argument checking” static member functions in the ctor: this is because const data members
must be initialized before the main body of the ctor is entered.

A member typedef specifies the type used internally for representing the value of an element of a RingFpDoubleImpl:
currently this is just SmallFpDoubleImpl::value t which is double.

159

Essentially all operations are delegated to the class SmallFpDoubleImpl. The two classes are separate so that
the inline operations of SmallFpDoubleImpl can be accessed directly in certain other special case implementations
(e.g. polynomials with coeffs in a small finite field). See the documentation on SmallFpDoubleImpl (Sec.86) for
details.

The data members are those of a QuotientRingBase (which are used only for answering queries about a
QuotientRing), plus the characteristic of the field (held as an value t in myModulusValue), and an auto-pointer
to a copy of the zero and one elements of the ring.

The zero and one elements of the ring is held in an auto ptr<> for consistency with the implementation of
other rings – in this simple class it is not really necessary for exception safety.

The largest permitted modulus for a RingFpImpl may depend on the platform. If IEEE doubles are used then
moduli up to 67108859 are permitted – refer to SmallFpDoubleImpl (Sec.86) for details.

Although it may seem wasteful to use heap memory for the values of elements in a RingFpDoubleImpl, trying
to make them ”inline” leads to lots of problems – see RingFp (Sec.77) for more details.

78.3 Bugs, shortcomings and other ideas

Can reduction modulo p be made faster?

Run-time performance is disappointing.

I wonder if this code will ever prove useful to anyone.

79 RingFpLog (John Abbott)

79.1 User documentation for the class RingFpLogImpl

The usual way to perform arithmetic in a (small, prime) finite field is to create the appropriate ring via the pseudo-
constructors NewZZmod (or NewQuotientRing if you prefer) which are documented in QuotientRing (Sec.68). These
functions will automatically choose a suitable underlying implementation, and you should normally use them.

In some special circumstances, you may wish to choose explicitly the underlying implementation. CoCoALib
offers three distinct implementations of small prime finite fields: RingFp (Sec.77), and RingFpLog (described here)
and RingFpDouble (Sec.78). Of these RingFpLog may be the fastest if your processor has slow division instructions
– this file describes how to create a RingFpLog implementation.

To create a ring (Sec.72) of this specific type use one of the pseudo-constructors:

NewRingFpLog(p) -- Z ring of integers, p a machine integer or BigInt

NewRingFpLog(I) -- Z ring of integers, I an ideal of Z

NewRingFpLog(p, res) -- p a machine integer, res is either ‘‘GlobalSettings::SymmResidues‘‘ or ‘‘GlobalSettings::NonNegResidues‘‘

These pseudo-constructors are for creating small prime finite fields; they will fail if the characteristic is not prime
or is too large: the error signalled by throwing a CoCoA::ErrorInfo whose code is CoCoA::ERR::BadSmallFpChar.
You can test whether an argument is suitable by calling IsGoodFoRingFpLog.

In the directory examples/ there is a small example program showing how small finite fields (with known
implementation) can be created and used: ex-RingFp2.C.

The default convention for printing residues is specified when you create the GlobalManager (Sec.38); you can
also specify explicitly which convention to use by giving a second argument to the pseudo-ctor NewRingFpLog. Note
that the internal representation is always least non-negative regardless of the output convention chosen.

If you seek a means for fast arithmetic in small finite fields consult the documentation about SmallFpImpl

(Sec.87), SmallFpLogImpl (Sec.88), and SmallFpDoubleImpl (Sec.86). All arithmetic on elements of a RingFp is
actually carried out by a SmallFpImpl object.

79.2 Maintainer documentation for the class RingFpLogImpl

The class RingFpLogImpl is a low-level implementation of (small prime) finite fields; it is not intended for direct
use by casual CoCoA library users. Multiplication and division are effected using discrete log/exp tables.

The class RingFpLogImpl is intended to represent small, prime finite fields. The constructor is more complicated
than one might expect, this is because the RingFpLogImpl object must store a little extra information to fulfil

160

its role as a QuotientRingBase. Currently, the characteristic must be prime (otherwise it wouldn’t be a field).
Furthermore, the characteristic must also be less than 65536 even on machines with 64-bit arithmetic – larger values
are prohibited as the internal tables would become excessively large. Creating a RingFpLogImpl of characteristic
p takes time roughly linear in p; space consumption is linear in p. An error is signalled if the characteristic is too
large or not prime.

Extreme efficiency is NOT one of the main features of this version.

The class RingFpLogImpl derives from QuotientRingBase, which in turn is derived from RingBase: see
QuotientRing (Sec.68) and ring (Sec.72) for more details. Note that there is no RingFpLog class; a RingFpLogImpl

object can only be accessed via a QuotientRing.

Note the use of ”argument checking” static member functions in the ctor: this is because const data members
must be initialized before the main body of the ctor is entered.

A member typedef RingFpLogImpl::value t specifies the type used for representing the value of an element
of a RingFpLogImpl: currently this is a typedef for SmallFpLogElem t which is defined in config.H.

Essentially all operations are delegated to the class SmallFpLogImpl. The two classes are separate so that the
inline operations of SmallFpLogImpl can be accessed directly in certain other special case implementations (e.g.
polynomials with coeffs in a SmallFp). See the documentation on SmallFpLogImpl (Sec.88) for details. I note that
the residues are represented as the least non-negative value in the residue class.

The data members are those of a QuotientRingBase (which are used only for answering queries about a
QuotientRing (Sec.68)), plus the characteristic of the field (held as a value t in myModulusValue), and an auto-
pointer to a copy of the zero and one elements of the ring.

The zero and one elements of the ring is held in an auto ptr<> for consistency with the implementation of
other rings – in this simple class it is not really necessary for exception safety.

The largest permitted modulus for a RingFpLogImpl may depend on the platform. On a 32-bit machine the
modulus must surely be less than 65536 – refer to SmallFpLogImpl (Sec.88) for details. A 64-bit machine may
allow larger characteristics.

Although it may seem wasteful to use heap memory for the values of elements in a RingFpLogImpl, trying to
make them ”inline” leads to lots of problems – see RingFp (Sec.77) for more details

79.3 Bugs, shortcomings and other ideas

See also some comments in the ”bugs” section of RingFp.txt.

The code is not very smart in the case of characteristic 2.

Run-time performance is disappointing.

I wonder if this code will ever prove useful to anyone.

80 RingHom (John Abbott)

80.1 User documentation for the files RingHom.H and RingHom.C

The class RingHom is intended to represent homomorphisms between rings. Currently there is no way to represent
more general maps between rings. It is possible to create a partial homomorphism which can generate run-time
errors when applied to certain values.

The main operations available for RingHoms are application to a RingElem (Sec.75), and composition: both
operations use function application syntax (see below for details).

80.1.1 Examples

• ex-RingHom1.C

• ex-RingHom2.C

• ex-RingHom3.C

• ex-RingHom4.C

• ex-RingHom5.C

161

../../examples/index.html#ex-RingHom1.C
../../examples/index.html#ex-RingHom2.C
../../examples/index.html#ex-RingHom3.C
../../examples/index.html#ex-RingHom4.C
../../examples/index.html#ex-RingHom5.C

80.1.2 Constructors

Here is a complete list of pseudo-constructors for ring homomorphisms (some are defined in other files, e.g.
QuotientRing.H or FractionField.H). You should check also the documentation for CanonicalHom (Sec.13) which
tries to offer an easy way of building certain simple canonical homomorphisms.

• IdentityHom(R) – where R may be any ring (Sec.72), gives the identity homomorphism on R

Embeddings

• ZZEmbeddingHom(R) – gives the unique homomorphism from RingZZ (Sec.84) to the ring (Sec.72) R

• QQEmbeddingHom(R) – may be partial gives the unique homomorphism from RingQQ (Sec.81) to the ring

(Sec.72) R. Note that the resulting homomorphism may be only partial (e.g. if Characteristic(R) is not 0, or
if the codomain is not a field).

• CoeffEmbeddingHom(P) – where P is a PolyRing (Sec.60), gives the embedding homomorphism from the
coefficient ring into the polynomial ring.

• EmbeddingHom(FrF) – where FrF is a FractionField (Sec.33), gives the embedding homomorphism from
the base ring into the fracion field (i.e. x | -> x/1)

Induced homomorphisms

• InducedHom(RmodI, phi) – where RmodI is a QuotientRing (Sec.68), gives the homomorphism R/I –> S
induced by phi: R –> S (which must have the base ring of RmodI as its domain, and whose kernel must
contain the defining ideal of RmodI)

• InducedHom(FrF, phi) – may be partial where FrF is a FractionField (Sec.33), gives the homomorphism
induced by phi (which must have the base ring of FrF as its domain). Note that the resulting homomorphism
may be only partial (e.g. if ker(phi) is non-trivial, or if the codomain is not a field).

Homomorphisms on polynomial rings

• PolyAlgebraHom(Rx, Ry, xImages) – where

– Rx and Ry are PolyRing (Sec.60) with the same CoeffRing

– xImages is a vector of RingElem (Sec.75)

gives the homomorphism from Rx to Ry mapping coefficients into themselves and mapping the k-th indeter-
minate of Rx to the k-th value in xImages (i.e. having index k-1)

• PolyRingHom(Rx, S, CoeffHom, xImages) – where

– Rx is a PolyRing (Sec.60)

– CoeffHom is a homomorphism whose domain is CoeffRing(Rx) and codomain is S or CoeffRing(S) (if
S is a PolyRing (Sec.60))

– xImages is a vector of RingElem (Sec.75)

gives the homomorphism from Rx to S mapping coefficients according to CoeffHom and mapping the k-th
indeterminate of Rx to the k-th value in xImages (i.e. having index k-1)

162

80.1.3 Applying a RingHom

A RingHom may applied using natural syntax: - let phi be an object of type RingHom - let x be an object of type
RingElem (Sec.75) - let n be of type long or int - let N be an object of type BigInt (Sec.8) - let q be an object
of type BigRat (Sec.9)

phi(x) applies phi to x; error if owner(x) != domain(phi)

phi(n) applies phi to the image of n in domain(phi)

phi(N) applies phi to the image of N in domain(phi)

phi(q) applies phi to the image of q in domain(phi)

In all cases the result is a RingElem (Sec.75) belonging to the codomain of phi. Currently partial homomorphisms
are allowed, so applying a RingHom could trigger an error (e.g. an induced hom from Q to Z/(3) applied to 1/3).

If the RingElem (Sec.75) supplied belongs to the wrong ring (Sec.72) (i.e. not the domain of the RingHom)
then an exception is thrown with code ERR::BadRingHomArg1. If the argument belongs to the right ring (Sec.72)
but lies outside the domain then an exception with code ERR::BadRingHomArg2 is thrown.

80.1.4 Composition

Two RingHoms may be composed using a fairly natural syntax: if we have two RingHoms phi:R -> S and theta:S
-> T then their composition may be computed using the syntax

theta(phi) the composite homomorphism "apply phi first then theta"

If the domain of the outer homomorphism is different from the codomain of the inner homomorphism then an
exception is thrown with code ERR::BadCompose.

80.1.5 Domain and Codomain

We may ask for the domain and codomain of a RingHom phi:

domain(phi) gives a const ref to the domain

codomain(phi) gives a const ref to the codomain

Note that the domain and codomain are merely ring (Sec.72)s, they ”forget” any special ring type (such as
SparsePolyRing (Sec.92)).

80.1.6 Kernel

Currently it is not possible to ask for the kernel of a RingHom.

80.1.7 Member Functions for Operations on Raw Values

All operations on a RingHom are invisibly converted into member function calls on a RingHomBase. It is possible to
call these member functions directly: the main difference is that the member functions do not perform any sanity
checking on their arguments (so they should be slightly faster but if you hand in incompatible arguments, you’ll
probably get an ugly crash).

80.2 Maintainer documentation for the files RingHom.H and RingHom.C

These files contain two ”generic” classes (RingHom and RingHomBase), and a trivial concrete class representing the
identity ring homomorphism, IdentityRingHom. Most of this section is dedicated to the two generic classes since
they represent the primary contribution to the CoCoA library.

The class RingHom is little more than a ”reference counting smart pointer” class to objects of type RingHomBase;
this latter type is designed to support intrusive reference counting. Beyond its role as a smart pointer RingHom

offers four ”function application” syntaxes:

163

RingElem RingHom::operator()(ConstRefRingElem x) const;

RingElem RingHom::operator()(long n) const;

RingElem RingHom::operator()(const BigInt& N) const;

RingHom RingHom::operator()(const RingHom&) const;

The first three support a natural syntax for applying the homomorphism to a ring element, a small integer, or a
large integer. The last offers a fairly natural syntax for creating the composition of two homomorphisms.

The class RingHomBase is a purely abstract class which is used to specify the interface which any concrete ring
homomorphism class must offer. In particular this base class already includes an intrusive reference counter, as
required by RingHom. It also includes two private data members myDomainValue and myCodomainValue which
store the domain and codomain rings. Note that these data fields are plain ring (Sec.72)s and so ”forget” any
special ring type which the domain or codomain may have had. Originally I had hoped to preserve any special
ring type information, but this seemed to lead to a confusing and complex implementation (which probably would
never have worked as I hoped). The two ring (Sec.72) fields may be read using the accessor functions:

const ring& myDomain() const;

const ring& myCodomain() const;

A concrete class implementing a ring homomorphism must supply definition for the following (pure virtual)
functions:

virtual void myApply(RingBase::RawValue& image, RingBase::ConstRawValue arg) const;

virtual void myOutputSelf(std::ostream& out) const;

DO NOTE THAT the two arguments to myApply normally belong to DIFFERENT rings. arg belongs to
myDomain() whereas image belongs to myCodomain(). The function myOutputSelf should print out a useful
description of the homomorphism.

80.3 Bugs, Shortcomings and other ideas

Cannot compute a kernel of a RingHom.

Arranging for domain(phi) and codomain(phi) to preserve C++ type information about the respective rings
(e.g. PolyRing (Sec.60) or FractionField (Sec.33) rather than simply ring (Sec.72)), appears to be difficult
to achieve in any reasonable manner. I’ve decided that it is much simpler just to discard all special type infor-
mation, and return simply ring (Sec.72)s. If the user knows something more, he can use a ”cast” function like
AsFractionField. Even if it were feasible to maintain such C++ type info, there would have to n-squared cases
to cover all possible combinations of domain and codomain.

We should implement more special cases: e.g. same vars different coeff ring, PP –> PP, other... Also need
some way of handling canonical homomorphisms.

Some special cases of homomorphic embeddings R –> S: (may belong with the special types of ring to which
they are associated)

• (a) S is an identical copy of R

• (b) S is the same (poly)ring as R but with a different term ordering

• (c) R, S are the same polynomial ring (same vars and ordering) but with different coefficients

• (d) each generator of R maps to a power product (or 0) in S

• (e) S is the same as R but with more variables (is also of type (d))

• (f) permutation of the variables (is also of type (d))

• (g) general homomorphism mapping

• (h) S is the fraction field of R

80.4 Some very old notes about implementing rings

This all needs to be sorted out!

164

80.4.1 Mapping elements between rings automatically

How to decide whether a value can be mapped into the current ring?

If the rings are marked as being equivalent isomorphically then we can just use the obvious isomorphism. A
more interesting case is when a value resides in a ring which is a natural subring of the current ring e.g. Z inside
Q(sqrt(2))[x,y,z].

One could argue that to create Q(sqrt(2))[x,y,z] we had to follow this path

• Z –> fraction field Q

• Q –> polynomial ring (1 indet) or DUP extension Q[gensym]

• Q[gensym] –> quotient by gensymˆ2-2 to get Q(sqrt(2))

• Q(sqrt(2)) –> polynomial ring (3 indets) Q(sqrt(2))[x,y,z]

From this it ought to be easy to identify natural embeddings of Z, Q, and (possibly) Q(sqrt(2)) in Q(sqrt(2))[x,y,z].
We do not get an embedding for Q[gensym] since we had to generate the symbol gensym and no one else can create
the same gensym. Because of this it is not altogether clear that an independently created copy of Q(sqrt(2)) can
be embedded automatically, since that copy would have a different symbol/gensym. Now if the algebraic extension
were achieved directly...

Would we want Q[x]/(x^2-2) to be regarded as isomorphically equivalent to Q[y]/(y^2-2)? In fact there are
two possible isoms: x <---> y and x <---> -y. I think that these should not be viewed as isom automatically,
especially as there is more than one possible choice.

In contrast, if R = Q[x]/(x^2-2), and S = Q[x]/(36-18x^2), and T = Q[x]/(x^2-2). It is clear that Q[x]

can be mapped into each of R, S and T in a natural way. Of course, in each case x stands for sqrt(2), and it wouldn’t
be too hard to spot that R and T are identical ; it is not quite as simple to see that R and S are isom. Presumably
with a little more effort one could create examples where it could be jolly hard to spot that two such rings are just
the same ring. For this reason, I think no attempt should be made to spot such natural isoms between independent
rings. Had T been created from R (e.g. by making copy via assignment) then they would no longer be independent,
and a natural isom could be deduced automatically. Now I think about it, a facility to make a copy of a ring
WITHOUT the natural isom should be made available.

There is also a need for a way to specify that one ring embeds naturally into another (and via which homo-
morphism), or indeed that they are isomorphic. Isomorphism could be expressed by giving two inverse homs – the
system could then check that the homs are inverse on the generators, how it would check that the maps are homs
is not so clear (perhaps the only maps which can be created are homs). Oooops, this would allow one to declare
that Z and Q (or Z[x] and Q[x]) are isom..... need to think more about this!

A similar mechanism will be needed for modules (and vector spaces). A module should naturally embed into a
vector space over the fraction field of the base ring....

Conceivably someone might want to change the natural embedding between two rings. So a means of finding
out what the natural embedding is will be necessary, and also a way replacing it.

There is also a general question of retracting values into subrings. Suppose I have computed 2 in Q(x), can
I get the integer 2 from this? In this case I think the user must indicate explicitly that a retraction is to occur.
Obviously retraction can only be into rings on the way to where the value currently resides.

Other points to note:

Q(x) = Z(x) = FrF(Z[x]) == FrF(FrF(Z)[x])

Q(alpha) = FrF(Z[alpha]) though denoms in Q(alpha) can be taken in Z

Q[alpha]/I alpha = FrF(Z[alpha]/I alpha) BUT the ideal on LHS is an ideal inside Q[alpha] whereas that on
RHS is in Z[alpha]. Furthermore Z[alpha]/I alpha is hairy if the min poly of alpha is not monic!

81 RingQQ (John Abbott, Anna M. Bigatti)

81.1 User documentation for RingQQ

The call RingQQ() produces the CoCoA ring (Sec.72) which represents QQ, the field of rational numbers. Calling
RingQQ() several times will always produce the same unique CoCoA ring (Sec.72) representing QQ.

165

Strictly, there is a limit on the size of elements you can create, but the limit is typically high enough not to be
bothersome.

RingQQ is the FractionField (Sec.33) of RingZZ (Sec.84);

See RingElem (Sec.75) for operations on its elements.

If you wish to compute purely with rationals (without exploiting CoCoALib’s ring (Sec.72)s) then see the
documentation in BigRat (Sec.9).

81.1.1 Examples

• ex-RingQQ1.C

81.1.2 Constructors and pseudo-constructors

• RingQQ() – produces the CoCoA ring (Sec.72) which represents QQ. Calling RingQQ() several times will
always produce the same unique ring in CoCoALib.

81.1.3 Query

Let R be a ring (Sec.72)

• IsQQ(R) – says whether R is actually RingQQ()

81.1.4 Operations on RingQQ

See FractionField operations (Sec.33).

81.1.5 Homomorphisms

Let S be a ring (Sec.72)

• NewQQEmbeddingHom(S) – creates the (partial) homomorphism QQ –> S (but see also CanonicalHom (Sec.13)).
QQ argument is implicit because there is a unique copy

81.2 Maintainer documentation for the class RingQQImpl

The function RingQQ() simply returns the unique instance of the CoCoALib ring (Sec.72) representing QQ. This
instance is managed by GlobalManager (Sec.38), see its documentation.

The function MakeUniqueInstanceOfRingQQ is the only function which can call the ctor of RingQQImpl. The
only function which is supposed to call MakeUniqueInstanceOfRingQQ is the ctor of GlobalManager (Sec.38). I
have discouraged others from calling MakeUniqueInstanceOfRingQQ by not putting it in the header file RingQQ.H

– see bugs section in GlobalManager (Sec.38).

RingQQImpl is the implementation of the field of rational numbers following the scheme laid by RingBase and
FractionFieldBase. Almost all member functions are trivial: indeed, virtually all the work is done by the GMP
library. Once you have understood how RingZZImpl works, the implementation here should be easy to follow.

The implementation of RingQQImpl::InducedHomImpl::myApply turns out to be a bit lengthy, but I do not see
how to improve it. Since partial homomorphisms can be built, myApply maps numerator and denominator then must
check that their images can be divided. I cannot reuse the implementation of FractionFieldImpl::InducedHomImpl::myApply
because there is no equivalent of RefNum and RefDen in RingQQImpl.

81.3 Bugs, Shortcomings and other ideas

This code is probably not exception safe; I do not know what the mpq * functions do when there is insufficient
memory to proceed. Making the code ”exception safe” could well be non-trivial: I suspect a sort of auto ptr to
an mpq t value might be needed.

How to check that induced homomorphisms are vaguely sensible?? e.g. given ZZ->ZZ[x] ker=0, but cannot
induce QQ->ZZ[x]; so it is not sufficient simply to check that the kernel is zero.

166

../../examples/index.html#ex-RingQQ1.C

82 RingTwinFloat (John Abbott, Anna M. Bigatti)

82.1 User documentation for the classes RingTwinFloat and RingTwinFloatImpl

IMPORTANT NOTICE: please make sure you are using GMP 4.1.4 or later (wrong results may be obtained with
earlier versions).

Elements of a RingTwinFloat try to act as though they were unlimited precision floating point values (while us-
ing only a finite precision). RingTwinFloat uses a heuristic to monitor loss of precision during computation, and will
throw a RingTwinFloat::InsufficientPrecision object if it detects an unacceptable loss of precision. Beware
that this is only a probabilistic heuristic which can underestimate precision loss. A RingTwinFloat::InsufficientPrecision

object may also be caught as an ErrorInfo object having error code ERR::InsuffPrec (see error (Sec.25)).

EXAMPLE: If epsilon is a non-zero RingTwinFloat value then (1+epsilon == 1) will either be false or throw
RingTwinFloat::InsufficientPrecision.

RingTwinFloat uses a heuristic for guessing when the difference of two almost equal values should be regarded
as zero. While the heuristic is usually very reliable, it is possible to construct examples where the heuristic fails:
see EXAMPLES/ex-RingTwinFloat1.C.

The function IsInteger will return false for any value of magnitude greater than or equal to 2ˆPrecision-
Bits(RR). Recognition of integers is heuristic; failures in ether sense are possible but are also unlikely.

See RingElem RingTwinFloat (Sec.75) for operations on its elements.

82.1.1 Examples

• ex-RingTwinFloat1.C

• ex-RingTwinFloat2.C

• ex-RingTwinFloat3.C

82.1.2 Pseudo-constructors

The constructor for RingTwinFloat takes a single argument being a lower bound on the number of bits’ precision
desired (in the mantissa). The value specified is probably rounded up a bit; exactly what happens depends on
the mpf implementation in the GMP library. A minimum precision of 32 bits is imposed; smaller precisions are
automatically increased to 32.

All arguments are MachineInt (Sec.47)

• NewRingTwinFloat(AccuracyBits)

• NewRingTwinFloat(AccuracyBits, BufferBits, NoiseBits)

82.1.3 Query and cast

Let S be a ring (Sec.72)

• IsRingTwinFloat(S) – true iff S is actually a RingTwinFloat

• AsRingTwinFloat(S) – if S is a RingTwinFloat view it as such

82.1.4 Operations

In addition to the standard ring operations (Sec.72), a FractionField may be used in:

• PrecisionBits(RR) – gives the mantissa precision specified in the ctor

82.1.5 Homomorphisms

Let RR be a RingTwinFloat and R any Ring (Sec.??)

• NewApproxHom(RR, R) – creates the homomorphism RR –> S (but see also CanonicalHom (Sec.13))

167

../../examples/index.html#ex-RingTwinFloat1.C
../../examples/index.html#ex-RingTwinFloat2.C
../../examples/index.html#ex-RingTwinFloat3.C

82.2 Maintainer documentation for the classes RingTwinFloat and RingTwinFloat-
Impl

As usual the class RingTwinFloat is just a reference counting smart pointer to an object of type RingTwinFloatImpl
(which is the one which really does the work). The implementation of the smart pointer class RingTwinFloat is
altogether straightfoward (just the same as any of the other smart pointer ring classes).

82.2.1 Philosophy

The implementation is based on Traverso’s idea of ”paired floats”: each value is represented as two almost equal
floating point numbers. The difference between the two numbers is intended to give a good indication of how much
”noise” there is in the values. Here we shall allow larger tuples of floating point numbers. Arithmetic is performed
independently on each component: e.g.

(a[0],a[1]) + (b[0],b[1]) ==> (a[0]+b[0] , a[1]+b[1])

The consistency of the components is checked after every operation.

The main ”trick” in the implementation of RingTwinFloatImpl is that its elements are MultipleFloats
(just a C array of mpf t values). The number of components in a MultipleFloat value is determined by
RingTwinFloatImpl::myNumCompts – currently fixed equal to 2 at compile time. Furthermore the values of these
components must all be very close to each other. Indeed the function RingTwinFloatImpl::myCheckConsistency

checks this condition: two outcomes are possible: - (1) all the components are very close to each other; - (2)
at least one component is quite far from another. - In case (1) nothing more happens. In case (2) it is ev-
ident that an accumulated loss of precision has become unacceptable, and this triggers an exception of type
RingTwinFloat::InsufficientPrecision. The addition and subtraction functions check explicitly for near can-
cellation, and force the result to be zero in such cases.

The bit precision parameter specified when creating a RingTwinFloat is used in the following way (with the
underlying principle being that elements of RingTwinFloat(N) should have at least roughly N bits of reliable
value).

The digits in the mantissa (of each component in a MultipleFloat) are conceptually divided into three regions:

A A A A...A A A B B B B....B B B B C C C....C C C

<- N bits -> <- sqrt(N) bits -> <- N/2 bits ->

The region A comprises as many bits as the precision requested, and may be regarded as being correct with high
probability. The region B comprises ”guard digits”: these digits are NOT regarded as being correct, but regions
A and B of all components must be equal. Finally, region C is for ”noise”, and may be different in different
components.

When an integer is converted to a MultipleFloat, the component with index 0 takes on the closest possible
value to the integer while the other component(s) have about sqrt(N) bits of uniform random ”noise” added to
them (the random value may be positive or negative).

Special action is taken if there is large drop in magnitude during an addition (or subtraction): if the magnitude
drops by more than N+sqrt(N) bits then the answer is forced to be equal to zero. There is a remote chance of
erroneously computing zero when two almost equal values are subtracted. It does not seem to be possible to avoid
this using limited precision arithmetic.

Special action is taken if a ”noisy” component happens to be too close to the value at index 0: in this case
more random noise is added. This can happen, for instance, if a value is divided by itself.

82.2.2 RingTwinFloatImpl::myFloor

It took me a while to find a satisfactory definition for the member function myFloor (even though the final code
is fairly simple).

I eventually settled on the following definition. If the argument satisfies the IsInteger predicate then the floor
function must surely give precisely that integer. Otherwise the argument (call it X) is not an integer, and the floor
of X, if it exists, will be that integer N which satisfies the two-part condition N < X and N +1 > X. If there is no
such integer N then the floor cannot be computed, and an InsufficientPrecision exception must be thrown. In
fact, there is an obvious candidate for N, namely the floor of the first component of the internal representation of
X (it would be trickier to use the floor of the second component). Clearly N can be no larger than this candidate,
since otherwise the first part of the condition would fail; and if N were any smaller then the second part would fail.

168

82.3 Bugs, shortcomings and other ideas

The code is ugly.

The functions perturb, ApproximatelyEqual and myCmp do ”wasteful” alloc/free of temporary mpf t values.
myCmp can be done better.

What about a function which finds a continued fraction approximant to a RingTwinFloat value? It seems hard
to implement such a function ”outside” RingTwinFloatImpl as InsufficientPrecision will be triggered long
before ambiguity is encountered in the continued fraction.

myIsInteger needs to be rewritten more sensibly (using mpf ceil or mpf floor perhaps?)

How to print out floats when they appear as coeffs in a polynomial??? What are the ”best” criteria for printing
out a float so that it looks like an integer? Should the integer-like printout contain a decimal point to emphasise
that the value may not be exact?

Is it really necessary to call myCheckConsistency after multiplication and division? The accumulated loss of
precision must grow quite slowly. Yes, it is necessary: consider computing 1ˆ1000000 (or any other high power).

What about COMPLEX floats???

When a MultipleFloat is duplicated should its components be perturbed?

AsMPF is an UGLY function: signature reveals too much about the impl!

myNumCompts could be chosen by the user at run-time; in which case it must become a per-instance data member
(instead of static). I’d guess that 2, 3 or 4 would be the best compromise.

Could it be useful to allow precisions below 32 bits? The limit does seem to be somewhat arbitrary. Perhaps
the number of noise bits should also be allowed to vary?

RingTwinFloatImpl::myOutput:

• the the number of digits printed could be determined by how closely the different components match – would
this be useful or wise?

• the number of digits printed is related to the definition of myCheckConsistency (I’m a little uneasy about
this invisible link)

Should there be a means of mapping an element of a high precision RingTwinFloat to a lower precision
RingTwinFloat (without having to pass through an external representation, such as a rational number)?

It seems wasteful to use two mpf t values to represent a single RingTwinFloat value. Would it not be better
to keep the main value and an ”epsilon” (held as a double and an int exponent? Would it matter that ”epsilon”
has only limited precision?

82.4 Main changes

83 RingWeyl (John Abbott and Anna M. Bigatti)

83.1 User documentation

The class RingWeylImpl implements a Weyl algebra.

Note that Weyl algebras are noncommutative.

83.1.1 Examples

• ex-RingWeyl1.C

• ex-RingWeyl2.C

• ex-RingWeyl3.C

• ex-RingWeyl4.C

• ex-RingWeyl5.C

169

../../examples/index.html#ex-RingWeyl1.C
../../examples/index.html#ex-RingWeyl2.C
../../examples/index.html#ex-RingWeyl3.C
../../examples/index.html#ex-RingWeyl4.C
../../examples/index.html#ex-RingWeyl5.C

83.1.2 Constructors

• NewWeylAlgebra(CoeffRing, NumTrueIndets, ElimIndets)

• NewWeylAlgebra(CoeffRing, names, ElimIndets)

83.2 Maintainer documentation

This first version implements the Weyl algebra by using a normal polynomial ring internally (myReprRing) for
manipulating the elements, and simply doing the right thing for products (instead of passing them directly onto
myReprRing).

83.3 Bugs, shortcomings and other ideas

This documentation is extremely incomplete (time and energy are running out).

This version was produced in a considerable hurry, and worked by miracle.

There should be scope for some optimization, and perhaps some cleaning.

84 RingZZ (John Abbott, Anna M. Bigatti)

84.1 User documentation for RingZZ

The call RingZZ() produces the CoCoA ring (Sec.72) which represents ZZ, the ring of integers. Calling RingZZ()

several times will always produce the same unique CoCoA ring (Sec.72) representing ZZ.

Strictly, there is a limit on the size of elements you can create, but the limit is typically high enough not to be
bothersome.

See RingElem (Sec.75) for operations on its elements.

Efficiency of arithmetic on elements of RingZZ() should be reasonable rather than spectacular. If you wish to
compute purely with integers (without exploiting CoCoALib’s rings) then see the documentation in BigInt (Sec.8).

84.1.1 Examples

• ex-RingZZ1.C

84.1.2 Constructors and pseudo-constructors

• RingZZ() – produces the CoCoA ring (Sec.72) which represents ZZ. Calling RingZZ() several times will
always produce the same unique ring in CoCoALib.

84.1.3 Query

Let R be a ring (Sec.72)

• IsZZ(R) – says whether R is actually RingZZ()

84.1.4 Homomorphisms

Let S be a ring (Sec.72)

• NewZZEmbeddingHom(S) – creates the homomorphism ZZ –> S (but see also CanonicalHom (Sec.13)). ZZ
argument is implicit because there is a unique copy

170

../../examples/index.html#ex-RingZZ1.C

84.2 Maintainer documentation for the class RingZZImpl

The function RingZZ() simply returns the unique instance of the CoCoALib ring (Sec.72) representing ZZ. This
instance is managed by GlobalManager (Sec.38), see its documentation.

The function MakeUniqueInstanceOfRingZZ is the only function which can call the ctor of RingZZImpl. The
only function which is supposed to call MakeUniqueInstanceOfRingZZ is the ctor of GlobalManager (Sec.38). I
have discouraged others from calling MakeUniqueInstanceOfRingZZ by not putting it in the header file RingZZ.H

– see bugs section in GlobalManager (Sec.38).

The class RingZZImpl is really very simple. It may look daunting and complex because it inherits lots of virtual
functions from RingBase. It contains just three data members: a MemPool for managing the storage of the mpz t

headers, and pointers to the ring’s own zero and one elements.

The member functions for arithmetic are all quite simple. The only minor difficulty is in the function AsMPZ

which gets at the mpz t hidden inside a RingElemRawPtr. I have decided to stick with the C interface to GMP for
the moment (even though GMP 4 does offer a C++ interface). This appears to be more a personal choice than a
technical one.

Recall (from ring (Sec.72)) that arithmetic on ring elements always passes via the virtual member functions
of the concrete rings, and that these expect arguments to be of type RawPtr or ConstRawPtr. The arguments are
pointers to the mpz t headers which reside in a region of memory controlled by the MemPool (Sec.53) belonging to
the RingZZImpl class.

Given that the mpz t values must live on the free store, we use a MemPool (Sec.53) to handle the space for their
headers (which are of fixed size). Note that this MemPool (Sec.53) is NOT what handles the memory used for the
digits (or limbs) of the GMP integer values! Currently limb space is handled by whatever is the default allocator
(malloc, I suppose).

The data members myZeroPtr and myOnePtr just hold auto ptrs to the zero and one elements of the RingZZImpl.
I used an auto ptr to avoid having to worry about freeing it in the destructor; the zero and one values cannot be
RingElems because their creation must be deferred. I opted not to store the values in RingElem fields to avoid any
possible problem due to a ”race condition” where elements of the ring would be constructed before the body of the
constructor of the ring had begun execution (might be OK anyway, but could easily lead to hair-raising bugs (e.g.
in the dtor)).

84.3 Bugs, Shortcomings and other ideas

This code is probably not exception safe; I do not know what the mpz * functions do when there is insufficient
memory to proceed. Making the code ”exception safe” could well be non-trivial: I suspect a sort of auto ptr to
an mpz t value might be needed.

Should I switch to the C++ interface for GMP integers?

It is a shame that the mpz t headers are ”out of line”. How much this may affect run-time performance I don’t
know.

Generation of random elements in RingZZ is not possible (yet???).

85 ServerOp (Anna Bigatti)

85.1 User documentation

85.1.1 Outline

ServerOpBase is the abstract class for an object representing an operation of the CoCoAServer. A concrete class
must implement these functions (see below for a detailed description):

ServerOpBase(const LibraryInfo& lib)

void myOutputSelf(std::ostream&) const

void myReadArgs(std::istream& in)

void myCompute()

void myWriteResult(std::ostream&) const

void myClear()

171

The concrete classes representing the actual CoCoALib operations and their registrations are implemented
in RegisterServerOps.C. See RegisterServerOps (Sec.71) for the registration procedure.

Data members

The class should have as data members the input myIn.. and output variables myOut.. for the main function
called by myCompute().

For example the class IdealGBasis has:

PolyList myInPL, myOutPL;

For data types without a void constructor use auto ptr, for example the class IdealElim has:

auto_ptr<PPMonoidElem> myInElimPPPtr;

which is initialized in IdealElim::myReadArgs

myInElimPPPtr.reset(new PPMonoidElem(t));

LibraryInfo

A LibraryInfo is a set of information common to a group of operations. The CoCoAServer prints the list
of loaded (sub)libraries at startup.

LibraryInfo(const std::string& name,

const std::string& version,

const std::string& group);

Example of definition of the function identifying a (sub)library:

// sublibrary of CoCoALib for groebner related operations

// by M.Caboara

const ServerOpBase::LibraryInfo& CoCoALib_groebner()

{

static ServerOpBase::LibraryInfo UniqueValue("CoCoALib",

BuildInfo::version,

"groebner");

return UniqueValue;

}

85.1.2 Virtual functions

myCompute

This function should be just a straight call to a CoCoALib function, in particular with neither reading nor
printing, using as input the class members called myIn.. and storing the result into the data members called
myOut.., for example

void myCompute() { ComputeGBasis(myOutPL, myInPL); }

myReadArgs

Read from GlobalInput, and store the arguments into myIn... In general this is the only difficult function.

172

myWriteResult

Print the result(s) (myOut..) in CoCoA-4 language assigning it into the CoCoA4 global variable whose name
is stored in VarName4. For non-standard output just remember it simply is CoCoA-4 language, for example:

void MVTN1::myWriteResult(std::ostream& out) const

{

out << ourVarName4 << " := [];";

for (unsigned int i=0; i<myOutPP.size(); ++i)

out<< "Append(" << ourVarName4<< ", " << PP(myOutPP[i]) << ");" <<endl;

}

– add example for ”Record[..];” output from ApproxBBasis –

myClear

Reset all data members to 0. Right now (April 2007) it is only for cleaning the object right after it has been
used, in future it might be called to reuse the object several times.

85.1.3 Debugging the server

If a function called by CoCoA-4 needs to be debugged this is the procedure to avoid dealing with sockets and fork
under gdb.

• create from CoCoA-4 the input file ~/tmp/CoCoA4Request.cocoa5:

$cocoa5.Initialize();

MEMORY.PKG.CoCoA5.PrintOnPath := GetEnv("HOME")+"/tmp";

MyFun5(X);

• In shell:

src/server/CoCoAServer -d < ~/tmp/CoCoA4Request.cocoa5

• In gdb:

file src/server/CoCoAServer

r -d < ~/tmp/CoCoA4Request.cocoa5

break CoCoA::error

86 SmallFpDoubleImpl (John Abbott)

86.1 User documentation for SmallFpDoubleImpl

The class SmallFpDoubleImpl is a very low level implementation class for fast arithmetic in a small, prime fi-
nite field. It is not intended for use by casual CoCoALib users, who should instead see the documentation in
QuotientRing (Sec.68) (in particular the function NewZZmod), or possibly the documentation in RingFp (Sec.77),
RingFpLog (Sec.79), and RingFpDouble (Sec.78).

Compared to SmallFpImpl (Sec.87) the main difference is an implementation detail: values are represented
as doubles – on 32-bit computers this allows a potentially usefully greater range of characteristics at a probably
minor run-time cost.

All operations on values must be effected by calling member functions of the SmallFpDoubleImpl class. Here
is a brief summary.

SmallFpDoubleImpl::IsGoodCtorArg(p); // true iff ctor SmallFpDoubleImpl(p) will succeed

SmallFpDoubleImpl::ourMaxModulus(); // largest permitted modulus

SmallFpDoubleImpl ModP(p, convention); // create SmallFpDoubleImpl object

long n;

173

BigInt N;

BigRat q;

SmallFpImpl::value_t a, b, c;

ModP.myModulus(); // value of p (as a long)

ModP.myReduce(n); // reduce mod p

ModP.myReduce(N); // reduce mod p

ModP.myReduce(q); // reduce mod p

ModP.myExport(a); // returns a preimage (of type long) according to symm/non-neg convention.

ModP.myNegate(a); // -a mod p

ModP.myAdd(a, b); // (a+b)%p;

ModP.mySub(a, b); // (a-b)%p;

ModP.myMul(a, b); // (a*b)%p;

ModP.myDiv(a, b); // (a*inv(b))%p; where inv(b) is inverse of b

ModP.myPower(a, n); // (a^n)%p; where ^ means "to the power of"

ModP.myIsZeroAddMul(a,b,c) // a = (a+b*c)%p; result is (a==0)

For myExport the choice between least non-negative and symmetric residues is determined by the convention speci-
fied when constructing the SmallFpDoubleImpl object. This convention may be either GlobalSettings::SymmResidues
or GlobalSettings::NonNegResidues.

86.2 Maintainer documentation for SmallFpDoubleImpl

Most functions are implemented inline, and no sanity checks are performed (except when CoCoA DEBUG is enabled).
The constructor does do some checking. The basic idea is to use the extra precision available in doubles to
allow larger prime finite fields than are permitted when 32-bit integers are used for all arithmetic. If fast 64-bit
arithmetic becomes widespread then this class will probably become obsolete (unless you have a very fast floating
point coprocessor?).

SmallFpDoubleImpl::value t is simply double. Note that the values are always non-negative integers with
maximum value less than myModulusValue; i.e. each residue class is represented (internally) by its least non-
negative member.

To avoid problems with overflow the constructor checks that all integers from 0 to p*p-p can be represented
exactly. We need to allow numbers as big as p*p-p so that myIsZeroAddMul can be implemented easily.

It is not strictly necessary that myModulusValue be prime, though division becomes only a partial map if
myModulusValue is composite. I believe it is safest to insist that myModulusValue be prime.

86.3 Bugs, Shortcomings, and other ideas

The implementation is simplistic – I wanted to dash it off quickly before going on holiday :-)

87 SmallFpImpl (John Abbott)

87.1 User documentation for SmallFpImpl

The class SmallFpImpl is a very low level implementation class for fast arithmetic in a small, prime finite field. It
is not intended for use by casual CoCoALib users, who should instead see the documentation in QuotientRing

(Sec.68) (in particular the function NewZZmod), or possibly the documentation in RingFp (Sec.77), RingFpLog

(Sec.79), and RingFpDouble (Sec.78).

The class SmallFpImpl offers the possibility of highly efficient arithmetic in small prime finite fields. This effi-
ciency comes at a cost: the interface is rather unnatural and intolerant of mistakes. The emphasis is unequivocally
on speed rather than safety or convenience.

The full speed of SmallFpImpl depends on many of its functions being inlined. The values to be manipulated
must be of type SmallFpImpl::value t. This is an unsigned machine integer type, and the values 0 and 1 may
be used normally (but other values must be reduced before being used).

174

All operations on values must be effected by calling member functions of the SmallFpImpl class. Here is a
brief summary.

SmallFpImpl::IsGoodCtorArg(p); // true iff ctor SmallFpImpl(p) will succeed

SmallFpImpl::ourMaxModulus(); // largest permitted modulus

SmallFpImpl ModP(p, convention); // create SmallFpImpl object

long n;

BigInt N;

BigRat q;

SmallFpImpl::value_t a, b, c;

ModP.myModulus(); // value of p (as a long)

ModP.myReduce(n); // reduce mod p

ModP.myReduce(N); // reduce mod p

ModP.myReduce(q); // reduce mod p

ModP.myExport(a); // returns a preimage (of type long) according to symm/non-neg convention.

ModP.myNegate(a); // -a mod p

ModP.myAdd(a, b); // (a+b)%p;

ModP.mySub(a, b); // (a-b)%p;

ModP.myMul(a, b); // (a*b)%p;

ModP.myDiv(a, b); // (a*inv(b))%p; where inv(b) is inverse of b

ModP.myPower(a, n); // (a^n)%p; where ^ means "to the power of"

ModP.myIsZeroAddMul(a,b,c) // a = (a+b*c)%p; result is (a==0)

For myExport the choice between least non-negative and symmetric residues is determined by the convention spec-
ified when constructing the SmallFpImpl object. This convention may be either GlobalSettings::SymmResidues
or GlobalSettings::NonNegResidues.

87.1.1 Advanced Use: delaying normalization in a loop

The normal mod p arithmetic operations listed above always produce a normalized result. In some loops it may
be possible to compute several iterations before having to normalize the result. The following three functions help
implement such a delayed normalization strategy.

ModP.myNormalize(a); -- FULL normalization of a

ModP.myHalfNormalize(a); -- *fast*, PARTIAL normalization of a

ModP.myMaxIters();

The value of myMaxIters() is the largest number of unnormalized products (of normalized values) which may
be added to a partially normalized value before risking overflow. The partial normalization operation is quick (at
most a comparison and a subtraction). Naturally, the final result must be fully normalized. See example program
ex-SmallFp1.C for a working implementation.

87.2 Maintainer documentation for SmallFpImpl

Most functions are implemented inline, and no sanity checks are performed (except when CoCoA DEBUG is enabled).
The constructor does do some checking.

SmallFpImpl::value t must be an unsigned integral type; it is a typedef to a type specified in CoCoA/config.H

– this should allow fairly easy platform-specific customization.

This code is valid only if the square of myModulus can be represented in a SmallFpImpl::value t; the con-
structor checks this condition. Most functions do not require myModulus to be prime, though division becomes only
a partial map if it is composite; and the function myIsDivisible is correct only if myModulus is prime. Currently
the constructor rejects non-prime moduli.

The code assumes that each value modulo p is represented as the least non-negative residue (i.e. the values are
represented as integers in the range 0 to p-1 inclusive). This decision is linked to the fact that SmallFpImpl::value t

is an unsigned type.

175

The constants myResidueUPBValue and myIterLimit are to allow efficient exploitation of non-reduced multi-
plication (e.g. when trying to compute an inner product modulo p). See example program ex-SmallFp1.C

The return type of NumBits is int even though the result is always non-negative – I do not like unsigned

values.

87.3 Bugs, Shortcomings, and other ideas

Should there be a myIsMinusOne function?

88 SmallFpLogImpl (John Abbott)

88.1 User documentation for SmallFpLogImpl

The class SmallFpLogImpl is a very low level implementation class for fast arithmetic in a small, prime finite field.
It is not intended for use by casual CoCoALib users, who should instead see the documentation in QuotientRing

(Sec.68) (in particular the function NewZZmod), or possibly the documentation in RingFp (Sec.77), RingFpLog

(Sec.79), and RingFpDouble (Sec.78).

Compared to SmallFpImpl (Sec.87) the only difference is an implementation detail: multiplication and division
are achieved using discrete log tables – this may be fractionally faster on some processors.

Note that the cost of construction of a SmallFpLogImpl(p) object for larger primes may be quite considerable
(linear in p), and the resulting object may occupy quite a lot of space (e.g. probably about 6*p bytes).

All operations on values must be effected by calling member functions of the SmallFpLogImpl class. Here is
a brief summary.

SmallFpLogImpl::IsGoodCtorArg(p); // true iff ctor SmallFpLogImpl(p) will succeed

SmallFpLogImpl::ourMaxModulus(); // largest permitted modulus

SmallFpLogImpl ModP(p, convention); // create SmallFpLogImpl object

long n;

BigInt N;

BigRat q;

SmallFpImpl::value_t a, b, c;

ModP.myModulus(); // value of p (as a long)

ModP.myReduce(n); // reduce mod p

ModP.myReduce(N); // reduce mod p

ModP.myReduce(q); // reduce mod p

ModP.myExport(a); // returns a preimage (of type long) according to symm/non-neg convention.

ModP.myNegate(a); // -a mod p

ModP.myAdd(a, b); // (a+b)%p;

ModP.mySub(a, b); // (a-b)%p;

ModP.myMul(a, b); // (a*b)%p;

ModP.myDiv(a, b); // (a*inv(b))%p; where inv(b) is inverse of b

ModP.myPower(a, n); // (a^n)%p; where ^ means "to the power of"

ModP.myIsZeroAddMul(a,b,c) // a = (a+b*c)%p; result is (a==0)

For myExport the choice between least non-negative and symmetric residues is determined by the convention speci-
fied when constructing the SmallFpLogImpl object. This convention may be either GlobalSettings::SymmResidues
or GlobalSettings::NonNegResidues.

88.2 Maintainer documentation for SmallFpLogImpl

The only clever bit is the economical construction of the log/exp tables in the constructor where we exploit the
fact that myRoot to the power (p-1)/2 must be equal to -1.

176

This implementation uses discrete log/exp tables to effect multiplication and division quickly. Note that the
residues themselves (i.e. the values of the ring elements) are held as machine integers whose value is the least
non-negative representative of the residue class (i.e. in the range 0 to p-1). In particular, although log tables are
used, we do NOT use a logarithmic representation for the field elements.

The log/exp tables are stored in C++ vectors: aside from their construction during the RingFpLogImpl con-
structor, these vectors are never modified, and are used only for table look-up. The C++ vectors are resized in the
body of the constructor to avoid large memory requests when overly large characteristics are supplied as argument.

Besides these tables SmallFpLogImpl also remembers the characteristic in myModulus; myRoot is the primitive
root used to generate the log/exp tables.

The members myResidueUPBValue and myIterLimit and myHalfNormalize may be used for delayed normal-
ization in loops: see the inner product example in SmallFpImpl (Sec.87).

As the code currently stands, the modulus must also be small enough that it can fit into an FpTableElem (an
unsigned short), and that its square can fit into a value t. Using shorts in the tables gave slightly better run-
time performance in our tests. Furthermore, to permit use of unnormalized products in some algorithms, twice the
square of the characteristic must fit into a value t (i.e. myIterLimit must be greater than zero). The constructor
for a RingFpLogImpl checks the size restrictions on the characteristic.

Note that the log table has a slot with index 0 which is never written to nor read from. The exp table is double
size so that multiplication can be achieved more easily: the highest slot which could ever be used is that with index
2p-3 (in division), but the constructor fills two extra slots (as this makes the code simpler/neater).

The only slick part of the implementation is the filling of the tables in the constructor, where some effort is
made to avoid doing more reductions modulo p than necessary. Note that the primitive root is always calculated
(potentially costly!); there is no memorized global table of primitive roots anywhere.

88.3 Bugs, Shortcomings and other ideas

It is not as fast as I hoped – perhaps cache effects?

89 SmartPtrIRC (John Abbott)

89.1 User documentation for files SmartPtrIRC

The name SmartPtrIRC stands for Smart Pointer with Intrusive Reference Count. The desired behaviour is
achieved through two cooperating classes: SmartPtrIRC and IntrusiveReferenceCount. These classes exist to
facilitate implementation of smart pointers with reference counting. The suggested use is as follows. Make your
implementation class inherit protected-ly from IntrusiveReferenceCount, and in your implementation class
declare the class SmartPtrIRC<MyClass> as a friend. You can now use the class SmartPtrIRC<MyClass> as a
reference counting smart pointer to your class.

The template argument of the class SmartPtrIRC specifies the type of object pointed to; if you want the objects
pointed at to be const then put the keyword ”const” in the template argument like this SmartPtrIRC<const

MyClass> . Creating a new SmartPtrIRC to a datum will increment its reference count; conversely, destroying
the SmartPtrIRC decrements the ref count (and destroys the object pointed at if the ref count reaches zero, see
IntrusiveReferenceCount::myRefCountDec). Five operations are available for SmartPtrIRC values:

let SPtr be a SmartPtrIRC value

• SPtr.myRawPtr() returns the equivalent raw pointer

• SPtr.operator->() returns the equivalent raw pointer

• SPtr.mySwap(SPtr2) swaps the raw pointers

• SPtr1 == SPtr2 returns true iff the equivalent raw pointers are equal

• SPtr1 != SPtr2 returns true iff the equivalent raw pointers are unequal

The class IntrusiveReferenceCount is intended to be used solely as a base class. Note the existence of
IntrusiveReferenceCount::myRefCountZero which forces the reference count to be zero. For instance, this is
used in ring implementations where the ring object contains some circular references to itself; after creating the
circular references the ring constructor then resets the reference count to zero so that the ring is destroyed at the
right moment. SEE BUGS SECTION.

177

IMPORTANT NOTE: it is highly advisable to have myRefCountZero() as the very last operation in every
contructor of a class derived from IntrusiveReferenceCount, i.e. intended to be used with SmartPtrIRC.

89.2 Maintainer documentation for files SmartPtrIRC

The entire implementation is in the .H file: a template class, and another class with only inline member functions.
Inlining is appropriate as the functions are extremely simple and we expect them to be called a very large number
of times.

The implementation is quite straightforward with one important detail: the destructor of IntrusiveReferenceCount
must be virtual because myRefCountDec does a polymorphic delete through a pointer to IntrusiveReferenceCount

when the count drops to zero. The book by Sutter and Alexandrescu gives wrong advice (in article 50) about when
to make destructors virtual!

The fn mySwap is a member fn because I couldn’t figure out how to make it a normal (templated?) function. I
also feared there might have been some problems with the template fn std::swap.

89.3 Bugs, Shortcomings and other ideas

Should myRefCountZero be eliminated? It is not strictly necessary (just call myRefCountDec after each operation
which incremented the ref count. This is related to how rings create their zero and one elements (and possibly
other elements which should always exist, e.g. indets in a poly ring).

Could ref count overflow? Perhaps size t is always big enough to avoid overflow?

It may be possible to replace all this code with equivalent code from the BOOST library. But so far (Nov 2006)
the shared ptr implementation in BOOST is not documented, so presumably should not be used. As there is no
documentation I have not verified the existence of a set ref count to zero function; I rather suspect that it does not
exist.

90 SmartPtrIRCCOW (John Abbott, Anna Bigatti)

90.1 User documentation for files SmartPtrIRCCOW

The name SmartPtrIRCCOW stands for Smart Pointer with Intrusive Reference Count and Copy-on-write. (or Lazy
Copy).

It is very similar to SmartPtrIRC (Sec.89), where two cooperating classes are SmartPtrIRCCOW and IntrusiveReferenceCountCOWBase,
but also allows assigning, copying, and modifying.

90.2 Maintainer documentation for files SmartPtrIRCCOW

The abstract class IntrusiveReferenceCountCOWBase inherits from IntrusiveReferenceCount (see documenta-
tion for SmartPtrIRC (Sec.89)), with an additional pure virtual function myClone which must be implemented by
the concrete class returning a deep copy of the object.

The template class SmartPtrIRCCOW<T> is implemented with one data member:

private: SmartPtrIRC<T> mySmartPtr;

Which does (almost) all the work. The core for the copy-on-write behaviour is the member function:

private: void myDetach()

which (if necessary) makes a new deep copy with reference count 1 and decrements the reference count of the
original object.

90.3 Bugs, Shortcomings and other ideas

90.4 Main changes

2010

178

• 0.9938 first version July 2010 (experimental)

91 SocketStream (John Abbott)

91.1 User Documentation for SocketStream

91.1.1 General description

A SocketStream is intended to be used for client-server socket connections. The distinction between the two sorts
of use is made explicit when the socket is created:

• the server end of a socket is created by specifying the port number on which to listen for connexions

• the client end of a socket is created by specifying both the machine name and port number to call

In both cases the SocketStream object is an iostream, i.e. it supports both input and output. Note that the
constructor for a server end socket (i.e. one with just the port number as argument) will block until a connexion
is received!

91.1.2 Example of Basic Use

Here is a simple, and rather silly, example. The server reads strings, and for each string read returns a string being
the decimal representation of the length of the string received. Don’t forget to start the server first, and then run
the client (otherwise the client will complain about connexion refused).

91.1.3 Source for server.C

#include <string>

#include "CoCoA/SocketStreambuf.C"

int main()

{

CoCoA::SocketStream s(8000); // server socket -- waits for a call

while (s)

{

std::string str;

s >> str;

if (!s) break;

std::cout << "Read the string: " << str << std::endl;

s << str.size() << std::endl;

}

std::cout << "REACHED EOF -- QUITTING" << std::endl;

return 0;

91.1.4 Source for client.C

#include <string>

#include <iostream>

#include "CoCoA/SocketStreambuf.C"

void process(const std::string& str, std::iostream& s)

{

s << str << endl;

std::string result;

s >> result;

std::cout << ’"’ << str << "\" transformed into \"" << result << ’"’ << std::endl;

}

179

int main()

{

CoCoA::SocketStream s("point", 8000); // client socket

process("String1", s);

process("String2", s);

process("archeopteryx", s);

process("asuccessionofnonwhitespacecharacters", s);

return 0;

}

91.2 Maintenance notes for the SocketStream source code

As mentioned below, most of this code was written by copying from other reliable sources – I don’t really understand
how it all works. For the streambuf code refer to Josuttis’s excellent book. I do not know any formal reference
for the ”low-level” C code which uses the socket functions of the C library.

SocketStreambuf::ourUngetSize is a lower bound on how much one can ”go backwards” using the ungetc

function. SocketStreambuf::ourInputBufferSize is the size of the internal input byte buffer, so the maximum
number of characters which can be read in a single call to ”recv” is the difference between ourInputBufferSize

and ourUngetSize (currently 99996 bytes).

The constructor for a server size SocketStream internally calls ”fork” when a connexion is received – the
constructor completes only in the child, the parent process waits for further connexions.

91.3 Bugs, Shortcomings, etc

I do not like having to include <cstdio> just to get the preprocessor macro EOF

ERROR HANDLING NEEDS TO BE RECONSIDERED. Error handling is probably not correct: too great a
tendency to throw exceptions instead of simply putting the iostream into an ”anomalous state”. Not sure what is
the accepted C++ approach.

The values for the constants SocketStreambuf::ourInputBufferSize and SocketStreambuf::ourUngetSize

are rather arbitrary.

Most of the code has been ”ripped off”: either from Daniele’s C source, or from Josuttis’s book. I have felt free
to make (wholesale) changes.

Maintainer documentation is largely absent.

92 SparsePolyRing (John Abbott)

92.1 Examples

• ex-PolyRing1.C

• ex-PolyRing2.C

• ex-PolyIterator1.C

• ex-PolyIterator2.C

• ex-PolyInput1.C

• ex-NF.C

92.2 User documentation for SparsePolyRing

SparsePolyRing is an abstract class (inheriting from PolyRing (Sec.60)) representing rings of polynomials; in
particular, rings of sparse multivariate polynomials (e.g. written with *sparse representation*) with a special view
towards computing Groebner bases and other related operations. This means that the operations offered by a
SparsePolyRing on its own values are strongly oriented towards those needed by Buchberger’s algorithm.

180

../../examples/index.html#ex-PolyRing1.C
../../examples/index.html#ex-PolyRing2.C
../../examples/index.html#ex-PolyIterator1.C
../../examples/index.html#ex-PolyIterator2.C
../../examples/index.html#ex-PolyInput1.C
../../examples/index.html#ex-NF.C

A polynomial is viewed abstractly as a formal sum of ordered terms; each term is a formal product of a non-zero
coefficient (belonging to the coefficient ring (Sec.72)), and a power product of indeterminates (belonging to the
PPMonoid (Sec.61) of the polynomial ring). The ordering is determined by the PPOrdering (Sec.63) on the power
products: distinct terms in a polynomial must have distinct power products. The zero polynomial is conceptually
the formal sum of no terms; all other polynomials have a leading term being the one with the largest power product
(PPMonoidElem (Sec.??)) in the given ordering.

See RingElem SparsePolyRing (Sec.75) for operations on its elements.

92.2.1 Pseudo-constructors

Currently there are four functions to create a polynomial ring:

NewPolyRing(CoeffRing, NumIndets) This creates a sparse polynomial ring with coefficients in CoeffRing and
having NumIndets indeterminates. The PP ordering is StdDegRevLex. CoCoALib chooses automatically
some names for the indeterminates (currently the names are x[0], x[1], ... , x[NumIndets-1]).

NewPolyRing(CoeffRing, IndetNames) This creates a sparse polynomial ring with coefficients in CoeffRing and
having indeterminates whose names are given in IndetNames (which is of type vector<symbol>). The PP
ordering is StdDegRevLex.

NewPolyRing(CoeffRing, IndetNames, ord) This creates a sparse polynomial ring with coefficients in CoeffRing

and having indeterminates whose names are given in IndetNames (which is of type vector<symbol>). The
PP ordering is given by ord.

NewPolyRing(CoeffRing, PPM) This creates a sparse polynomial ring with coefficients in CoeffRing and with
power products in PPM which is a power product monoid which specifies how many indeterminates, their
names, and the ordering on them.

In place of NewPolyRing you may use NewPolyRing DMPI; this creates a sparse poly ring which uses a more
compact internal representation (which probably makes computations slightly faster), but it necessarily uses a
PPMonoidOv for the power products. There is also NewPolyRing DMPII which uses a still more compact internal
representation, but which may be used only when the coefficients are in a small finite field and the power products
are in a PPMonoidOv.

92.2.2 Query and cast

Let R be an object of type ring (Sec.72).

• IsSparsePolyRing(R) – true if R is actually SparsePolyRing

• AsSparsePolyRing(R) – if R is a SparsePolyRing view it as such

92.2.3 Operations on a SparsePolyRing

In addition to the standard PolyRing operations (Sec.60), a SparsePolyRing may be used in other functions.

Let P be an object of type SparsePolyRing.

• PPM(P) – the PPMonoid of P.

• GradingDim(P) – the dimension of the grading on P (may be 0).

92.2.4 Operations with SparsePolyIters

A SparsePolyIter (class defined in SparsePolyRing.H) is a way to iterate through the summands in the polynomial
without knowing the (private) details of the concrete implementation currently in use.

See also the functions coefficients, CoefficientsWRT, CoeffVecWRT in RingElem (Sec.75).

Let f denote a non-const element of P. Let it1 and it2 be two SparsePolyIters running over the same
polynomial.

• BeginIter(f) – a SparsePolyIter pointing to the first term in f.

181

• EndIter(f) – a SparsePolyIter pointing to one-past-the-last term in f.

Changing the value of f invalidates all iterators over f.

• coeff(it1) – read-only access to the coeff of the current term

• PP(it1) – read-only access to the pp of the current term

• ++it1 – advance it1 to next term, return new value of it1

• it1++ – advance it1 to next term, return copy of old value of it1

• it1 == it2 – true iff it1 and it2 point to the same term; throws CoCoA::ErrorInfo with code ERR::MixedPolyIters
if it1 and it2 are over different polys.

• it1 != it2 – same as !(it1 == it2)

• IsEnded(it1) – true iff it1 is pointing at the one-past-the-last term

Examples

• ex-PolyIterator1.C

• ex-PolyIterator2.C

92.3 Maintainer documentation for SparsePolyRing

The exact nature of a term in a polynomial is hidden from public view: it is not possible to get at any term in
a polynomial by any publicly accessible function. This allows wider scope for trying different implementations of
polynomials where the terms may be represented in some implicit manner. On the other hand, there are many cases
where an algorithm needs to iterate over the terms in a polynomial; some of these algorithms are inside PolyRing
(i.e. the abstract class offers a suitable interface), but many will have to be outside for reasons of modularity and
maintainability. Hence the need to have iterators which run through the terms in a polynomial.

The implementations in SparsePolyRing.C are all very simple: they just conduct some sanity checks on the
function arguments before passing them to the PolyRing member function which will actually do the work.

92.4 Bugs, Shortcomings and other ideas

Too many of the iterator functions are inline. Make them out of line, then use profiler to decide which should be
inline.

PushFront and PushBack do not verify that the ordering criteria are satisfied.

Verify the true need for myContent, myRemoveBigContent, myMulByCoeff, myDivByCoeff, myMul (by pp). If
the coeff ring has zero divisors then myMulByCoeff could change the structure of the poly!

Verify the need for these member functions: myIsZeroAddLCs, myMoveLM, myDeleteLM, myDivLM, myCm-
pLPP, myAppendClear, myAddClear, myAddMul, myReductionStep, myReductionStepGCD, myDeriv.

Should there be a RingHom accepting IndetImage (in case of univariate polys)?

93 submodule (John Abbott, Anna M. Bigatti)

93.1 Examples

• ex-module2.C

182

../../examples/index.html#ex-PolyIterator1.C
../../examples/index.html#ex-PolyIterator2.C
../../examples/index.html#ex-module2.C

93.2 User documentation

Here are some pseudo-constructors for modules which are generated by a (finite) vector of ModuleElem (Sec.??)
(in a FreeModule (Sec.34)). There is no class for submodules, they are objects of type FGModule (Sec.30).

There are several ways to create a submodule:

• submodule(M, gens) – creates an FGModule (Sec.30) representing the submodule of the FGModule M gen-
erated by the elements in gens; note that M must be specified even though it is usually implicit in the values
contained in gens (unless gens is empty).

• SubmoduleCols(M, A) – the submodule generated by the columns of the matrix (Sec.48) A.

• SubmoduleRows(M, A) – the submodule generated by the rows of the matrix (Sec.48) A.

93.2.1 Operations

The permitted operations on submodules are:

FGModule SyzOfGens(const FreeModule& F, const ideal& I);

FGModule SyzOfGens(const FreeModule& F, const FGModule& N);

FGModule SyzOfGens(const ideal& I);

FGModule SyzOfGens(const FGModule& N);

bool IsElem(const ModuleElem& v, const module& M);

bool IsContained(const module& M, const module& M);

93.3 Maintainer documentation for the classes module, and ModuleElem

I shall suppose that the maintainer documentation for modules and FGModules has already been read and digested.
It could also be helpful to have read ring.txt since the ”design philosophy” here imitates that used for rings.

SubmoduleImpl is a concrete class derived from FGModuleBase, i.e. objects of this class represent submodules
of explicitly finitely generated modules. The data members comprise the two obvious values:

FreeModule myM; // the ambient module in which the generators live

vector<ModuleElem> myGensArray; // the generators as specified by the user

Additionally there are two other data members:

bool myTidyGensIsValid; // true iff myTidyGensArray contains a correct value

vector<ModuleElem> myTidyGensArray; // a "nice" set of generators

It is difficult to be precise about the value which myTidyGensArray should contain (when valid) since it depends
upon the module. If the module is over a polynomial ring then it will be a Groebner basis. If the module is over
Z then it will presumably be either a ”Hermite Basis” or an ”LLL Basis”.

93.4 Bugs, Shortcomings and other ideas

Implementation and documentation are rather incomplete.

Why is myM a FreeModule and not an FGModule???

What is myTidyGensArray for a module over Z???

94 SugarDegree (Anna Bigatti)

94.1 User documentation

Abstract class for implementing several kinds of sugar :

• homogenous case (= the degree)

183

• non graded case (using StdDeg)

• graded case (using wdeg)

• non graded case and saturating algorithm

• graded case and saturating algorithm

=== Pseudo constructors ===

• NewStdSugar(ConstRefRingElem f);

• NewStdSugarNoIdx(ConstRefRingElem f, long PosIndet);

• NewStdSugarSat(ConstRefRingElem f);

• NewStdSugarNoIdxSat(ConstRefRingElem f, long PosIndet);

• NewWSugar(ConstRefRingElem f);

• NewWDeg1CompTmp(ConstRefRingElem f); – temporary: only for testing

• NewWSugarConst(ConstRefRingElem f); – stays constant in myUpdate

• NewWSugarSat(ConstRefRingElem f);

There is also an ”empty” constructor for when you don’t have yet enough information to choose the kind of
sugar. However it does require the uninitialized marker to make sure you know you have an uninitialized
sugar!

• sugar(uninitialized);

94.1.1 Member functions

Warning! The following throw an error if the wrong type of value is asked!

• const degree& myWSugar() const =0; – only if impl stores this value

• long myStdSugar() const =0; – only if impl stores this value

Warning! The following throw an error if the sugar is not initializes!

• void myMul(ConstRefPPMonoidElem pp) =0; – sugar after multiplying by pp

• void myUpdate(ReductionCog F, const GPoly& g); – sugar after reducing F by g

• void myUpdate(ConstRefPPMonoidElem CofactorPP, const GPoly& g) =0; – sugar after adding pp*g

• int myCmp(const SugarDegreeBase& s) const =0; – this <=> s ? <0,=0,>0

• std::ostream& myOutput(std::ostream& out) const =0;

94.1.2 Non member functions

• bool IsInitialized(const SugarDegree& sd);

• std::ostream& operator<<(std::ostream& out, const SugarDegree& s);

== Maintainer documentation ==

Work in progress

Sugar has not been properly tested on modules

== Bugs, shortcomings and other ideas ==

184

95 symbol (John Abbott)

95.1 Examples

• ex-symbol1.C

• ex-symbol2.C

• ex-PPMonoidElem1.C

• ex-PolyRing2.C

95.2 User documentation

symbol is short for Symbolic Name. A value of type symbol represents a variable name possibly with some integer
subscripts attached. Its primary use is for input and output of polynomials: the name of each indeterminate in a
PolyRing (Sec.60) is a symbol, similarly for a PPMonoid (Sec.61).

A symbol value has two components:

• head – a string starting with a letter followed by letters and s (note no digits or other characters allowed)

• subscripts – a vector of machine integers, possibly empty (subscripts may be negative)

Examples of symbols are: (in standard printed forms)

x, X, alpha, z alpha, x[2], gamma[-2,3,-9]

It is also possible to create anonymous symbols: they are used for building temporary polynomial extensions
on unknown coefficient rings (which may contain any symbol) to guarantee no name conflicts.

• head – is the empty string

• subscripts – exactly one subscript

Each newly created anonymous symbol has a subscript strictly greater than that of any previous anonymous
symbol. For better readability, an anonymous symbol prints out as a hash followed by the subscript: e.g. #[12]

95.2.1 Constructors

Let head be a std::string, ind, ind1, ind2, n machine integers, inds a std::vector<long> .

• symbol(head) – a symbol with no subscripts

• symbol(head, ind) – a symbol with a single subscript

• symbol(head, ind1, ind2) – a symbol with a two subscripts

• symbol(head, inds) – a symbol with the given subscripts

• NewSymbol() – a new anonymous symbol (prints as, for example, #[12])

Creating a vector of symbols

Several polynomial ring pseudo-constructors expect a vector of symbols to specify the names of the indeter-
minates. There are several convenience functions for constructing commonly used collections of symbols.

• symbols(hd1) – create vector of length 1 containing symbol(hd1)

• symbols(hd1,hd2) – ... length 2...

• symbols(hd1,hd2,hd3) – ... length 3...

185

../../examples/index.html#ex-symbol1.C
../../examples/index.html#ex-symbol2.C
../../examples/index.html#ex-PPMonoidElem1.C
../../examples/index.html#ex-PolyRing2.C

• symbols(hd1,hd2,hd3,hd4) – ... length 4...

• SymbolRange(hd, lo, hi) – create vector of hd[lo], hd[lo+1], ... hd[hi]. Note that these symbols each
have just a single subscript

• SymbolRange(sym1, sym2) – create vector of cartesian product of the subscripts, e.g. given x[1,3] and
x[2,4] produces x[1,3], x[1,4], x[2,3], x[2,4]

• NewSymbols(n) – n new anonymous symbols

95.2.2 Operations on symbols

Let sym, sym1, and sym2 be objects of type symbol

• head(sym) – head of sym as a const ref to std::string

• NumSubscripts(sym) – number of subscripts sym has (0 if sym has no subscripts)

• subscript(sym, n) – gives n-th subscript of sym

• cmp(sym1, sym2) – <0, =0, >0 according as sym1 < = > sym2 (for more info see Maintainer section)

• sym1 < sym2 – comparisons defined in terms of cmp

• sym1 <= sym2 – ...

• sym1 > sym2 – ...

• sym1 >= sym2 – ...

• sym1 == sym2 – ...

• sym1 != sym2 – ...

• out << sym – print sym on out

• in >> sym – read a symbol into sym (but also see Bugs section) (expected format is x, y[1], z[2,3], etc.)

Operations on vectors of symbols

• AreDistinct(vecsyms) – true iff all symbols are distinct

• AreArityConsistent(vecsyms) – true iff all symbols with the same head have the same arity

95.3 Maintainer documentation for symbol

Note: I have used MachineInt as the type for fn args containing index values because it is safer, and I believe
that the run-time penalty is unimportant. This is a considered exception to the guideline which says to use long

for indexes.

I have decided not to allow big integers as subscripts because I don’t see when it could ever be genuinely useful.

The implementation is extremely simple. Efficiency does not seem to be important (e.g. symbols and
SymbolRange copy the vector upon returning). The implementation of SymbolRange is mildly delicate when
we have to make checks to avoid integer overflow – see comments in the code.

To make ”anonymous” symbols I opted to use a private ctor which accepts just a single subscript; this ctor
is called only by NewSymbol and NewSymbols.

The printing fn (myOutputSelf) has to check for an empty head, and if found it prints the string in AnonHead.

We believe a total ordering on symbols could be useful; for instance, if someone wants to make a std::map

using symbols. Currently the total order is Lex on the heads then lex on the subscript vectors; this is simple, and
is probably fast enough.

The function symbol::myInput is a stop-gap implementation.

186

95.4 Bugs, Shortcomings and other ideas

The member function myInput handles white space wrongly. For CoCoALib whitespace is space, TAB, or backslash-
newline; newline without backslash is not considered white space.

It might be nice to have a function which returns the vector of subscripts of a name.

I wonder what sending a symbol on an OpenMath channel would mean (given that OpenMath is supposed to
preserve semantics, and a symbolic name is by definition devoid of semantics).

96 ThreadsafeCounter (John Abbott)

96.1 User documentation for ThreadsafeCounter

A ThreadsafeCounter is simply a counter (based on a long) which may be incremented in a threadsafe manner.

96.1.1 Constructors

There is only one constructor, the default constructor:

• ThreadsafeCounter() – create new counter starting at zero.

96.1.2 Operations on ThreadsafeCounters

There is only one operation:

• TCS.myAdvance(n) – increment the counter by n, and return the value of the counter prior to incrementing.

Note that myAdvance is likely to be quite slow as it uses mutexes.

A ThreadsafeCounter may be printed; this is intended primarily to permit debugging.

96.2 Maintainer documentation

I copied the code from a BOOST example. It’s so simple there are obviously no deficiencies!

operator<< is probably not threadsafe (but does that matter?)

96.3 Bugs, shortcomings and other ideas

No check for overflow!

You cannot query the counter’s value without incrementing it.

96.4 Main changes

2012

• 05-May (v0.9951): first version

97 time (John Abbott)

97.1 User documentation for CpuTime and RealTime

CpuTime() returns a double whose value is the user CPU usage in seconds since the start of the program (i.e. the
amount of time the processor has dedicated to your computation – this may be rather less than the real elapsed
time if the computer is also busy with other tasks). For instance, to find out how long func() takes to execute
you can do the following:

187

int main()

{

double t0 = CpuTime();

func();

cout << "Time taken (in seconds) is " << CpuTime()-t0 << endl;

return 0;

}

In contrast the function RealTime() returns a double whose value is the number of seconds elapsed since some
fixed point in the past (on Unix/Linux boxes this is typically 1st January 1970, sometimes called ”the epoch”).

WARNING we cannot guarantee the accuracy of these functions; as a rule of thumb you should regard time
differences as having an imprecision of around 2% plus upto 0.2 seconds of unknown variation. So using these
functions to measure a time difference less than 1 second is likely to produce a value with quite a large relative
error.

As a convenience there is also the function DateTime(long& date, long& time) which stores in date and time

the current date and time represented as decimal integers having the formats yyyymmdd & hhmmss respectively.
Example:

long date, time_unused;

DateTime(date, time_unused);

int YearToday = date/10000;

int MonthToday = (date/100)%100;

int DayToday = date%100;

97.2 Maintainer documentation for CpuTime

It works on GNU/Linux and MacOSX. I hope someone else will deal with the portability issues.

97.3 Bugs, Shortcomings, and other ideas

Might not work on Microsoft platforms – maybe this is really a feature?

I ignore the return values of getrusage and gettimeofday; I’d be amazed if they could signal errors, but
perhaps the code ought to check?

BOOST has probably solved this; apparently Bruno has a solution too.

98 ToString (John Abbott)

98.1 Examples

• ex-ToString1.C

• ex-ToString2.C

98.2 User documentation

These functions are to help visualize integer and rational numbers in a more comprehensible format (as a decimal
string). The SigFig argument is optional; its default value is 5.

• ToString(N) converts N to a (decimal) string.

• FloatStr(N, SigFig) convert the number N into a string choosing between ”decimal” format and ”scientific”
format. The default value for SigFig is 5.

• ScientificStr(N, SigFig) convert the number N into a string of the form mantissa times power-of-ten,
with SigFig digits in the mantissa. Note that trailing zeroes are not removed from the mantissa.

• DecimalStr(N, DecPlaces) convert the number N into a decimal string with DecPlaces digits after the
decimal point. The default value for DecPlaces is 3.

188

../../examples/index.html#ex-ToString1.C
../../examples/index.html#ex-ToString2.C

98.3 Maintainer documentation

The function ScientificStr gives the clearest guarantees about the format used, but also produces the least
humanly readable result. It uses MantissaAndExponent10 to do the conversion.

The function FloatStr is supposed to be the best general choice. It passes its args to ScientificStr in two
situations: if the number is so large that padding would be needed before the decimal point; if the number is so
small that the ScientificStr format would be shorter (i.e. if the exponent is less than -8).

The function DecimalStr is Anna’s preferred choice. It uses ToString to convert to decimal.

98.4 Bugs, shortcomings and other ideas

These functions cannot be applied directly to a machine integer; to call them you have to convert explicitly into a
BigInt (Sec.8) (or BigRat (Sec.9)).

The switch-over in FloatStr to scientific notation for ”large” numbers is not ideal; in C the ”g” format chooses
the shorter between float and scientific formats. Is it worth the doing the same here?

Anna says an older version of DecimalStr would suppress trailing zeroes if the result is exact (e.g. DecimalStr(5/4,9)
would produce 1.25 rather than 1.250000000. Is this a good idea?

98.5 Main changes

2014

• April (v0.99533): reorganized, renamed FloatStr to ScientificStr, added new FloatStr

2011

• February (v0.9943): first release

99 ULong2Long (John Abbott)

99.1 User documentation

99.1.1 Generalities

The function ULong2Long converts an unsigned long value into a signed long, effectively inverting the standard
C++ cast from signed long to unsigned long. Note that applying a static cast might not produce the desired
result – officially the outcome is ”implementation defined”.

99.2 Maintainer Documentation

There are three different implementations. The choice between them is determined by the value of the CPP symbol
COCOA ULONG2LONG; a suitable value for this symbol is found by a script called by the configure script. That script
selects the simplest implementation which works (on certain test cases). Note that C++ explicitly forbids the use
of reinterpret cast on built-in integral types, but the trick of applying to a reference seems to work (it was
suggested to me by Chris Jefferson).

An earlier version of this function was in utils.H, but it turned out to be simpler to place it by itself in a
separate header file (because the ULong2Long.H includes no further headers, so the test compilations made by the
script cpp-flags-ulong2long.sh are simpler and safer).

Everything is in the header file; there is no ULong2Long.C file.

99.3 Bugs, shortcomings and other ideas

The fully portable definition is long and slow – this seems to be a problem of the C++ standard.

99.4 Main changes

2011

189

• August (v0.9950):

– first robust version (with configure-time selection)

100 utils (John Abbott)

100.1 User documentation for file utils.H

This file defines a few very basic functions which I feel should really be part of the standard C++. Nevertheless I
have placed all definitions inside the namespace CoCoA. Here is a summary:

• DeleteObject – struct useful when using the C++ standard library containers to hold plain pointers to data
they own. I took it from Scott Meyers’s book ”More Effective STL”.

• cmp(a,b) – template function which conducts a three-way comparison of its two arguments: returns -1 if
a<b, 0 if a==b, 1 if a>b (you can think of cmp(a,b) = sgn(a-b)).

• ULongDiff(hi,lo) – computes hi-lo as unsigned long (assumes hi>=lo)

• LongRange(lo,hi) – returns a vector<long> filled with lo,lo+1,...,hi (useful for submat)

• MaxSquarableInteger<T>() – returns largest integer whose square fits in type T

• LexCmp3(a,b) – template function which conducts a three-way lex comparison of two sequences (specified by
start/end iterators). The call LexCmp3(StartA, EndA, StartB, EndB) gives the result -1, 0, or 1 according
as sequence A is lexicographically before sequence B, equal to sequence B, or after sequence B.

• len(v) – same as v.size() except that result is long rather than size t

100.2 Maintainer documentation for files utils.H

Everything is in utils.H; the functions are all so simple that they can be implemented inline.

The type int seemed the most natural choice for the return value of the three-way comparison functions (though
signed char would be big enough). The implementation assumes that operator< is defined; this decision was
inspired by assumptions made by various STL functions. The types of the arguments may be different as this is
probably be more convenient for the user. Obviously the generic definition given here can be overridden by more
efficient specific definitions for certain argument types.

Impl of template fn MaxSquarableInteger uses GMP to compute the memorized values. A table of constants
would be faster but potentially less portable (given that CoCoALib requires GMP anyway). I haven’t yet found a
neat way of ensuring that the type T is integral & bounded.

100.3 Bugs, Shortcomings and other ideas

Should the template function cmp require its args to be exactly the same type?

A possibly better idea for MaxSquarableInteger: precompute 2ˆ63*sqrt(2) as unsigned long, then simply
right shift this value for integral types with less than 127 bits. This suggestion presupposes a binary computer.

190

	INSTALL (John Abbott and Anna Bigatti)
	INSTALLATION guide for CoCoALib
	Prerequisites
	Compilation of CoCoALib
	Documentation & Examples
	Microsoft Windows
	In Case of Trouble

	INSTALL-advanced (John Abbott and Anna Bigatti)
	Advanced Installation Options

	INSTALL-MicrosoftWindows (John Abbott and Anna Bigatti)
	Guidelines for installing CoCoA on a Microsoft Windows computer
	Installing Cygwin
	In Case of Trouble

	INTRODUCTION (John Abbott)
	Quick Summary: CoCoALib and CoCoA-5
	Getting Started
	Using CoCoALib
	Various Forms of Documentation

	Sundry Important Points

	Coding Conventions (John Abbott)
	User and contributor documentation
	Names of CoCoA types, functions, variables
	Order in function arguments
	Abbreviations

	Contributor documentation
	Guidelines from Alexandrescu and Sutter
	Use of ``#define``
	Header Files
	Curly brackets and indentation
	Inline Functions
	Exception Safety
	Dumb/Raw Pointers
	Preprocessor Symbols for Controlling Debugging
	Errors and Exceptions
	Functions Returning Complex Values
	Spacing and Operators

	ApproxPts (John Abbott, Anna M. Bigatti)
	Examples
	User documentation
	Operations

	Maintainer documentation for files ApproxPts.H and ApproxPts.C
	Bugs, Shortcomings and other ideas

	assert (John Abbott)
	Examples
	User documentation for files assert.H and assert.C
	Debugging

	Maintainer documentation for files assert.H and assert.C
	Bugs, Shortcomings, and other ideas

	BigInt (John Abbott)
	Examples
	User documentation
	Generalities
	The Functions Available For Use

	Maintainer Documentation
	Bugs, shortcomings and other ideas
	Main changes

	BigRat (John Abbott)
	Examples
	User documentation
	Generalities
	The Functions Available For Use

	Maintainer Documentation
	Bugs, Shortcomings and other ideas
	Main changes

	bool3 (John Abbott)
	User documentation for bool3
	Examples
	Constructors
	Queries
	Operations on bool3
	Comparison with BOOST library

	Maintainer documentation for bool3
	Bugs, Shortcomings and other ideas

	BuildInfo (John Abbott)
	Examples
	User documentation
	Maintainer documentation
	Bugs, Shortcomings and other ideas

	BuiltInFunctions (code: Giovanni Lagorio, Anna M Bigatti; doc: Anna M. Bigatti)
	Examples
	User documentation
	Bugs, shortcomings and other ideas
	Main changes

	CanonicalHom (John Abbott)
	User Documentation for CanonicalHom
	Examples
	Constructors

	Maintenance notes for CanonicalHom
	Bugs, Shortcomings, etc

	config (John Abbott)
	User documentation for files config.H
	Maintainer documentation for files config.H and config.C
	Bugs, Shortcomings, and other ideas

	convert (John Abbott)
	Examples
	User Documentation
	Maintenance notes for convert
	Bugs, Shortcomings, etc

	debug-new (John Abbott)
	User documentation
	Finding memory leaks
	Example

	Maintainer documentation
	Shortcomings, bugs, etc

	degree (John Abbott)
	Examples
	User documentation
	Constructors
	Operations

	Maintainer documentation
	Bugs, Shortcomings and other ideas

	DenseMatrix (John Abbott)
	User documentation for dense matrices (and DenseMatImpl)
	Maintainer documentation for the class DenseMatImpl
	Bugs and Shortcomings

	DenseUPolyClean (Anna Bigatti)
	User documentation
	Maintainer documentation
	Bugs, Shortcomings, and other ideas

	DenseUPolyRing (Anna Bigatti)
	User documentation for DenseUPolyRing
	Pseudo-constructors
	Query and cast
	Operations on a DenseUPolyRing

	Maintainer documentation for DenseUPolyRing
	Bugs, Shortcomings and other ideas

	DistrMPoly (John Abbott)
	User documentation
	Maintainer documentation
	Bugs, Shortcomings, and other ideas

	DistrMPolyInlPP (John Abbott)
	User documentation for the class DistrMPolyInlPP
	Maintainer documentation for the class DistrMPolyInlPP
	Bugs and Shortcomings

	DivMask (John Abbott)
	Examples
	User documentation
	Constructors and pseudo-constructors
	Operations

	Maintainer documentation
	Bugs, Shortcomings, and other ideas
	Main changes

	DynamicBitset (Anna Bigatti)
	Examples
	User documentation
	Constructors
	Functions
	Member functions
	output options

	Maintainer documentation
	Bugs, shortcomings and other ideas
	boost?
	Stretchable?

	Main changes

	error (John Abbott)
	Examples
	User documentation
	Debugging
	Recommended way of reporting errors
	Adding a New Error ID and its Default Message
	Information about errors – for the more advanced
	Choosing the language for error messages

	Maintainer documentation for files error.H and error.C
	To Add a New Error Code and Message
	To Add a New Language for Error Messages

	Bugs, Shortcomings, and other ideas
	new improved list of errors

	Main changes

	ExternalLibs-frobby (Anna Bigatti, Bjarke Hammersholt Roune)
	User documentation
	Examples
	Download and compile Frobby

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	ExternalLibs-Normaliz (Anna Bigatti, Christof Soeger)
	User documentation
	Examples
	Download and compile Normaliz

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	factor (John Abbott, Anna M. Bigatti)
	Examples
	User documentation
	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	factorization (John Abbott)
	Examples
	User documentation
	Constructor
	Accessors
	Operations

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	FGModule (John Abbott)
	User documentation for FGModule
	Examples
	Maintainer documentation for FGModule
	Bugs, Shortcomings and other ideas

	FieldIdeal (John Abbott)
	User documentation for files FieldIdeal*
	Maintainer documentation for files FieldIdeal*
	Bugs, Shortcomings, and other ideas

	FloatApprox (John Abbott)
	Examples
	User documentation
	Pseudo-constructors for binary representation
	Pseudo-constructors for decimal representation

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	FractionField (John Abbott, Anna M. Bigatti)
	User documentation for FractionField
	Examples
	Pseudo-constructors
	Query and cast
	Operations on FractionField
	Homomorphisms

	Maintainer documentation for FractionField, FractionFieldBase, FractionFieldImpl
	Bugs, Shortcomings and other ideas

	FreeModule (John Abbott)
	Examples
	User documentation for the class FreeModule
	Maintainer documentation for the classes FreeModule and FreeModuleImpl
	Bugs, Shortcomings and other ideas

	GBEnv (Anna Bigatti)
	User documentation
	Maintainer documentation
	GBEnv will know
	GBInfo will know
	GBMill/BuchbergerMill (?) will know – was GReductor

	Bugs, shortcomings and other ideas
	Main changes

	geobucket (Anna Bigatti)
	Examples
	User documentation
	Constructors
	Queries
	Operations

	Maintainer documentation
	bucket

	changes

	GPoly (Anna Bigatti)
	User documentation for the class GPoly
	Maintainer documentation for the class GPoly
	Old logs

	GlobalManager (John Abbott)
	Examples
	User Documentation
	Constructors and pseudo-constructors
	Operations
	The Purpose of the GlobalManager

	Maintainer Documentation
	GMPMemMgr
	GlobalSettings

	Bugs, Shortcomings, etc

	hilbert (Anna Bigatti)
	hilbert

	ideal (John Abbott)
	Examples
	User documentation
	Operations
	Functions for ideals in polynomial rings
	Writing new types of ideal

	Maintainer documentation for the classes ideal, IdealBase
	Bugs, Shortcomings and other ideas

	empty (John Abbott)
	Examples
	User documentation
	Operations

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	IntOperations (John Abbott)
	Examples
	User documentation
	Queries
	Operations
	Error Conditions and Exceptions

	Maintainer Documentation
	Bugs, shortcomings and other ideas
	Main changes

	io (John Abbott)
	Examples
	User Documentation
	Maintainer Documentation
	Bugs, Shortcomings, and other ideas
	Main changes

	JBMill (Mario Albert)
	User documentation for Janet Basis
	Computing a Janet Basis
	Using the JBMill
	Examples

	Maintainer documentation for JBDatastructure.C, JBSets.C, JBEnv.C
	JBDatastructure.C
	JBSets.C
	JBEnv.C

	Bugs, Shortcomings and other ideas

	leak-checker (John Abbott)
	User documentation
	Maintainer documentation
	Bugs, shortcomings, and other ideas

	library (Anna Bigatti)
	User documentation for file library.H
	Common includes

	MachineInt (John Abbott)
	User documentation for MachineInt
	Operations
	Queries and views
	NOTE: converting to long or unsigned long
	Why?

	Maintainer documentation for MachineInt
	Bugs, Shortcomings and other ideas
	Main changes

	matrix (John Abbott)
	User documentation for the classes matrix, MatrixView and ConstMatrixView
	Examples
	Constructors and Pseudo-constructors
	Operations on ConstMatrixView, MatrixView, matrix
	Operations on MatrixView, matrix
	Operations on matrix
	Utility functions

	Library contributor documentation
	Maintainer documentation for the matrix classes
	Bugs, Shortcomings and other ideas
	Main changes

	MatrixForOrdering (Anna Bigatti)
	User Documentation
	Examples
	PseudoConstructors
	Queries

	Maintainer Documentation
	Bugs, Shortcomings, and other ideas

	MatrixOperations (John Abbott)
	User documentation for MatrixOperations
	Maintainer documentation for MatrixOperations
	Bugs, Shortcomings and other ideas
	Main changes

	MatrixSpecial (Anna Bigatti)
	User documentation for MatrixSpecial
	Examples
	Special Matrices

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	MatrixView (John Abbott)
	User documentation for MatrixView
	Examples
	Pseudo-constructors
	Operations on ConstMatrixView, MatrixView

	Maintainer documentation for MatrixView
	Bugs, Shortcomings and other ideas
	Main changes

	MemPool (John Abbott)
	User Documentation for MemPool
	General description
	Basic Use
	Debugging with MemPools
	The Verbosity Levels
	Using Verbosity Level 3
	Debug Levels in MemPools
	Example: Using a MemPool as the memory manager for a class

	Maintenance notes for the MemPool source code
	MemPoolFast and loaf
	MemPoolDebug

	Bugs, Shortcomings, etc

	module (John Abbott)
	User documentation for the classes module, ModuleBase, ModuleElem
	Maintainer documentation for the classes module, and ModuleElem
	Bugs, Shortcomings and other ideas

	ModuleTermOrdering (Anna Bigatti)
	User documentation for ModuleTermOrdering
	Example

	Maintainer documentation for ModuleTermOrdering
	Bugs, shortcomings and other ideas
	do we need a class "shifts"?

	MorseGraph (Mario Albert)
	Examples
	User documentation for Morse Graph
	Using the Morse Graph

	Maintainer documentation for TmpMorseGraph.C, TmpMorseElement.C, TmpMorsePaths.C, TmpResolutionMinimization.C
	TmpMorseElement.C
	TmpMorsePaths.C
	TmpMorseGraph.C
	ResolutionMinimization.C

	Bugs, Shortcomings and other ideas
	ResolutionMinimization.C
	TmpMorseGraph.C

	NumTheory (John Abbott)
	User documentation
	Generalities
	Examples
	The Functions Available For Use

	Maintainer Documentation
	Bugs, Shortcomings, etc.

	OpenMath (John Abbott)
	User documentation for OpenMath
	Maintainer documentation for OpenMath
	Bugs, Shortcomings and other ideas

	OrdvArith (John Abbott)
	User documentation for OrdvArith
	Initializers and Converters for OrdvElem
	Arithmetic operations on OrdvElem
	Other operations on OrdvElem

	Maintainer documentation for OrdvArith
	Bugs, Shortcomings and other ideas

	PolyRing (John Abbott)
	User documentation for PolyRing
	Examples
	Pseudo-constructors
	Queries and views
	Operations on a PolyRing
	Homomorphisms

	Maintainer documentation for PolyRing
	Bugs, Shortcomings and other ideas

	PPMonoid (John Abbott)
	User documentation for the classes PPMonoid, PPMonoidElem and PPMonoidBase
	Examples
	Operations PPMonoids
	Summary of functions for PPMonoidElems

	Library Contributor Documentation
	To add a new type of concrete PPMonoid class
	To add a new member function to PPMonoidBase
	Calculating directly with raw PPs

	Maintainer documentation for PPMonoid, PPMonoidElem, and PPMonoidBase
	Bugs, Shortcomings and other ideas

	PPMonoidHom (John Abbott)
	User documentation for the class PPMonoidHom
	Examples
	Functions for PPMonoidHoms

	Library Contributor Documentation
	Maintainer documentation for PPMonoid, PPMonoidElem, and PPMonoidBase
	Bugs, Shortcomings and other ideas

	PPOrdering (John Abbott)
	Examples
	User documentation
	Pseudo-constructors
	Queries
	Operations

	Maintainer documentation for PPOrdering
	Bugs, shortcomings and other ideas

	PPVector (Anna Bigatti)
	class PPVector
	Examples

	Fields and main functions
	Utility functions
	Mathemetical functions

	Bugs, Shortcomings and other ideas
	Abstract Class

	PPWithMask (Anna Bigatti)
	Examples
	User documentation
	constructor
	Maintainer documentation for files BuildInfo
	Bugs, Shortcomings and other ideas

	ProgressReporter (John Abbott)
	Examples
	User documentation
	Constructors and pseudo-constructors
	Operations

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	QBGenerator (John Abbott)
	User documentation for QBGenerator
	Constructors and Pseudo-constructors
	Operations on QBGenerator

	Maintainer documentation for QBGenerator
	Bugs, Shortcomings and other ideas

	QuotientRing (John Abbott, Anna M. Bigatti)
	User documentation for QuotientRing
	Examples
	Constructors and Pseudo-constructors
	Query and cast
	Operations on QuotientRing
	Homomorphisms

	Maintainer documentation for QuotientRing, QuotientRingBase, GeneralQuotientRingImpl
	Bugs, Shortcomings and other ideas

	RandomSource (code: John Abbott; doc: John Abbott, Anna M. Bigatti)
	Examples
	User documentation
	Constructors
	RandomSource Operations
	RandomSeqXXXX Operations

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Doubts common to RandomSeqBigInt, RandomSeqBool, RandomSeqLong

	Main changes

	ReductionCog (Anna Bigatti)
	class ReductionCogBase
	implementations

	RegisterServerOps (Anna Bigatti)
	User documentation
	Quick and easy way to add a single operation
	Proper way to add a library

	Mantainer documentation
	Main changes
	2009

	ring (John Abbott, Anna M. Bigatti)
	User documentation
	Examples
	Types of ring (inheritance structure)
	Pseudo-constructors
	Operations on Rings
	ADVANCED USE OF RINGS

	Maintainer documentation
	Bugs, Shortcomings and other ideas

	RingDistrMPoly (John Abbott)
	User documentation for the class RingDistrMPoly
	Maintainer documentation for the class RingDistrMPoly
	Bugs and Shortcomings

	empty (John Abbott, Anna M. Bigatti)
	Examples
	User documentation
	Constructors and pseudo-constructors
	Operations

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes
	Main changes

	RingElem (John Abbott)
	Examples
	User documentation
	Constructors
	Operations on RingElems
	Notes on operations
	Writing functions with RingElems as arguments
	ADVANCED USE OF RingElem

	Maintainer documentation
	Bugs, Shortcomings and other ideas
	Main changes

	RingElemInput (Anna M. Bigatti)
	Examples
	User documentation
	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	RingFp (John Abbott)
	User documentation for the class RingFpImpl
	Examples

	Maintainer documentation for the class RingFpImpl
	Bugs, shortcomings and other ideas

	RingFpDouble (John Abbott)
	User documentation for the class RingFpDoubleImpl
	Maintainer documentation for the class RingFpDoubleImpl
	Bugs, shortcomings and other ideas

	RingFpLog (John Abbott)
	User documentation for the class RingFpLogImpl
	Maintainer documentation for the class RingFpLogImpl
	Bugs, shortcomings and other ideas

	RingHom (John Abbott)
	User documentation for the files RingHom.H and RingHom.C
	Examples
	Constructors
	Applying a RingHom
	Composition
	Domain and Codomain
	Kernel
	Member Functions for Operations on Raw Values

	Maintainer documentation for the files RingHom.H and RingHom.C
	Bugs, Shortcomings and other ideas
	Some very old notes about implementing rings
	Mapping elements between rings automatically

	RingQQ (John Abbott, Anna M. Bigatti)
	User documentation for RingQQ
	Examples
	Constructors and pseudo-constructors
	Query
	Operations on RingQQ
	Homomorphisms

	Maintainer documentation for the class RingQQImpl
	Bugs, Shortcomings and other ideas

	RingTwinFloat (John Abbott, Anna M. Bigatti)
	User documentation for the classes RingTwinFloat and RingTwinFloatImpl
	Examples
	Pseudo-constructors
	Query and cast
	Operations
	Homomorphisms

	Maintainer documentation for the classes RingTwinFloat and RingTwinFloatImpl
	Philosophy
	RingTwinFloatImpl::myFloor

	Bugs, shortcomings and other ideas
	Main changes

	RingWeyl (John Abbott and Anna M. Bigatti)
	User documentation
	Examples
	Constructors

	Maintainer documentation
	Bugs, shortcomings and other ideas

	RingZZ (John Abbott, Anna M. Bigatti)
	User documentation for RingZZ
	Examples
	Constructors and pseudo-constructors
	Query
	Homomorphisms

	Maintainer documentation for the class RingZZImpl
	Bugs, Shortcomings and other ideas

	ServerOp (Anna Bigatti)
	User documentation
	Outline
	Virtual functions
	Debugging the server

	SmallFpDoubleImpl (John Abbott)
	User documentation for SmallFpDoubleImpl
	Maintainer documentation for SmallFpDoubleImpl
	Bugs, Shortcomings, and other ideas

	SmallFpImpl (John Abbott)
	User documentation for SmallFpImpl
	Advanced Use: delaying normalization in a loop

	Maintainer documentation for SmallFpImpl
	Bugs, Shortcomings, and other ideas

	SmallFpLogImpl (John Abbott)
	User documentation for SmallFpLogImpl
	Maintainer documentation for SmallFpLogImpl
	Bugs, Shortcomings and other ideas

	SmartPtrIRC (John Abbott)
	User documentation for files SmartPtrIRC
	Maintainer documentation for files SmartPtrIRC
	Bugs, Shortcomings and other ideas

	SmartPtrIRCCOW (John Abbott, Anna Bigatti)
	User documentation for files SmartPtrIRCCOW
	Maintainer documentation for files SmartPtrIRCCOW
	Bugs, Shortcomings and other ideas
	Main changes

	SocketStream (John Abbott)
	User Documentation for SocketStream
	General description
	Example of Basic Use
	Source for server.C
	Source for client.C

	Maintenance notes for the SocketStream source code
	Bugs, Shortcomings, etc

	SparsePolyRing (John Abbott)
	Examples
	User documentation for SparsePolyRing
	Pseudo-constructors
	Query and cast
	Operations on a SparsePolyRing
	Operations with SparsePolyIters

	Maintainer documentation for SparsePolyRing
	Bugs, Shortcomings and other ideas

	submodule (John Abbott, Anna M. Bigatti)
	Examples
	User documentation
	Operations

	Maintainer documentation for the classes module, and ModuleElem
	Bugs, Shortcomings and other ideas

	SugarDegree (Anna Bigatti)
	User documentation
	Member functions
	Non member functions

	symbol (John Abbott)
	Examples
	User documentation
	Constructors
	Operations on symbols

	Maintainer documentation for symbol
	Bugs, Shortcomings and other ideas

	ThreadsafeCounter (John Abbott)
	User documentation for ThreadsafeCounter
	Constructors
	Operations on ThreadsafeCounters

	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	time (John Abbott)
	User documentation for CpuTime and RealTime
	Maintainer documentation for CpuTime
	Bugs, Shortcomings, and other ideas

	ToString (John Abbott)
	Examples
	User documentation
	Maintainer documentation
	Bugs, shortcomings and other ideas
	Main changes

	ULong2Long (John Abbott)
	User documentation
	Generalities

	Maintainer Documentation
	Bugs, shortcomings and other ideas
	Main changes

	utils (John Abbott)
	User documentation for file utils.H
	Maintainer documentation for files utils.H
	Bugs, Shortcomings and other ideas

