"But, after all," he reflected before turning into her room,
"what has occurred? Nothing. She had a long conversation
with him. Well, what harm is there in that?"

. and as soon as he re-entered the dark drawing room
a voice would whisper that it was not so, and that if
others noticed, that showed there was something to notice.

- Tolstoy
Anna Karenina

from Charles Rackoff, Daniel R. Simon, "Cryptographic Defense Against Traffic Analysis" (1993)



SSH Traffic Analysis Attacks

Solar Designer Dug Song
<solar@openwall.com> <dugsong@monkey.org>



Introduction: SSH

m SSH: Secure Shell
m Developed by Tatu Ylonen

m Secure remote login, Berkeley r-command
replacement

m Provides authentication, encryption,
message integrity



Introduction: Traffic analysis

mYin Zhang, Vern Paxson. "Detecting
Backdoors" (2000)

e Identification of interactive traffic via passive
network monitoring

e Traffic contents, sizes, timing structure,
directionality



SSH vulnerabilities

m Packet sizes during initial login reveal

® authentication methods
e username and password lengths
e number of RSA authorized keys options

® successes, failures, and refusals



SSH vulnerabilities (cont.)

m Echo processing easily discriminates
password entry

mInter-packet timing and packet sizes allow
for inference of keystrokes and commands

m Discovery of password length narrows
search space for dictionary attack



SSH-1

m Specified in draft-ylonen-ssh-protocol-00.txt

length | padding (8 - (length % 8)) | type
payload (length - 5) cre32

m Length field sent in the clear
m Padding, type, data encrypted

m Padded to 8-byte boundary



SSH-2

m Specified in IETF secsh working group I-Ds

length plen | payload (length - plen - 1)
random padding (plen) | MAC

m Lengths, data, and padding encrypted

m Total length (data+padding) must be a
multiple of the cipher blocksize

m As implemented, only padded to next
blocksize boundary



SSHOW - Overview

B Monitor concurrent SSH-1 and SSH-2
sessions

m Identify successful, failed, and refused
RSA, DSA, password authentication attempts

m Identify username, password, command
lengths

m Print payload sizes and inter-arrival times



SSHOW - Design

m Stateful, passive network monitor for
SSH-1 and SSH-2

m Maintain session packet history, including
timing and directionality

m Identify events based on simple signatures
and packet history



SSHOW - Implementation

mlibnids provides TCP session tracking and
per-connection stateful callbacks

m SSH-1 application layer packet reassembly

B Client-to-server and server-to-client
callbacks accumulate session history

m Debugging mode prints summary info per
reassembled SSH packet



SSHOW - Implementation (cont.)

m Initial login

e Success, failure, refusal
e RSA / DSA authentication methods and options

e Username and password length

mInteractive session analysis

@ Shell command length

1

e Password length (e.g. 'su’, 'enable’)



SSHOW - Implementation (cont.)

m Per-packet state

typedef struct {
int direction;
clock t timestamp;
u int cipher size;
range plain range;
} record;

J*
[ *
[ *
J*

B Per-session state

struct history {

record packets[HISTORY SIZE]; /*
%
/%
[ *

int index:
u int directions;
clock t timestamps[2];

¥i

0 for client to server */
timestamp of this packet */
ciphertext size */

possible plaintext sizes */

recent packets (circular list) */
next (free) index into packets[] */
recent directions (bitmask) */

last timestamps in each direction */



SSHOW - Implementation (cont.)

m Username length

if (session->state == 0 && session->protocol == 1 &&
({session->history.directions >> skip) & 7) == 5 &&
plain range->min == ( &&
get history(session, skip + 1l)->plain range.min > 4 &&
get history(session, skip + 2)->plain range.min == ()

m Output:

+ 217.155.34.193:24998 -> 204.181.64.8:22: SSH protocol 1

- 217.155.34.193:24998 <~ 204.181.64.8:22: DATA (262 bytes, 0.00 seconds)
- 217.155.34.193:24998 -> 204.181.64.8:22: DATA (143 bytes, 0.00 seconds)
- 217.155.34.193:24998 <- 204.181.64.8:22: DATA (0 bytes, 0.00 seconds)

- 217.155.34.193:24998 -> 204.181.64.8:22: DATA (11 bytes, 0.00 seconds)
- 217.155.34.193:24998 <~ 204.181.64.8:22: DATA (0 bytes, 0.00 seconds)
+ 217.155.34.193:24998 -> 204.181.64.8:22: GUESS: Username length is 7



SSHOW - Implementation (cont.)

m RSA authentication success (w/options) or

failure
if (session->state == 1 && session->protocol == 1 && skip >= 1 &&
({session->history.directions >> (skip - 1)) & 037) == 013 &&
plain range->min == 0 &&
get history(session, skip - 1 + 2)->plain range.min == 16 &&
get history{session, skip - 1 + 3)->plain range.min == 130 &&
get history(session, skip - 1 + 4)->plain range.min == 130) {

switch (get history(session, l)->plain range.min - 4) {
case 28:
/* "RSA authentication accepted." */
if (skip > 1)
/% "skip - 1" is the number of authorized keys options */

- " %

case 47:
/* "Wrong response to RSA authentication challenge." */



SSHOW - Implementation (cont.)

m Output of RSA authentication success with
authorized keys options:

- 217.155.34.172:1048 -> 204.181.64.8:22: DATA (130 bytes, 1.0l seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (130 bytes, 0.00 seconds)
- 217.155.34.172:1048 -> 204.181.64.8:22: DATA (16 bytes, 0.00 seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (29 bytes, 0.00 seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (28 bytes, 0.00 seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (30 bytes, 0.00 seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (28 bytes, 0.01 seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (29 bytes, 0.00 seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (32 bytes, 0.00 seconds)
- 217.155.34.172:1048 <- 204.181.64.8:22: DATA (0 bytes, 0.00 seconds)
+ 217.155.34.172:1048 -> 204.181.64.8:22: GUESS: RSA authentication accepted (5+

authorized keys options)



SSHOW - Implementation (cont.)

B RSA authentication refused

if (session->state == 1 && session->protocol == 1 &&
(session->history.directions & 3) == 1 && plain range->min == 0 &&
get history(session, 1)->plain range.min == 130)
m Output:

- 127.0.0.1:40190 -> 127.0.0.1:22: DATA (130 bytes, 0.00 seconds)
- 127.0.0.1:40190 <- 127.0.0.1:22: DATA {0 bytes, 0.00 seconds)
+ 127.0.0.1:40190 -> 127.0.0.1:22: GUESS: RSA authentication refused



SSHOW - Implementation (cont.)

m Login password length

if (session->state == 1 &&
now - get history(session, 2)->timestamp >= CLK TCK &&
session->protocol == 1 &&
(session->history.directions & 7) == 5 && plain range->min == 0 &&
get history(session, 1)->plain range.min > 4 &&
get history(session, 2)->plain range.min == 0)
m Output:

- 127.0.0.1:41264 -> 127.0.0.1:2022: DATA (17 bytes, 10.16 seconds)
- 127.0.0.1:41264 <~ 127.0.0.1:2022: DATA (0 bytes, 10.16 seconds)

+ 127.0.0.1:41264 -> 127.0.0.1:2022: GUESS: Password authentication, password length
is 13



SSHOW - Implementation (cont.)

m Interactive session tracking

struct line {

¥

if

-

int input count;
int input size;
int input last;
int echo count;

(session->state == 2) {

/* Check for backspace */

[ *
[ *
[ *
[ *

input packets (client to server) */
input size (estimated) */

last input packet size */

echo packets (server to client) */

if (session->protocol == 1 && !session->compressed &&

plain range->min == 4 + 3 &&
session->line.input size >= 2)
session->line.input size -= 2;



SSHOW - Implementation (cont.)

m Command / password length

if (session->state == 2) {

if (plain range->min > 4 + session->line.input last &&
session->line.input count >= 2 &&
session->line.input size >= 2) {

size = session->line.input size;
if (session->line.echo count + 1 >= session->line.input count &&

size <= (session->line.input count << 2) && size < 0x100)
/* command */

- . "

else if (session->line.echo count <= 2 &&
size <= (session->line.input count << 1) &&
size >= 2 + 1 && size <= 40 + 1)
/* password */



SSHOW - Future work

m X keyboard / mouse event detection

m Shell command identification via timing
signatures

m Application to other encrypted protocols

® Kerberized telnet/rsh
@ SSL. telnet

@ Telnet over IPSEC



Related work

m Dawn Song, David Wagner, Xuqing Tian.
"Timing Analysis of Keystrokes and Timing
Attacks on SSH"

http://www.cs.berkeley.edu/~dawnsong/ssh-timing.html

e Hidden Markov Model + key sequence inference
algorithm

e Inter-keystroke timings leak 1 bit per character pair

mYang Yu. "SSH Traffic Analysis Preliminary
Report”



Proposed fixes

m For SSH-1, pad username, password with
NULs

e assumes C strings at the server end - not a part of
the protocol

mFrom Simon Tatham: hide real password
message among multiple SSH MSG IGNORE
messages of increasing sizes

e about 1 KB overhead to hide passwords up to 32
characters



Proposed fixes (cont.)

m Use SSH MSG IGNORE to simulate input
echoing during password entry

m Use padding capability for SSH-2



Vendor response

m OpenSSH fixes included since version 2.5.2
m PuTTY fixes to appear in version 0.52
B TTSSH fixes included since version 1.5.4

B Cisco IOS and CatOS fixes included in
recent versions

m Unofficial patches for ssh-1.2.x included in
original advisory



Conclusions

m Difficult to strike a balance between
security and usability

m Perfect resistance to traffic analysis
requires complete uniformity

e detectable entropy (size changes due to
compression, etc.)

e timing

e directionality



Further information

m Updated Openwall advisory available from

http://www.openwall.com/advisories/

B SSHOW included in the dsniff toolkit

http://www.monkey.org/~dugsong/dsniff/

m Any questions?



