Password cracking: past, present, future

A talk by

Solar Designer <solar@openwall.com>
@solardiz

https://www.openwall.com
@Openwall

Credits: CIQ/Rocky Linux

May 10-11, 2024
Berlin, Germany

@solardiz @Openwall OffensiveCon May 10-11, 2024 1/ 79

Password cracking: past, present, future

INTRODUCTION

@solardiz @Openwall OffensiveCon May 10-11, 2024 2 / 79

Password cracking: past, present, future
Why passwords?
* From a defensive perspective, "password" should usually mean "passphrase"
+ We proceed with "password" as a general term here
* Passwords remaln a distinct and ubigquiltous authentication factor

+ "Something you know" 1n 2FA/MFA

Passwords are widely used to derive encryption keys for data or other keys
Passphrases may also be used to derive private keys e.g. for wallets
+ Generated seed phrases are commonly used, but extra words may be added

Similar concerns and techniques apply to other hashed low entropy data

@solardiz @Openwall OffensiveCon May 10-11, 2024 3/ 79

Password cracking: past, present, future
Why crack passwords?
* Authentication - prevent or galn access to systems

+ Security audits, penetration tests
+ Access recovery (alternative to password reset)
+ (Un)authorized

* Key derivation - recover or galn access to data, other keys, or funds

+ By owner, heir, service provider, law enforcement, anyone (un)authorized

* General

+ Enhancement of breached password lists, training and test sets for tools
+ Research projects, contests, hobby, historical preservation
+ Analysis of malware and backdoors, OSINT, recovery of other hashed data

@solardiz @Openwall OffensiveCon May 10-11, 2024 4 / 79

Password cracking: past, present, future

sScenarios

* Focus of this talk

+ Offline against a local copy of hashes, traffic dump, encrypted data
+ Optimization

* Also closely related
+ Online agalnst a remote system - e.g. Hydra by van Hauser / THC (2001+)

* Not so closely related

+ Onlline agalnst a remote system with unprivileged local access
+ Side-channel inference (network or local keystroke timings, etc.)
+ Physical against a (tamper-resistant) device

* Mostly unrelated, although these may be best when they work

+ Password reset, plaintext password leak/extraction, password check bypass
+ Crack derived key directly

@solardiz @Openwall OffensiveCon May 10-11, 2024 5/ 79

Password cracking: past, present, future

Targets

* Focus of this talk 1s tools usable for authentication passwords

*

There are also tools specialized for certain other targets such as encrypted
files, filesystems, etc., but these are mostly beyond scope

Current most flexible password crackers - John the Ripper and hashcat -
are not limited to authentication passwords, so most of the information here
also pertailns to password cracking/recovery for other supported targets

John the Ripper started to gain support for what we call "non-hashes" with
Dhiru Kholia's Google Summer of Code project under Openwall (2011)

+ We process non-hash files via *2john tools, which extract pseudo-hashes

+ Some reveal the encrypted data, better ones don't; btcrecover's also vary

* hashcat followed suit and accepts pseudo-hashes output by *2john

@solardiz @Openwall OffensiveCon May 10-11, 2024 6 / 79

Password cracking: past, present, future
Optimization

* Speed (parallel throughput vs. hardware, malntenance, energy cost)
+ of candidate password generation (vs. focus)
+ of duplicate candidate password avoldance or suppression (Vvs. uniqueness)
+ of hashing or key derivation (vs. memory, storage, and reliability)
+ of matching against loaded hashes or checking for correct decryption
+ 1nstantaneous (async) vs. average until completion (have to sync)
* Memory and storage requlrements (vs. speed, focus, unligueness)

* Focus (optimal search order)

+ vs. candidate password generation speed and parallel processing

+ vs. ease of reasoning (for checkpointing, reporting, exclusion)
Targeting (custom candidate password streams per target)

* Uniqueness (no or few duplicate candidate passwords for same target)

* Feedback loops and workflow (refocus based on passwords cracked so far)

@solardiz @Openwall OffensiveCon May 10-11, 20624 7/ 79

Password cracking: past, present, future

PASSWORD AUTHENTICATION TIMELINE

@solardiz @Openwall OffensiveCon May 10-11, 2024 8 / 79

Password cracking: past, present, future

Plaintext password storage (1960s to early 1970s CTSS, TENEX, Unix)

password

Y
password store

password password store
% #
Y
compare
1s 1t timing-safe?

@solardiz @Openwall OffensiveCon May 10-11, 2024 9 / 79

Password cracking: past, present, future
Plaintext password storage (1960s to early 1970s CTSS, TENEX, Unix)

* On CTSS, '"one afternoon [...] any user who logged in found that instead of

the usual message-of-the-day typing out on his terminal, he had the entire
file of user passwords”

Fernando J. Corbato, "On Building Systems That Will Fail", 1991

The problem was a text editor temporary file collision, "early 60's" to "1965"
by different sources

* TENEX had a character-by-character timing leak exacerbated by paging

* "The UNIX system was first implemented with a password file that contained
the actual passwords of all the users"

Robert Morris and Ken Thompson, "Password Security: A Case History", 1978

@solardiz @Openwall OffensiveCon May 10-11, 2024 10 / 79

Password cracking: past, present, future
Password hashing (early 1970s Multics)

* "Multics User Control subsystem stored passwords one-way encrypted [...]
I knew people could take square roots, so I squared each password and ANDed
with a mask to discard some bits."

* After successful break by the Air Force tiger team dolng a security
evaluation of Multics 1n 1972-1974, "we qulickly changed the encryption to a

new stronger method"

Tom Van Vleck, "How the Air Force cracked Multics Security", 1993

@solardiz @Openwall OffensiveCon May 10-11, 2024 11 / 79

Password cracking: past, present, future
Password hashing (mid 1970s Unix)

* crypt(3) of Unix up to 6th Edition inclusive reused code from an "encryption

program [that] simulated the M-209 cipher machine used by the U.S. Army
during World War II. |[...] the password was used not as the text to be

encrypted but as the key, and a constant was encrypted using this key."

* "The running time to encrypt one trial password and check the result turned
out to be approximately 1.25 milliseconds on a PDP-11/70 when the encryption
algorithm was recoded for maximum speed."”

* "It takes essentially no more time to test the encrypted trial password
against all the passwords in an entire password file, or for that matter,
against any collection of encrypted passwords, perhaps collected from many
installations.”

Robert Morris and Ken Thompson, "Password Security: A Case History", 1978

@solardiz @Openwall OffensiveCon May 10-11, 2024 12 / 79

Password cracking: past, present, future

Password hashing (mid 1970s Multics & Unix)
2000s web apps & Windows

password
\

V
hash function
V
password hash store

password password hash store
® /
\% /
hash function /

LI 4
Y

compare

@solardiz @Openwall OffensiveCon May 10-11, 2024 13 / 79

Password cracking: past, present, future

Password hashing (late 1970s Unix)

password new salt
policy check?\ / |
% |
slow hash function |
V V
password hash store

password password hash store
\ /(salt) / (hash)
\% /
slow hash function /

LI
Y

compare

@solardiz @Openwall OffensiveCon May 10-11, 2024 14 / 79

@solardiz

Password cracking: past, present, future

Password hashing (1990s BSDI, bcrypt, PBKDF2)

password new salt & cost
\ / (aka setting)
\ |
tunably slow hash function |
Y V
password hash store

password password hash store
\ /(setting) /(hash)
\% p
tunably slow hash function /

LN 4
Y

compare

@Openwall OffensiveCon May 10-11, 2024

15 / 79

Password cracking: past, present, future

Password hashing (2010s+ scrypt, Argon2, ...)

password new salt, costs
\ / (aka setting)
% |
memory-hard hash function |
V V
password hash store

password password hash store
\ /(setting) /(hash)
\% 4
memory-hard hash function /

L3N 4
Y

compare

@solardiz @Openwall OffensiveCon May 10-11, 2024 16 / 79

Password cracking: past, present, future
Other authentication methods (1990s+)

The examples so far involve the plaintext password being sent to the server

(hopefully over a transport security layer), but authentication methods not

requiring that exist. Usually they are also susceptible to offline password
cracking against certaln authentication material:

*

Challenge/response (many kinds): network sniffed challenge/response pairs
+ Even worse, POP3 APOP and CRAM-MD5 requlre plaintext-equivalent storage

* Kerberos: TGTs, AFS user database

* S/Key, OPIE: skeykeys file

SSH: passphrase-encrypted private key, hashed known_hosts

SRP (and other PAKEs): verifiers

@solardiz @Openwall OffensiveCon May 10-11, 2024 17 / 79

Password cracking: past, present, future

PASSWORD CRACKING SPEED

@solardiz @Openwall OffensiveCon May 10-11, 2024 18 / 79

Password cracking: past, present, future

Newsgroups: net.general
Date: Thu Jan 6 08:02:37 1983

We proudly announce
The Second Official
UNIX PASSWORD CRACKER CONTEST

Submit your 1ngenious /etc/passwd password cracker program (source code) to
the undersigned by January 31, 1983. We wlll test all programs for speed,
portability, and elegance, on verious Unlix versions and on different
machines. A manual page and a short writeup explaining the algorithm 1s a
plus. The writers of the best three programs will win the Grand Prize, The

Super Grand Prize, and The Ultra Grand Prize (and world-wide, ever lasting
fame).

Ran Ginosar, Computer Technology Research Center,
Bell Labs, Murray Hill.

@solardiz @Openwall OffensiveCon May 10-11, 2024 19 / 79

Password cracking: past, present, future
Password cracking (1980s, unoptimized)

* For each user's hash
+ For each candidate password

candidate password password hash
\ /(salt) 7
V /
hash function /
L
Y,
compare

@solardiz @Openwall OffensiveCon May 10-11, 2024 20 / 79

Password cracking: past, present, future
Password cracking (unsalted, semi-optimized)

* For each candidate password

candidate password password hash(es)
\ 4
% /
hash function /
LY
V
one-to-many compare

* We've amortized the cost of hashing, reusing the result of each computation

@solardiz @Openwall OffensiveCon May 10-11, 2024 21 / 79

Password cracking: past, present, future
Password cracking (early 1990s, salted, semi-optimized)

* For each candidate password (groups of more likely passwords first)
+ For each salt

candidate password password hash(es) that use the current salt
\ /(salt) / (hashes)
% /
hash function /
optimized L Y
Y
one-to-many compare (initially just a loop)
becomes one-to-one when each salt 1s unique, as they should be

* We can no longer amortize the cost of hashing when salts are globally unique

@solardiz @Openwall OffensiveCon May 10-11, 2024 22 / 79

Password cracking: past, present, future
Password cracking (late 1990s, salted, mostly optimized)

* For each candidate password group (those of more likely passwords first)
+ For each salt

candidate password(s) password hash(es) that use the current salt
\ /(salt) /(hashes maybe partially reversed)

% /
many-to-many hash function /
cost-amortizing, optimized\ /

parallelized \Y;
many-to-many compare
becomes many-to-one when each salt 1s unique, as they should be

* Amortizing means some parts are computed less often and thelr results reused

+ "Key setup" and/or "salt setup" may be moved to an outer loop
+ "Flnalization" may be reversed at startup and then not performed at all

@solardiz @Openwall OffensiveCon May 10-11, 2024 23 / 79

Password cracking: past, present, future
Password cracking many-to-many hash comparison
* If few hashes loaded for the current salt, compare or eliminate directly
* If many hashes loaded for the current salt (1997+ hash tables in JtR 1.2+)

partial hashes for comparison against those being cracked (for current salt)
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV

2 e et 2 EIE N et -~
1. Prefetch needed elements of ---> | per-salt |
2. Reject hashes not in ---------- > | sparse bitmap(s) or Bloom filter |
3. Complete computation of the rest | or/and (perfect) hash table, etc. |
SR L NI 75, SO AP SRPIE e apegr-or - B o g L S I . s s - ot ol o kol e +
remaining full hashes
V V

4, Look up 1in the final data structure(s), which can start similar to the
above or be as simple as a linked list right away

@solardiz @Openwall OffensiveCon May 10-11, 2024 24 / 79

Password cracking: past, present, future

Password cracking cost reduction

* When we amortize cost, we reduce total cost to achieve the same results
+ We do 1t e.g. through reducing the total amount of computation

* For well-suited hashing schemes, very little computation can be amortized
+ However, that's not the only way to reduce cost

* Besldes computational complexity, the other major metric 1s space complexity

* Real-world costs may be incurred for hardware, maintenance, energy, etc.
+ These costs are related to both computational and space complexities,
as well as to real-world constraints, which may vary by attacker
+ For example, "how many CPUs and how much RAM is occupied for how long,
and do we readily have those or do we have to acquire them?"

and then it might not be CPUs anymore

@solardiz @Openwall OffensiveCon May 10-11, 20624 25 / 79

Password cracking: past, present, future
Password cracking on GPUs (2007+)

* pioneered by Andrey Belenko of Elcomsoft
+ Initially for NTLM, LM, and raw MD5 hashes, achieving 100M+/s
+ Beyond reach of existing CPU software (except for Cell such as in PS3)

* Andrey and others i1mproved the speeds and 1mplemented further (non-)hashes
+ Whitepixel by Marc Bevand: 33.1 billion/s against one MD5 hash on a
sub-$3000 4x dual-GPU HD 5970 computer (2010)
+ oclHashcat-1lite by atom: 10.9 billion on one dual-GPU HD 6990 (2012)
+ oclHashcat-plus made GPUs usable almost as completely as CPUs (2012)
+ Closed source at first, tweeted MD5 of "hashcat open source" 1n 2015

* John the Ripper patches for some hashes in 2010 and 2011, integrated into
1.7.9-jumbo-6, was first to implement bcrypt, sha512crypt (2012)

* hashcat 6.2.6: 164.1 billion/s against one MD5 hash on one RTX 4090 (2022)

@solardiz @Openwall OffensiveCon May 10-11, 2024 26 / 79

Password cracking: past, present, future
Password cracking cost reduction through parallel processing

* Parallel processing during defensive hashing or key derivation 1s limited

* Parallel processing potential during password cracking is "unlimited"
+ Yet efficlient designs that also satisfy other goals are far from trivial

* Thus, attack duration can be "arbitrarily" reduced through addition of
parallel processing elements (CPUs/SIMD, more/larger GPUs/FPGAs/ASICs)

+ along with accordingly more memory
unless the hashing scheme allows for memory cost amortization

+ Most older schemes don't use much memory anyway
+ Most modern schemes should avoid this, which they do to varylng extent

* Parallel processing doesn't reduce the amount of computation, but
+ 1t reduces the amount of time for which other resources are held and/or
+ 1t amortizes their cost (e.g. a CPU alone vs. the CPU+GPUs per chassis)

@solardiz @Openwall OffensiveCon May 10-11, 2024 27 / 79

Password cracking: past, present, future
Password cracking cost reduction through time-memory trade-off (TMTO)

* With no salts or few commonly used values, 1t may help to precompute and
partially store the hashes to bypass most computation 1n future attacks
+ QCrack (1995-1997) for DES-based crypt(3) could save ~1 day per disk
+ Rainbow tables (Philippe Oechslin, 2003 building on Martin Hellman, 1980)

* It may be possible to compute a function 1n less time by using more memory
+ Matt Bishop, "A Fast Version of the DES and a Password Encryption
Algorithm"”, 1987 uses larger/combined Llookup tables (up to 200 KB total)

* Conversely, 1t may also be possible to compute a function 1n less memory
by throwing away and recomputing intermediate results when needed
+ scrypt 1s deliberately friendly to this trade-off, which crackers use

* With many same-salt hashes, early-rejection rate may be increased (and thus
further computation and matching reduced) with larger and sparser bitmaps

@solardiz @Openwall OffensiveCon May 10-11, 2024 28 / 79

Password cracking: past, present, future

Password cracking cost metrics

* For a given performance ({password, hash} tests per time, maybe amortized)

+ Hardware: ASIC die area, mmA2
+ for a certaln design at a certaln clock rate 1n a certain ASIC process

+ Power, W
+ not a cost per se, but for lengthy attacks translates into energy cost

+ correlates wilith die area

* For a glven attack ("test these candidate passwords agalnst these hashes")
+ Hardware: ASIC die area and time product (area-time, AT), mmA2 * s
+ Energy: power and time product, J = W * s
+ correlates with AT, letting estimate relative costs 1in AT terms alone

* This 1s state of the art theoretical model for informing defensive designs
* Hardware and energy may have monetary costs, but not always to the attacker
* Real-world attackers' costs may vary greatly e.g. due to existing hardware

@solardiz @Openwall OffensiveCon May 10-11, 2024 29 / 79

Password cracking: past, present, future
Parallelized hash function (originally memoryless)

candlidate passwords
VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVY

e ey - R _ VR e - 2 a2 4 R e o - - VR B = +
| core | core | core | core | <core | core | core | core |
e - s - o e L amme - e - vamn s s - PR - MRS - "SR B < asma s a B o cmma - -
| core | core | core | core | core | core | <core | <core |
+-------- +----=-==-- +--- - - +--- - - - +-----=-=-- + - == +------=-- +-------- < 2
| core | core | core | core | core | core | <core | <core |
+--- - - - - R a e +------=-- + - == + - - - +-- - - e -+
| core | core | core | core | core | core | core | core |
SRR - VN " VA— AR B ity - YPRS—— - U e e e = +

VVVVVVVVVVVVVVVVVVVVVVVVVVVVVVVYV
hashes for comparison against those being cracked (for current salt)

32 hashes 1n parallel in the same amount of time that a defender needs for one

@solardiz @Openwall OffensiveCon May 10-11, 2024 30 / 79

Password cracking: past, present, future
Parallelized hash function (amortizable memory-hard)

candidate passwords
VVVVVVVVVVVVVYVVYV

e e i - "SR - NORRERE PR PR - _ MR S PP SR RS —— +
| core | core | core | core | |
. - e - anae =4 e - vamn s s B« mlen ~ & + $
| core | core | core | <core | |
- R - VRPN - NR—— - R -+ memory -
| core | core | core | <core | |
G S rmnman i - VSR - N ——— _ "— -+ +
| core | core | core | core | |
. SRRpR IR " VIRR—— - VAR S PP " - Fommmmm - - +

VVVVVVVVVVVVVVVYV
hashes for comparison against those being cracked (for current salt)

16 hashes 1n parallel in the same amount of time that a defender needs for one

@solardiz @Openwall OffensiveCon May 10-11, 2024 M/

Password cracking: past, present, future
Parallelized hash function (parallelizable memory-hard)

candlidate password

Y,
e e i - " e el - N — - " R P RS —— +
| core | core | core | core | |
. - e - anae<d e - cmmn s s - R + $
| core | core | core | ~core | |
- R - VRPN - NR—— - R -+ memory -
| core | core | core | <core | |
G S rmnman i - VSR - N ——— _ "SI I—— -+ +
| core | core | core | core | |
SRR IR e e m - N — P - “YRUES——- Fommmm oo - - +

Y,

hash for comparison against those being cracked (for current salt)

1 hash in 1/16 of the amount of time that a defender using one core would need

@solardiz @Openwall OffensiveCon May 10-11, 2024 32 / 79

Password cracking: past, present, future
Parallelized hash function (sequential memory-hard, e.g. scrypt)

candlidate passwords

V V
" I — -~ e R — SR S SRR - S sl +
| core | | core | |
A + Fomm e e e - - + +
| | |
+ memory + memory y
| | |
+ + +
| | |
| S S S SRR S S " R T E— - S T TR -

V V

hashes for comparison against those being cracked (for current salt)

2 hashes in parallel in the same amount of time, but we need 2x more memory

@solardiz @Openwall OffensiveCon May 10-11, 2024 3 /1

Password cracking: past, present, future
Parallelized hash function (sequential memory-hard + ROM-port-hard)

candlidate passwords

V V
ol - "S- _ PR R — P Fommm e e - - s " S +
| B - |
+ RAM +H------ H+ +
| port= #=port |
oo - - + | yescrypt ROM 100+ GB +
| port= #=port |
+ RAM +H------ H+ +
| | core | |
| S - AR " OE—— VR " Y " VR S SR B s -

vV V

hashes for comparison against those being cracked (for current salt)

2 hashes in parallel in the same amount of time, but we need lots of memory

@solardiz @Openwall OffensiveCon May 10-11, 2024 34 / 79

Password cracking: past, present, future
Segmentation fault (core dumped)

In these illustrations | core | refers to any processing element capable of

(mostly) computing the target hash without having a lot of memory of its own.
We give memory to cores, sometimes sharing 1it.

A core may be today's usual CPU core, or 1t may be a SIMD (single instruction,
multiple data) unit (e.g. within a GPU CU or SM), or 1t may be a SIMD lane
(within a CPU core or a GPU SIMD unit), or 1t may be a pipeline stage (e.g.
with different hash computations' 1nstructions 1nter leaved on a superscalar
CPU or a GPU), or 1t may even be a single bit number across N-bit registers 1n
a reglster file (when we've rotated our problem and are now "bitslicing" 1t)

Of course, and most importantly, a core may also be a logic circuit in an FPGA
or ASIC, but even there by a core we might also be referring e.g. to each
plpeline stage, whichever option is relevant or optimal in a given context

@solardiz @Openwall OffensiveCon May 10-11, 20624 35 / 79

Password cracking: past, present, future
Bitslicing

* Eli Biham, "A Fast New DES Implementation in Software", 1997
~100 logic gates per S-box

"about three times faster than our new optimized DES implementation on 64-bit
computers. [...] view the processor as a SIMD computer, 1.e., as 64 parallel
one-blit processors computing the same instruction."” (It's commonly 512 now.)

* Matthew Kwan, "Reducing the Gate Count of Bitslice DES", 1997+
87.75 (1997), 51 to 56 (1998) on average depending on available gate types

* Marc Bevand (45.5 with bit select), Dango-Chu (39.875, ditto), Roman Rusakov
(32.875 with bit select, 44.125 without), DeepLearningJohnDoe (23.5 with
LUT3), Sovyn Y. (22.125 with LUT3 - later in 2024, not in crackers yet)

* On AVX-512, bitslicing lets us eliminate 512 computed hashes in ~9 steps

@solardiz @Openwall OffensiveCon May 10-11, 2024 36 / 79

Password cracking: past, present, future
Wrapping up on hashing speed optimization

* current most flexible password crackers - John the Ripper and hashcat -
support hundreds of different (non-)hash types on many hardware platforms

* Tt takes a lot of effort to optimize each combination, so the extent of
optimization at a given time varlies across tools, (non-)hashes, platforms

* Where practical, we find ways to share optimizations across (nhon-)hash types
and/or platforms - e.g. John the Ripper's shared SIMD "pseudo 1ntrinsics”

* Related higher-level efforts include Aleksey Cherepanov's john-devkit and
Alain Espinosa's fast-small-crypto, which are specialized code generators

* OpenCL abstracts much of this as well, so recent hashcat uses it even on CPU
* Tuning, including runtime on the target machine (e.g. OpenCL work sizes)

@solardiz @Openwall OffensiveCon May 10-11, 2024 N /M

Password cracking: past, present, future
Speeds for historical Unix hashes

* Unix up to 6th Edition, based on M-209

| c¢/s | year | software | hardware | power
| 800 | mid 1970s | | PDP-11/70 |

* Unix 7th Edition, 25 1terations of salt-modified DES, amortized multi-salt

3.6 1977 VAX-11/780

45 1988 Morris worm VAX 6800
<= 1Kk ~1993 Crack, Cracker Jack 386DX 40 MHz with cache
12 .5k 1998 John the Ripper 1.5 | Pentium 133 MHz

214k	1998	John the Ripper 1.5	Alpha 21164A 600 MHZ

973M 2019 John the Ripper 1.9 | ZTEX 1.15y FPGA (2012) 34W
6277M 2022 hashcat 6.2.6 RTX 4090 GPU ~450W
1825M 2024 John the Ripper 2X Xeon Platinum 8488C ~770W

@solardiz @Openwall OffensiveCon May 10-11, 2024 38 / 79

R, — A — — A — & & SSS—

Password cracking: past,

present, future

Speeds for contemporary decent hashes

bcrypt at 32 iterations (cost 5), even though modern uses are at 256
(cost 8 to 12), so would be ~8 to ~128 times slower

c/s
6.5
20 .9
62.5
69595
185k
106k
119k
2.1M
~25kK

4510] 4

169k

@solardiz

year
1998
1998
1998
2013
2017
2017
2019
AONRS
2019
2022
2024

software

OpenBSD 2.3 library

John the Ripper
John the Ripper
John the Ripper

John the Rilpper
John the Ripper
John the Rilpper
hashcat, JtR
hashcat 6.2.6
John the Ripper

@Openwall OffensiveCon

|
|
|
|
|
hashcat 3.5.0-22-.. |
|
|
|
|
|
|

1.9
1.9
1.8

1.9
1.9

hardware

Pentium 133 MHz

Pentium 133 MHz

Alpha 21164A 600 MHz
17-4770K ~3.7 GHz turbo
8X GTX 1080 Ti GPU
ZTEX 1.15y FPGA 141 MHz
ZTEX 1.15y FPGA 150 MHz
18x ZTEX 1.15y + hest
Vega 64 GPU

RTX 4090 GPU

2X Xeon Platinum 8488C

May 10-11, 2024

to 4096

power

~84W

2TW
S85W

39 / 79

|
|
|

<450W |
~770W |

Password cracking: past, present, future

Speeds for historical Windows hashes
LOphtCrack 1.5 "on a Pentium Pro 200 checked a password file with 10 passwords
using the alpha character set (A-Z) 1n 26 hours. [...] [note from mudge: try
building the CLI version on an ultrasparc using the compile flags in the
Makefile provided - this will make these figures look sloooooowwww ;-)]" (1997)
* This means 89k p/s against 10 LM hashes, which JtR 1mproved upon shortly
* Hash Suite 3.5 by Alaln Esplnosa: 8360M on HD 7970, 7270M on GTX 970 (2018)
* hashcat 4.1: 4134M on HD 7970, 5250M on GTX 970 (2018) (all at 10 hashes)

* hashcat 6.2.6 vs. one LM hash (10 would be slightly slower), RTX 4090 (2022)

Speed.#1......... : 151.1 GH/s (6.95ms) @ Accel:256 Loops:1024 Thr:32 Vec:1

@solardiz @Openwall OffensiveCon May 10-11, 2024 40 / 79

Password cracking: past, present, future

Speeds for contemporary Windows hashes
* hashcat 6.2.6 vs. NTLM, RTX 4090
Speed.#1.........: 288.5 GH/s (7.24ms) @ Accel:512 Loops:1024 Thr:32 Vec:8

* hashcat 6.2.6 vs. NTLM, 8x RTX 4090 (different rig, driver, CUDA version)

Speed.#1.........: 258.6 GH/s (16.22ms) @ Accel:128 Loops:1024 Thr:256 Vec:
Speed.#2.........: 255.1 GH/s (16.40ms) @ Accel:128 Loops:1024 Thr:256 Vec:
Speed.#3.........: 255.3 GH/s (16.43ms) @ Accel:128 Loops:1024 Thr:256 Vec:
Speed.#4.........: 257.4 GH/s (16.26ms) @ Accel:128 Loops:1024 Thr:256 Vec:
Speed.#5.........: 251.7 GH/s (16.64ms) @ Accel:128 Loops:1024 Thr:256 Vec:
Speed.#6.........: 230.3 GH/s (18.27ms) @ Accel:128 Loops:1024 Thr:256 Vec:
Speed.#7......... . 228.7 GH/s (18.37ms) @ Accel:128 Loops:1024 Thr:256 Vec:
Speed.#8......... : 256.7 GH/s (16.35ms) @ Accel:128 Loops:1024 Thr:256 Vec:
ipeed.#*.........: 1993.9 GH/s

@solardiz @Openwall OffensiveCon May 10-11, 2024 41 / 79

R PR RRRRR

Password cracking: past, present, future

Speeds for contemporary strong hashes

* John the Ripper vs. Argon2, GTX 1080 (at max turbo, 180w, 2016 gaming GPU)

Cost 1 (t) is 3 for all loaded hashes

Cost 2 (m) is 16384 for all loaded hashes

Cost 3 (p) 1s 1 for all loaded hashes

Cost 4 (type [0:Argon2d 1:Argon21 2:Argon2id]) 1s 0 for all loaded hashes
Trylng to compute 480 hashes at a time using 7680 of 8119 MiB device memory
LWS=[32-256] GWS=[15360-15360] ([60-480] blocks) => Mode: WARP_SHUFFLE

Press 'g' or Ctrl-C to abort, 'h' for help, almost any other key for status
03091983 (?)

19 0:00:00:28 0.034579/s 1742p/s 1742c/s 1742C/s Dev#4:53C thrillerl..dlamond

* 2X Xeon E5-2670 + 8x DDR3-1600 (32 threads, 230W total, 2012 server CPUs)
19 0:00:01:54 0.008726Q9/s 437.8p/s 437.8c/s 437.8C/s 050489..010591

@solardiz @Openwall OffensiveCon May 10-11, 2024 42 / 79

Password cracking: past, present, future
Wrapplng up on speeds

* So far we discussed how to optimize the speed
+ of hashing

+ of matching against loaded hashes

* We mostly didn't yet discuss optimizing the speed
+ of candidate password generation

+ of duplicate candidate password avoldance or suppression

For contemporary strong targets the speeds per device haven't obviously

changed much since the 1970s and are mostly within one or two orders of
magnitude of 1000 checks per second

* At such low speeds, other optimization goals matter most (focus, targeting,
uniqueness vs. memory requirements, ease of reasoning, feedback, workf low)
* Amdahl's law has effect when other processing is sequential and synchronous

@solardiz @Openwall OffensiveCon May 10-11, 2024 43 / 79

Password cracking: past, present, future

PASSWORD CRACKING FOCUS

@solardiz @Openwall OffensiveCon May 10-11, 2024 44 / 79

Password cracking: past, present, future

/';'r
* Warning: this program burns a Lot of cpu.
*/
/'k
* Insecure - find accounts with poor passwords
Date: Tue, 29 Nov 83 18:19:32 pst
From: leres%ucbarpa@Berkeley (Cralg Leres)

Insecure 1s something that Jef Poskanzer and I wrote to rid a
local system of an overly persistent ankle-biting adolescent.
It was a quick hack we whipped up 1n just a few minutes and was
never 1ntended to be publically distributed. Unfortunately, I
made the mistake of giving a copy to an assoclate at UC
Berkeley. Apparently, he incorporated it in a security package
he later developed for use at Berkeley. Someone else

distributed it outside Berkeley which explains why it's been
publically distributed.

@solardiz @Openwall OffensiveCon May 10-11, 2024 45 / 79

Password cracking: past, present, future

Candidate password generators (1980s)
static char *rcsid = "$Header: pwchkr.c,v 1.1 85/09/10 16:00:56 root Exp $";

* By default, this program only checks for accounts with passwords the same
* as the login name. The following options add more extensive checking.

-w fi1le: use the list of words contained 1n "file" as likely
passwords. Words 1n the file are one to a line.

¢ -b: check all guesses backwards too

-0 use the Full Name portion of the gecos field to

generate more guesses; also check .plan, .signature
and .project files.

. -S: check the single letters a-z, A-Z, 0-9 as passwords
. -C: with each guess, check for all-lowercase and

o all-uppercase versions too.

E -d: check the doubling of the username

@solardiz @Openwall OffensiveCon May 10-11, 2024 46 / 79

Password cracking: past, present, future
Candidate password generators (early 1990s)

"The first pass that Crack makes 1s over the [data] gleaned from the users'
password field. 1In my test file, this gets about 4% of the passwords (out of
a total of 15% guessed). This pass also completes very quickly, working as it

does from a very small amount of data, but one which 1is very frequently used
for passwords.

The first sweep of the second pass, consisting of lowercase dictionary words,
gets about another 5% of the passwords. The length of the first sweep depends
on how much CPU and how many dictionaries I supply, but using the Ultrix

/usr/dict/words and my bad_pws.dat, over 4 CPUs, 1t doesn't take much more
that a few hours.

For the further sweeps, the percentages cracked per sweep tail off, 2%, 1%,
0.5%... But they are the people with fairly exotic passwords, and it's only
common sense that that they will take some time to crack." - Alec Muffett

@solardiz @Openwall OffensiveCon May 10-11, 2024 47 / 79

Password cracking: past, present, future
Candidate password generators (mid 1990s)
Excerpts from Crack user manual by Alec Muffett:

"Crack 5.0 supports the notion of dictionary groups - collations of words
taken from a selection of raw text dictionaries (with words given, one per
line) permitting the user to group her dictionaries into "most-likely",

"less-likely" and "least-likely" to generate a successful password guess.”

"When Crack starts up [...] two other dictionary groups are created: "gecos"
and "gcperm". The "gecos" group contains only words directly derived from the
information held in the password file; the "gcperm" group holds words which
are mechanically created by permuting and combining parts of words held in the
password file (eg: "Alec Muffett" becomes "AMuffett", "AlecM", etc)."

"When the cracker is running, it [is] taking successive mangling rules [...]
and applying them to the cited dictionary group"

@solardiz @Openwall OffensiveCon May 10-11, 2024 48 / 79

Password cracking: past, present, future
Mangling rules

"These rules are macro commands, one per line, which specify patterns and

actions that are applied to words from a dictionary 1n order to generate a
series of guesses.

For instance, one such rule:

/ese3u

...wWw1lll select words which contalin the letter "e", replace 1t with the digit
"3", and force the rest of the word to uppercase." (Can also be "/e se3 u".)

* Introduced in Crack 4.0 (Nov 1991), maintained until Crack 5.0 (Dec 1996)

* Adopted and extended in John the Ripper (1996+), InsidePro's tools, hashcat

@solardiz @Openwall OffensiveCon May 10-11, 2024 49 / 79

Password cracking: past, present, future
Mangling rules evolution

* Specific to John the Ripper (not adopted by InsidePro and hashcat)
+ Preprocessor

+ Rule reject flags (e.g. skip a rule if hash 1s case-insensitive)
+ Word pair commands (used on concatenated first and last names only)

johnsmith -> John Smith, John_Smith, John-Smith
-p-c 1 <- (7a c $[_\-] 2 (?a c

* Other extra commands 1n John the Ripper

* Same and different extra commands in InsidePro's PasswordsPro & Hash Manager
Same and different extra commands in hashcat (started with PasswordsPro's)

hashcat "wWorld's first and only in-kernel rule engine" (OpenCL and CUDA)
hashcat compatibility mode in John the Ripper

@solardiz @Openwall OffensiveCon May 10-11, 2024 50 / 79

Password cracking: past, present, future
Mangling rulesets

* 0ld John the Ripper default rules were hand-written, some tuned, some not

* KoreLogilic rules targeting users' coplng with password policies (2010)
+ Rewritten to use the preprocessor (much shorter, expands to ~7M rules)

* InsidePro's PasswordsPro rules imported by the hashcat community, many new
rulesets created by the community over the years (hand-written, generated)
+ hashcat best64 contest - come up with most efficlient 64 rules

* OneRuleToRuleThemAll - best 25% of all hashcat rules (~52k rules)
+ OneRuleToRuleThemStill - optimized further (~49k rules)

* Passphrase rules for hashcat and John the Ripper (some expect special 1input)
* John the Ripper "A1ll" ruleset (using nested include directives) is ~11M

@solardiz @Openwall OffensiveCon May 10-11, 2024 51 / 79

Password cracking: past, present, future

Mangling ruleset tuning

* Simon Marechal, "Automatic mangling rules generation", 2012 specifically for
John the Ripper, but didn't result 1n anything integrated 1n the project
+ Original implementation of rulesfinder abandoned, project re-born in 2020

* John the Ripper PerRuleStats feature added and used to re-order ~7600 line
preprocessor output from certain hand-written rules, now new defaults (2022)

"l...] decreasing welghted score, which considers number of guesses both per
rule and per password candidates tested. This ordering 1s good to use on fast
to medium speed hashes. Generated [...] on pwned-passwords-sampler output for
HIBP v8 (100M non-unique, ~54M unique hashes), counting unlique guesses.

Manually split into best (40%), worse (next 40%), and worst (final 20%),

which achieve, respectively, most of the cracks (97%+), some more (2%t),
and hardly any."

@solardiz @Openwall OffensiveCon May 10-11, 2024 52 / 79

Password cracking: past, present, future
Targeting
* When deriving candidate passwords from users' information, check those only

against the same users' hashes
+ ... and against other hashes with the same salt since it's almost free

* Cracker Jack's 1nconvenlent "single crack" mode (1993)
+ Run a separate program to create a custom format wordlist, then use 1t

* John the Rilpper's convenlent "single crack" mode (1996)
+ Everything built-in and automatic
+ Also checks successfully cracked passwords against all hashes

* Markus Duermuth et al. OMEN+ Markov model with personal information (2013)

* hashcat's Association mode (2020)
+ changes.txt: [...] attack hashes from a hashlist with associated "hints"

@solardiz @Openwall OffensiveCon May 10-11, 2024 53 / 79

Password cracking: past, present, future

Duplicate candidate passwords
Consider the following entries on a common passwords list used as a wordlist:

password
passwordl
Passworad

Then the rule "1 $1" (lowercase and append the digit 1) will produce:

passwordl
passwordll
passwordl

This has a duplicate, and besides "passwordil" is duplicate with the origilnal
wordlist (the output of a likely preceding no-op rule)

@solardiz @Openwall OffensiveCon May 10-11, 2024 54 / 79

Password cracking: past, present, future
Duplicate candidate password avoidance

* Crack's rules support many "reject the word if/unless ..." commands, which
can be used to avoid producing most effectively-duplicates

* John the Ripper added more word reject commands and also rule reject flags,
and 1ts default ruleset makes extensive use of all of these (not trivial)

* With 1nput wordlists constralned to lowercase-only, this 1s very effective;

with common passwords as 1nput, not too bad (e.g. 89.6% unique for default
wordlist and ~3k rules, which the duplicate candidate password suppressor

at 256 MiB RAM usage improves to 94.3%, producing a ~50 GB output stream)

* hashcat rulesets typically do not use rejects much or at all, resulting 1n
many more duplicates (e.g. 59.7% unique for the same wordlist as above wilith

top 3k rules from OneRuleToRuleThemStill in John the Ripper's compatibility
mode, which the 256 MiB RAM duplicate suppressor improves to 80.6%)

@solardiz @Openwall OffensiveCon May 10-11, 2024 5 / 79

Password cracking: past, present, future
Duplicate candidate password suppression

* John the Ripper '"single crack"” uses small per-salt ring buffers (along with
hash tables for fast Llookup) to detect and suppress recently seen candidates

* hashcat "Supports password candidate brain functionality" (2018)
+ Network client/server architecture - can suppress duplicates across jobs
+ Requires (easy) manual setup even for local single-job use
+ Per documentation, server has performance bottleneck at 50k p/s
+ Writes fast hashes of password candidates to disk, no limit, no eviction

* John the Ripper duplicate candidate password suppressor (2022)
+ Currently per-process - won't suppress duplicates across processes
+ Enabled by default when mangling rules are 1in use, auto-disables when hit
rate 1s low and other processing speed is high, memory use can be tweaked
+ Speed of a few million p/s, but sequential and synchronous with the rest
| + Opportunistic - probabilistic filter of pre-specified size, has eviction

@solardiz @Openwall OffensiveCon May 10-11, 2024 56 / 79

Password cracking: past, present, future

Duplicate candidate password suppressor

John the Ripper's duplicate candidate password suppressor uses a hash table to
store fingerprints (other fast hashes) of i1tems. This 1s similar to a cuckoo
filter, except that it's degraded from having 2 to only 1 potential bucket for
each item (so not cuckoo). The buckets are currently 8 items wide. When the
bucket 1s full, we simply evict/replace a fingerprint (from the second half).

two_fast_hashes(candidate)

(1ndex, fp)

| s o o o, i S, +

| LOCKED ADD-ONLY Vv | EVICTABLE

| O------ 1------ 2------ 3------ 4------ 5------ 6------ R +

|1l ™ | W | ®» | M | ® | ® | | |

| 1------ R — N——— - R — VR - S N—— +

+>| fp | fp | fp | | | | | |
 ——— N -SSR - - AR SRS | SRS - - - -
| W | W | W | M | W | W | W | W |

@solardiz @Openwall OffensiveCon May 10-11, 2024 57 / 79

Password cracking: past, present, future
Wordlist de-duplication tools

The task is to remove duplicate lines without changing the order (which may

have been optimized 1n some way), so without sorting, and without requiring
memory for the whole output nor disk storage beyond that for the output

* John the Ripper 1.6+ bundled "unique" (1998)
+ When output exceeds memory, re-reads the output file written so far to
ldentify duplicates between what's 1n memory and what's already output

* duplicut (2014)
+ Multiple threads "are only used when the file 1is huge enough to chunk”

* hashcat-utils rli (2015)

* Rling, "a faster multi-threaded, feature rich alternative to rli" (2020)
+ by wWaffle (author of MDXfind password cracker)

@solardiz @Openwall OffensiveCon May 10-11, 2024 58 / 79

*

*

Password cracking: past, present, future

Wordlists
Historically, password crackers literally used lists of dictionary words
Tiny public common password lists appeared in 1980s, e.g. from Morris worm
Moderately longer ordered list was malntalned in John the Ripper (1997+)
RockYou leak (32.6M plaintext passwords, 14.3M unique) changed a lot (2009)
+ A large sample of passwords that are not biased to what was crackable

+ The standard for password security tools' training, testing, and usage

Lists of dictionary words were and still are used as well (e.g. Openwall
wordlists collection, 2003, which merges and credits lots of sources)

* Additional published wordlists were scraped e.g. from Wikipedia (Sebastien

Raveau, 2009, 2012) and Project Gutenberg books (CrackStation, 2010)

@solardiz @Openwall OffensiveCon May 10-11, 2024 59 / 79

Password cracking: past, present, future

Password cracking communities

* Hobbyist community forums such as InsidePro's, hashkiller.co.uk, hashes.org
(all of which are now defunct) collected uploads of hashes to crack and the
plaintexts members cracked so far, typically without identifying the source

and without the usernames

* Files from the above were also retrieved by the defensive security community

* Have I Been Pwned (HIBP) or "Pwned Passwords are hundreds of millions of
real world passwords previously exposed 1n data breaches'", published by
Troy Hunt 1in the form of SHA-1 and NTLM hashes (re-hashed from plalntexts)

along with numbers of occurrences in breaches
+ passwdqc 1s able to proactively check new passwords against HIBP offline

* It 1s still possible to obtain the hashes.org plaintext lists elsewhere,
re-crack almost all of HIBP and generate an ordered breached passwords list

@solardiz @Openwall OffensiveCon May 10-11, 2024 60 / 79

Password cracking: past, present, future

Wordlist optimization

HIBP v8 being at 847M unique passwords (from a few billion accounts) is large
(although perhaps not the largest collection 1n exlistence).

RockYou 1s arguably cleaner. Both are fair play for security researchers.

John the Rilpper's current password.lst (2022, generated 1n time for the
mangling ruleset tuning) 1s "based on Pwned Passwords v8 (HIBP) 100+ hits

over lap with RockYou, further filtered to require 97+ hits on top of
RockYou's. These criteria are such that a password used by just one person

many times 1s very unlikely to be included."
* A focused common passwords list of ~1.8M lines and ~15 MB

* Obvliously ethical to redistribute and highly effective

@solardiz @Openwall OffensiveCon May 10-11, 2024 61 / 79

Password cracking: past, present, future

Probabilistic candidate password generators (mid 1990s)

* Probabilistic password generator 1s a "technique for generating candidate
passwords from a statistical model” (Simon Marechal, 2012)

* Novel algorithm to search the keyspace exhaustively and without duplicates
while walking the 2D surface of Charset ** Length uphill (1995)

* John the Ripper 1.0 introduced "incremental mode" (1996)

[Incremental:Alphal
CharCount = 26

MinLen = 1
MaxLen = 8
CharsetB = smcbtdpajrhflgkwneiovyzuqx
CharsetM = eaiornltsuchmdgpkbyvwfzxijag
CharsetE =

l erynsat Lldoghikmcwpfubzjxvq

@solardiz @Openwall OffensiveCon May 10-11, 2024 62 / 79

Password cracking: past, present, future
Probabilistic candidate password generators (later 1990s)
* John the Ripper 1.0's may retroactively be called a O0th-order Markov chain
* A further Oth-order variation added per-length and per-position statistics

Charsetll = ajyfiogxdehmnrst lcupbgkwvz

Charset21 = mdjpagetbrnsckyfilwhuogvzx
Charset22 = olstabegrkjdhnvwcmpfiguxyz
Charset31 = dacjmbrtpslknfeghowqvzxiuy
Charset32 = aoeisumctgdblrfjpnvhwkxyzq
Charset33 = msnctdxepghlywabrjikuzofvq

* Star Cracker by The SOrCErEr went beyond Oth-order (late 1996)
* John the Ripper 2nd-order along with per-length and per-position (late 1996)

@solardiz @Openwall OffensiveCon May 10-11, 2024 63 / 79

Password cracking: past, present, future
Probabilistic candidate password generators (late 1990s)

* Tralning on previously cracked passwords (reading john.pot) as a feature in
John the Ripper (obscure releases 1n late 1996, popular 1.4 in early 1997)

-makechars:<file> make a charset, <file> will be overwritten

* John the Ripper 1.5 upgraded the surface to walk uphill on from 2D to 3D and
the height from keyspace portion to expected cracks per candidate (1998)

* The 3 components are: current virtual character count, current length, and
current position of fixed virtual character
+ The 3rd component was internal to the earlier algorithm, now exposed
+ "Virtual character" means its index into a sorted string, which vary
depending on up to 2 preceding characters (2nd-order Markov chailn)

* The finer granularity is later helpful for parallel/distributed processing

@solardiz @Openwall OffensiveCon May 10-11, 2024 64 / 79

Password cracking: past, present, future
Vowe L/consonant patterns

* John the Ripper 1.0 to 1.4 had

Wordlike Set to 'Y' to enable a simple built in word filter (words with

more than one vowel 1n a row, or more than two non-vowels 1n a
row, will get filtered out).

This was needed along with 1.0's Oth-order Markov (non-)chaln, which was still
avallable as an option 1n 1.4 for memory saving (2nd-order requlred 4 MB RAM)

and for possible manual specification of character sets per position (similar
to future "mask mode").

* John the Ripper 1.5 no longer had @th-order at all, so the above was dropped

* Specifically exploiting vowel/consonant patterns is a recurring lidea

@solardiz @Openwall OffensiveCon May 10-11, 2024 65 / 79

Password cracking: past, present, future
Custom candidate password generators (late 1990s)

* John the Ripper 1.3+ "external mode" (late 1996 or early 1997)

+ Write your own candldate password generator or filter 1n a C-like language
in the configuration file

+ Compliles to stack-based VM implemented via threaded code
+ Optimizations: top of stack cache, multi-push, GCC "Labels as Values"
+ Optional JIT to 32-bit x86 (1997), abandoned 1n the rewrite for 1.5 (1998)

Incremental mode training filters (1nltial use case)
Password policy matching filters

Recovery of partially lost passwords (mostly obsoleted by mask mode)
Exploits for Strip, DokuWiki, KDEPaste, Awesome Password Generator
Date/time, keyboard walks and other sequences, any same-character repeats,
passwords with any few different characters (now built-in Subsets mode)

Searches of short valid Unicode strings (auto-generated from Unicode spec)

@solardiz @Openwall OffensiveCon May 10-11, 2024 66 / 79

Password cracking: past, present, future
Custom candidate password patterns (2000s+)

Crackers that didn't have probabilistic candidate password generators instead
added features to focus dumber exhaustive searches on reasonable sub-spaces

* InsidePro introduced the mask syntax e.g. ?2u?l?1?120?d?d
+ Reuses the character class notation from Crack's word reject rules
+ Enumerates all strings matching the mask e.g. Aaaa2000 to Zzzz2099

* hashcat adopted the syntax, later extended the implementation to use Markov

* John the Ripper later also adopted this syntax as mask mode, extending 1t
with constructs similar to the rule preprocessor's e.g. ?u?l?1?120[0-2]?d

* Hybrid modes add a mask on top of a smarter and slower generator (2010s)
+ hashcat modes append or prepend a mask (on device) to wordlist (from host)
+ John the Ripper (on device) mask ?w refers to another (host) mode's "word"

@solardiz @Openwall OffensiveCon May 10-11, 2024 67 / 79

Password cracking: past, present, future
Probabilistic candidate password generators (early 2000s)

* Dawn Xiaodong Song, David Wagner, and Xuging Tian, "Timing Analysis of
Keystrokes and Timing Attacks on SSH", 2001

"for passwords that are chosen uniformly at random with length of 7 to 8
characters, [...] can reduce the cost of password cracking by a factor of 50"

"we model the relationship of latencies and character seguences as a Hidden
Markov Model. We extend the standard Viterbl algorithm to an n-Viterbil
algorithm that outputs the n most likely candidate character sequences."

* Code never released, third-party n-Viterbi implementations appeared later

* Independently, our "SSH Traffic Analysis" (with Dug Song, 2001) allowed to
infer sudo, etc. password lengths from packet traces, and countermeasures
for that were added, but it took until OpenSSH 9.5 (2023) for the timings

@solardiz @Openwall OffensiveCon May 10-11, 2024 68 / 79

Password cracking: past, present, future
Probabilistic candidate password generators (mid 2000s)

* Arvind Narayanan and Vitaly Shmatikov, "Fast Dictionary Attacks on Passwords
Using Time-Space Tradeoff", 2005

"Our first insight is that the distribution of letters 1in easy-to-remember
passwords 1s likely to be similar to the distribution of letters in the users'
native language. Using standard Markov modeling techniques from natural
language processing, this can be used to dramatically reduce the size of the
password space to be searched. Our second contribution 1s an algorithm for

efficient enumeration of the remaining password space. This allows
application of time-space tradeoff techniques, limiting memory accesses to a
relatively small table of "partial dictionary" sizes and enabling a very fast

dictionary attack."

"We note the similarity of the ideas used in this algorithm to the well-known
Viterbl algorithm from speech processing"

@solardiz @Openwall OffensiveCon May 10-11, 2024 69 / 79

Password cracking: past, present, future
Probabilistic candidate password generators (circa 2010)

* Simon Marechal, "Etat de l’'art sur le cassage de mots de passe'", 2007
+ Narayanan and Shmatikov's work re-applied to classical password cracking

* John the Ripper jumbo "Markov mode" contributed by Simon Marechal, extended
by Frank Dittrich and magnum (2007-2012+)

* 1st-order Markov chain, no per-length and per-position separation

* Qutperforms "incremental mode" on certaln tests, but requires advance
cholice of attack duration (via minimum and maximum strength of passwords)

* Supports parallel and distributed processing (limiting a node's sub-range)

* Simon Marechal, "Probabilistic password generators", 2012
+ Comparison of many probabilistic models (including 2nd-order variations)

@solardiz @Openwall OffensiveCon May 10-11, 2024 70 / 79

Password cracking: past, present, future

Probabilistic candidate password generators (2010s)

* Matt Weir et al., "Password Cracking Using Probabilistic Context-Free
Grammars'", 2009 or Pretty Cool Fuzzy Guesser (PCFG)

"new method that generates password structures 1n highest probability order.
We first automatically create a probabilistic context-free grammar based upon

a training set of previously disclosed passwords. This grammar then allows us
to generate word-mangling rules, and from them, password guesses"

* Markus Duermuth et al., "OMEN: Faster Password Guessing Using an Ordered
Markov Enumerator'", 2013

"Narayanan et al.'s indexing [not] in order of decreasing probability. [We]

enumerate passwords with (approximately) decreasing probabilities. On a high
level, our algorithm discretizes all probabilities into a number of bins, and
iterates over all those bins in order of decreasing likelihood." (3rd-order)

@solardiz @Openwall OffensiveCon May 10-11, 2024 71 / 79

Password cracking: past, present, future
Candidate passphrase generators (mostly 2010s)
* Wordlist rules appending/prepending specific embedded words
* Trivial word-combining Perl scripts posted to john-users (2006)

* hashcat Combinator mode (2 words from 2 lists, not probabilistic)

* PRINCE (PRobability INfinite Chalned Elements) by atom (2014)
+ Sorts for 1ncreasing combined Llength, otherwlse not probabilistic

+ hashcat project's princeprocessor
+ Kindly also contributed to John the Ripper, became a built-1in mode

* Passphrase mangling rulesets like for wordlists, but expect phrases (2019)

* Passphrase lists e.g. extract all 2 to 6 sequences from Project Gutenberg
books, sort from most to least common (2021, unreleased)

@solardiz @Openwall OffensiveCon May 10-11, 2024 72 / 79

Password cracking: past, present, future
Probabilistic candidate passphrase generators (2010s+)

* Probabilistic candidate password generators also happen to generate phrases
if trained on such 1nput (or just on a real-world mix of passwords/phrases)
+ PCFG fares better than per-character Markov chailns

* "Phraser 1s a phrase generator using n-grams and Markov chains to generate
phrases for passphrase cracking" in C# for Windows (2015)

* RePhraser "Python-based reimagining of Phraser using Markov-chains for

linguistically-correct password cracking" (2020)
+ Also 1ncludes related hand-written and generated rulesets

* What about middle ground (e.g. syllables, including some followed by space)?
+ e.g. extract all substrings of 2+ characters, sort from most to least
common, take top ~100, map them onto indices along with single characters,
train/use existing probabilistic candidate password generators, map back

@solardiz @Openwall OffensiveCon May 10-11, 2024 73 / 79

Password cracking: past, present, future
Probabilistic candidate password generation with neural networks (2010s+)

* Wwilliam Melicher et al., "Fast, Lean, and Accurate: Modeling Password
Guessability Using Neural Networks"”, 2016
+ Recurrent neural network (RNN) predicts next character, no duplicates
+ 60 MB model outperforms other generators, but apparently was too slow to
actually go beyond 10 million candidates so that 1s only simulated
+ 3 MB performs almost as well, takes ~100 ms per password 1n JavaScript

* Generative Adversarilial Networks (GAN) produce duplicates (~50% at 1 billion)

+ "PassGAN: A Deep Learning Approach for Password Guessing" (2017)

+ "Improving Password Guessing via Representation Learning" (2019)

+ "Generative Deep Learning Techniques for Password Generation" (2020)
+ Davlid Biesner et al., VAE, WAE, fine-tuned GPT2 - maybe currently best?

+ "GNPassGAN: Improved Generative Adversarial Networks For Trawling Offline
Password Guessing" '"guessing 88.03% more passwords and generating 31.69%
fewer duplicates" than PassGAN, which had already been outperformed (2022)

@solardiz @Openwall OffensiveCon May 10-11, 2024 74 / 79

Password cracking: past, present, future

Candidate password generator combinations

* pifferent generators produce some unique and some over lapping candidates

+ It 1s desirable to use multiple generators and suppress cross-duplicates

+ In practice so far, 1t 1s most common to use multiple, but not suppress

+ John the Ripper's default invocation does suppress duplicates between 1its
wordlist and incremental mode passes; hashcat's brain may do similar, too

+ Another way to suppress 1s by exhausting easy patterns (or planning to),
then excluding them from complex runs (similar to policy matching)
+ Maybe even at the expense of most optimal order for some runs

* Generators may be optimized for usage along with some other ones
+ e.g. probabilistic ones are generally to be used after some wordlist runs
+ tralning a probabilistic generator to perform best on its own means 1t may
be overfit (mimic a wordlist) and crack fewer passwords beyond wordlist

* Comparisons often fail to take this into account, but they should

@solardiz @Openwall OffensiveCon May 10-11, 2024 75 / 79

Password cracking: past, present, future

Workf Low
* Unfortunately, mostly did not fit in this talk, but 1s very important

* Best results are achieved by using multiple approaches in multiple steps
+ Beyond usage of multiple candidate password generators
+ Cracking progress so far should inform further actions
+ Cracked passwords so far should be used as wordlist and for re-tralning

* Workf low automation / job management tools exist
+ Functionallity overlaps with distributed processing and team coordination
+ e.g. 1n contests and red teams' work
+ Crack had some of this bundled
+ 1ts scripts split the workload and could run jobs over rsh
+ Tools like Hashtopolis (nee Hashtopussy) by s3inlc take this much farther

* Writeups from contests starting with KoreLogic's Crack Me If You Can (2010+)

@solardiz @Openwall OffensiveCon May 10-11, 2024 76 / 79

Password cracking: past, present, future

Future

* Speed
+ Obvious: larger and higher-clocked CPUs, GPUs, FPGAs
+ Major: publicly available ASICs, open hardware FPGAs (or both on one die)

+ Minor: further optimizations (e.g. bitsliced Lotus/Domino coming soon)

* Focus
+ Better passphrase support (tools, datasets), arbitrary tokenization

+ Further neural networks, tackling the duplicates problem of generative NNs
+ Meanwhile, publicly release pre-generated and pre-filtered output
+ Application of NNs for targeting (scraping and training on user data)

* Features
+ More (non-)hashes; yescrypt ROM support; usage of NVIDIA unified memory
+ Easy distributed processing (easy setup, dynamic re-assignment, security)
l + Ease of use, including by one-time end-users - UI or LLM guiding the user

@solardiz @Openwall OffensiveCon May 10-11, 2024 77 / 79

Password cracking: past, present, future

Takeaways
Password cracking 1S
* simple on the surface, with low barrier to entry and gradual learning curve
but it also 1s

* serlous computer scilence and englneering, with non-trivial soclal aspects
* still an evolving and highly competitive fleld welcoming new contributors

* Efficiency can mean win or lose, rich or poor

* Like with other offensive security fields, new techniques and results inform
design and parameters of new defenses

* Public availability helps level the playing field

@solardiz @Openwall OffensiveCon May 10-11, 2024 78 / 79

Password cracking: past, present, future

Contact information and credits

e-malil
Solar Designer <solar@openwall.com>

website
https://www.openwall.com

Twitter
@solardiz @Openwall

Thanks to CIQ, the primary corporate sponsor of Rocky Linux, for encouragilng
me to give this talk https://ciqg.com

@solardiz @Openwall OffensiveCon May 10-11, 2024 79 / 79

