Linux Parallel Processing HOWTO

Linux Parallel Processing HOWTO

Table of Contents

Hank Dietz, hankd@engr.UKY.E0U...........ccooi i 1

O)oY [0 o T
T O 11153 (Y = O T DS N AS] (=) 101 TP 1
4. SIMD Within A Redisten(€.d..USINAMMX)uuiiiiiriiee it e e e e e e et e e e et e e s et e e s eeaaeeseeraaas 2
5. LINUX—HOStEAALACHEAPTIOCESSOIS.cuuniiiieiie ettt e e et e et e e e et e e e s et e e s e e e e s e ebaa s 2
(SO CT=T =] = [1S (1= P 2
I)oY [0 o T 4 :

12Term|nology
ST e T aa] o117 AN o o) 11 a1 00 PP 6

1.4 OrganizatiorOf THiS DOCUMENL.........uuiiiiiieiiieiieeeeeeeeee e eee e et e e e e e e e e e e e e e e e e ae et aaeaaaaaaaaaaaaaaaaaaaaaeas 6
Y Y. o 1T PP '

A Y| ol P2 X0 L= T = TR €

Doeseachprocessohaveits OWNL2 CACNB?2.......uuiiiiiiiiiiiiiiiiiiiiiieer e e e e e e e e e e eeeeeeeeeees 8
STU S oTo alilo 101 =1 1o 12PN 9
MemoryinterleavingandDRAM teChNOIOQIES?........uuuuuruiiriiiiiiiiiiiiiiriirrierrrerrererrrrrreereeerer——————————— 9
2.2 IntroductionTo SharedMemory Programming.........cceeeeeieeiieiiiieiiiiiiiieieeeeeeeeee et aa e 10
SharedEverythingVs. SharedSomething..........ccovvvviiiiiiiii 10
ShAarEAEVEIVINING. .. .evieeiieiieeeeeee e 10
ST 1= =0 SYoT 0= 1 11 0T P 11
P (o] a1 Tod 1 YA N aTo @] o [=Y T T 12
W OIALIIEY. 1+ttt e e e et ettt et e e e e e et e e e et et e e e et eaaeeeeaeaaaaeaaaaaaaaas 1

T o] o I 1 A 1C=Y= 10 TP 1
A I A TU D W A=Y= To KT 17

2.5 SYStEMV SNAIEAMEIMOIY.evviiiiiiiiiieiieieeee ettt e et e et e e et e et e e et e e e e e e e e e e e et e e e e e e e e e e e aaaaaaaaaaaaaaaaaaaaeas 18
2.6 MEMOIYMAP CAll...ooeeiieeiiieieeeeeeee e 21
CIustersOf Linux Systems .. 21

(O Y ad = TR 2!
ALY A1) TR 2

EtherNet{FASIEINEINEL). .. . uiiiiiiiiiiiiiiiieeeee ettt e e e e e e e et e e et e e et e e e e e e e e e e e e e e e e aaaaeaaaaaaaaaaaaans 26
Ethernet{Gigabit ETNEINEL).uueiiiiiiiiii e ae s s esseeesseessseeseeseeeeeeeeeeeeeeeeeees 26
O (] 0T @ aF= T T PP 27
FireWiIre (IEEE 1394)... .. ueiieeiiiieeeeiiiee e e ettt e e e sttt e e e ettt e e e et e e e e snse e e e e ansaeeeeaanseeeeeasseeaeeannseeeeannnneens 27
[1 d e N o ST =T 7= 1 PSR 28
IrDA (InfraredDataASSOCIALION).........cceeee e ——— 28

MVEINEE ..o ——— 2
gz 1= 1) =1 116 A U TP 2!

PP 2
1 O 3

Linux Parallel Processing HOWTO

Table of Contents
Linux Parallel ProcessingHOWTO

YT Y= o A=) PN 3
T |1 3
BT I 3
B N 32
USB (UNIVEISAISEIAIBUS).......uuuiuuiiiuiiiiiiiiiisiessiistesssersssssssssrsesseseseeeeeeeeerererrrrrerrreretrtrerrrr 32
BTN 3
3.3 INEetWOrK SOftWAIEINTEITACEvvi i e e e e e e e et e e s e e e e s e et e e e eabansas 33
ST 0T 03 = €= 3

UDP ProtoCOI(SOCK _DGRAM)......cuttiiiiteieeaiiieee e sttt e sttt e e st e e et e e s asbne e e e inee e e s snneeeeasnnneeas 34
TCPProtoCOl(SOCK_STREAM). ...cciutitieiiiiite ettt ettt e e e e e s eeeenes 34

BV A[61SY B LYY 4= T U TR 34
0=l AL [T o= L (L TP 35

3.4 PVM (ParallelVirtual MACKINE)...........uuuuiiuuiiuiiiiiiiiiiieiitierrieererereesresseeesssee e 36
3.5 MPI (MessagdPassindnterface)............coooeeei i 37
3.6 AFAPI (AQQregat@EUNCIIONAP)uue et e e e e e e e e s et e e s e e e e e e eaaa s 40
3.7 OtherClusterSupportLibraries ... ————— 42
Condor(procesanigratioNSUPPOIT).....ccviiiiiiiiiiiiiee et 42
DEN-RPC(GermanResearcliNetwork— RemoteProcedureCall)...........coeeeevevveiiiiiiiieeiiiineeeenns 42
DQOS (DistributedQUEeUEINGSYSIEM).......cciiiiiieiiieeee e, 42
3.8 GENErAICIUSIEIRETEBIENCES. iiieeee et e et e et e e e st e e e s et e e s eabeeseebaaeeeees 42
TS0 1 4
IR T DN e 4

NOW (Network Of WOIKSEAIONS).....ccviiiiiiiiiiiiiiiiiee ettt 44
ParallelProcessSindUSINGLINUX.cviiiiiiiiiiiiiciee e 44
PentiumPro ClusSterWOrkShop.........cooooiiii i 44
TreadMarksdDSM (DistributedSharedVIEMOIY)........ccoooeiiiiiie i 44
U—Net (User—leveINETwork interfacearchiteCture)...........ccoeeeeeiieiieciiiiie e 44

WWT (WisconsinWind TUNNELD.........coooiei it 44
4. SIMD Within A ReqiStel€.0. .USINAIMMX) ... oeereeeen et eee e e et e et e e e e e eet e re e e eeetareeanseessareeanseennarees 45

4.2 IntroductionTO SWAR ProgramMiNGcceeviieeiiiiiiiieiiiiiieeeeeeeeeeeeeeeaeeeaaeaaeaaaaaaaaaaaaaaaaaaaaaaaaaaaaaaeaans 46
PolymorphiCOPEIatiONS.......ccvvviiiiiiiiiiieeeeee e, 46
PartitionedOPEIAtIONS.........cci e e —————————— 46
PartitioNEAINSIUCTIONS. eiiete e eeiett e e et e e et e e e e e e et e e e e et e e e e et e e s eab e e s se b e essebaneeeeernsaeeres 47
UnpartitionedOperationdNith CorrectioNCOdE..........coeiieeiieeiiee e 47
CoNrOING FIEIA VAIUES.......covieeeieeeeeeeeeeeeeeeee ettt 48
Communication® Type ConversionDPEratiONS...........ccccvveiieeieeeeeeeeeeeeeeeeeee e, 49

Recurrenc@perationdRedUCtiONSSCANSEIC.)uuuuuuuiaaaaareaaaraneanrenanennrennnes 50
4.3 MMX SWAR UNAEELINUX. . eeteeeenteeeteeeeeeeeteeees e eeeeeeess e reesntses s see e teessare e e teestareesreesnareesareesnaeerrarees 50

Linux Parallel Processing HOWTO

Table of Contents
Linux Parallel ProcessingHOWTO

(SO CTCT TS =] (a1 (S (1= P 54
6.1 Programmind.anguageANd COMPIIEIS.uuuuuuuueruirrrerrierrreerreessrssrerreesreeeseeeeerreeeereererrerrrreern 54
FortranB6/77/PCEIQOIHPEIDB. ... ettt e e e e e e e e e e et s e e e e aeneeeaaans 55
CT M (T aT 0 F=T1 To]To 56
JABANG SAM. ...ttt et ettt e et ettt e e e e e e e et ee e e b e e eeeaeteeea b e e eeeeetetetbr e eeeeaereaeres 5¢€
MENTALANG LEGION....ceiiiiiiiiieiieieeeeee ettt ettt ettt e e e e e et e e et e e et e aaaaaaaaaaaeas 56
MPL (MasParProgrammind_anNQUAGE)..........uuuuuruurrrmrennrennnnnnsnnsensssssnssssssssssssssssssssessere——. 56
PAMS (ParallelApplication ManagemMenBYSIEM).........uuuurrrerreeereriirreeeeeeereeeeeeeeeereeeereeeeeeeeeeeeeees 56
== 1P DS 1 5¢
L O A= (0 [o SRR 57
SR (SYNCHIONIZINGRESOUICES).uuuuuuuuiiuuiiiitiuttaatiurteaseaaseasaeeasaaseeaeeeeaessssssssssssssssssssssssssssssssssessees 57
A nd I N o o T 211, = o TR 57
5.2 P I OIMANCESSUBS. cceeeeeieeeeeie et e e e et e e e e e e et et e e e e e b e e e s e et e e e s asaa e e s eabaeesseban e ssebansees 57
(ST Ofe] aTo] [V 1o a il 1SN @ 10 8l N 1) (=Y 58

Linux Parallel Processing HOWTO
Hank Dietz, hankd@engr.uky.edu

v2.0, 2004-06-28

Although this HOWTO has been "republished" (v2.0, 2004-06-28) to update the author contact info, it has
many broken links and some information is seriously out of date. Rather than just repairing links, this
document is being heavily rewritten as a Guide which we expect to release in July 2004. At that time, the
HOWTO will be obsolete. The prefered home URL for both the old and new documents is

http://aggregate.org/LDP/

Parallel Processing refers to the concept of speeding—up the execution of a program by dividing the progran
into multiple fragments that can execute simultaneously, each on its own processor. A program being
executed across N processors might execute N times faster than it would using a single processor. This
document discusses the four basic approaches to parallel processing that are available to Linux users: SMF
Linux systems, clusters of networked Linux systems, parallel execution using multimedia instructions (i.e.,
MMX), and attached (parallel) processors hosted by a Linux system.

1. Introduction

« 1.1 Is Parallel Processing What | Want?
« 1.2 Terminology

« 1.3 Example Algorithm

1.4 Organization Of This Document

2. SMP_Linux

» 2.1 SMP Hardware

* 2.2 Introduction To Shared Memory Programming
» 2.3 bb_threads

* 2.4 LinuxThreads

» 2.5 System V Shared Memory
» 2.6 Memory Map Call

3._Clusters Of Linux Systems

¢ 3.1 Why A Cluster?
* 3.2 Network Hardware

* 3.3 Network Software Interface

» 3.4 PVM (Parallel Virtual Machine)
» 3.5 MPI (Message Passing Interface)
» 3.6 AFAPI (Aggregate Function API)

» 3.7 Other Cluster Support Libraries
» 3.8 General Cluster References

Linux Parallel Processing HOWTO 1

mailto:hankd@engr.uky.edu
http://aggregate.org/LDP/

Linux Parallel Processing HOWTO

4. SIMD Within A Regqister (e.g., using MMX)

* 4.1 SWAR: What Is It Good For?

* 4.2 Introduction To SWAR Programming
* 4.3 MMX SWAR Under Linux

5. Linux—Hosted Attached Processors

«5.1 A Linux PC Is A Good Host
* 5.2 Did You DSP _That?

« 5.3 FPGAs And Reconfigurable Logic Computing
6._Of General Interest

« 6.1 Programming Languages And Compilers
* 6.2 Performance Issues

* 6.3 Conclusion — It's Out There

1. Introduction

Parallel Processing refers to the concept of speeding—up the execution of a program by dividing the progran
into multiple fragments that can execute simultaneously, each on its own processor. A program being
executed across n processors might execute n times faster than it would using a single processor.

Traditionally, multiple processors were provided within a specially designed "parallel computer"”; along these
lines, Linux now supports SMP systems (often sold as "servers") in which multiple processors share a single
memory and bus interface within a single computer. It is also possible for a group of computers (for example
a group of PCs each running Linux) to be interconnected by a network to form a parallel-processing cluster.
The third alternative for parallel computing using Linux is to use the multimedia instruction extensions (i.e.,
MMX) to operate in parallel on vectors of integer data. Finally, it is also possible to use a Linux system as a
"host" for a specialized attached parallel processing compute engine. All these approaches are discussed in
detail in this document.

1.1 Is Parallel Processing What | Want?

Although use of multiple processors can speed—up many operations, most applications cannot yet benefit fr
parallel processing. Basically, parallel processing is appropriate only if:

« Your application has enough parallelism to make good use of multiple processors. In part, this is a
matter of identifying portions of the program that can execute independently and simultaneously on
separate processors, but you will also find that some things that could execute in parallel might
actually slow execution if executed in parallel using a particular system. For example, a program tha
takes four seconds to execute within a single machine might be able to execute in only one second ¢
processor time on each of four machines, but no speedup would be achieved if it took three seconds
more for these machines to coordinate their actions.

« Either the particular application program you are interested in already has been parallelized
(rewritten to take advantage of parallel processing) or you are willing to do at least some new coding
to take advantage of parallel processing.

4. SIMD Within A Register (e.g., using MMX) 2

Linux Parallel Processing HOWTO

* You are interested in researching, or at least becoming familiar with, issues involving parallel
processing. Parallel processing using Linux systems isn't necessarily difficult, but it is not familiar to
most computer users, and there isn't any book called "Parallel Processing for Dummies"... at least nc
yet. This HOWTO is a good starting point, not all you need to know.

The good news is that if all the above are true, you'll find that parallel processing using Linux can yield
supercomputer performance for some programs that perform complex computations or operate on large dat
sets. What's more, it can do that using cheap hardware... which you might already own. As an added bonus
is also easy to use a parallel Linux system for other things when it is not busy executing a parallel job.

If parallel processing is not what you want, but you would like to achieve at least a modest improvement in
performance, there are still things you can do. For example, you can improve performance of sequential
programs by moving to a faster processor, adding memory, replacing an IDE disk with fast wide SCSI, etc. |
that's all you are interested in, jump to section 6.2; otherwise, read on.

1.2 Terminology

Although parallel processing has been used for many years in many systems, it is still somewhat unfamiliar
most computer users. Thus, before discussing the various alternatives, it is important to become familiar wit
a few commonly used terms.

SIMD:
SIMD (Single Instruction stream, Multiple Data stream) refers to a parallel execution model in which
all processors execute the same operation at the same time, but each processor is allowed to operai
upon its own data. This model naturally fits the concept of performing the same operation on every
element of an array, and is thus often associated with vector or array manipulation. Because all
operations are inherently synchronized, interactions among SIMD processors tend to be easily and
efficiently implemented.

MIMD:
MIMD (Multiple Instruction stream, Multiple Data stream) refers to a parallel execution model in
which each processor is essentially acting independently. This model most naturally fits the concept
of decomposing a program for parallel execution on a functional basis; for example, one processor
might update a database file while another processor generates a graphic display of the new entry.
This is a more flexible model than SIMD execution, but it is achieved at the risk of debugging
nightmares called race conditions, in which a program may intermittently fail due to timing
variations reordering the operations of one processor relative to those of another.

SPMD:
SPMD (Single Program, Multiple Data) is a restricted version of MIMD in which all processors are
running the same program. Unlike SIMD, each processor executing SPMD code may take a differen
control flow path through the program.

Communication Bandwidth:
The bandwidth of a communication system is the maximum amount of data that can be transmitted il
a unit of time... once data transmission has begun. Bandwidth for serial connections is often measur
in baud or bits/second (b/s), which generally correspond to 1/10 to 1/8 that many Bytes/second
(B/s). For example, a 1,200 baud modem transfers about 120 B/s, whereas a 155 Mb/s ATM networl|
connection is nearly 130,000 times faster, transferring about about 17 MB/s. High bandwidth allows
large blocks of data to be transferred efficiently between processors.

Communication Latency:
The latency of a communication system is the minimum time taken to transmit one object, including
any send and receive software overhead. Latency is very important in parallel processing because it

1.2 Terminology 3

Linux Parallel Processing HOWTO

determines the minimum useful grain size, the minimum run time for a segment of code to yield
speed-up through parallel execution. Basically, if a segment of code runs for less time than it takes t
transmit its result value (i.e., latency), executing that code segment serially on the processor that
needed the result value would be faster than parallel execution; serial execution would avoid the
communication overhead.

Message Passing:

Message passing is a model for interactions between processors within a parallel system. In general
message is constructed by software on one processor and is sent through an interconnection netwol
to another processor, which then must accept and act upon the message contents. Although the
overhead in handling each message (latency) may be high, there are typically few restrictions on hoy
much information each message may contain. Thus, message passing can yield high bandwidth
making it a very effective way to transmit a large block of data from one processor to another.
However, to minimize the need for expensive message passing operations, data structures within a
parallel program must be spread across the processors so that most data referenced by each proce:
is in its local memory... this task is known as data layout.

Shared Memory:

Shared memory is a model for interactions between processors within a parallel system. Systems lik
the multi-processor Pentium machines running Linux physically share a single memory among their
processors, so that a value written to shared memory by one processor can be directly accessed by
processor. Alternatively, logically shared memory can be implemented for systems in which each
processor has it own memory by converting each non-local memory reference into an appropriate
inter—processor communication. Either implementation of shared memory is generally considered
easier to use than message passing. Physically shared memory can have both high bandwidth and |
latency, but only when multiple processors do not try to access the bus simultaneously; thus, data
layout still can seriously impact performance, and cache effects, etc., can make it difficult to
determine what the best layout is.

Aggregate Functions:

In both the message passing and shared memory models, a communication is initiated by a single
processor; in contrast, aggregate function communication is an inherently parallel communication
model in which an entire group of processors act together. The simplest such action is a barrier
synchronization, in which each individual processor waits until every processor in the group has
arrived at the barrier. By having each processor output a datum as a side—effect of reaching a barrie
it is possible to have the communication hardware return a value to each processor which is an
arbitrary function of the values collected from all processors. For example, the return value might be
the answer to the question "did any processor find a solution?" or it might be the sum of one value
from each processor. Latency can be very low, but bandwidth per processor also tends to be low.
Traditionally, this model is used primarily to control parallel execution rather than to distribute data
values.

Collective Communication:

SMP:

This is another name for aggregate functions, most often used when referring to aggregate functions
that are constructed using multiple message—passing operations.

SMP (Symmetric Multi-Processor) refers to the operating system concept of a group of processors
working together as peers, so that any piece of work could be done equally well by any processor.
Typically, SMP implies the combination of MIMD and shared memory. In the 1A32 world, SMP
generally means compliant with MPS (the Intel MultiProcessor Specification); in the future, it may
mean "Slot 2"....

SWAR:

SWAR (SIMD Within A Register) is a generic term for the concept of partitioning a register into
multiple integer fields and using register-width operations to perform SIMD—parallel computations
across those fields. Given a machine with k-bit registers, data paths, and function units, it has long

1.2 Terminology 4

Linux Parallel Processing HOWTO

been known that ordinary register operations can function as SIMD parallel operations on as many a
n, k/n-bit, field values. Although this type of parallelism can be implemented using ordinary integer
registers and instructions, many high—end microprocessors have recently added specialized
instructions to enhance the performance of this technique for multimedia—oriented tasks. In addition
to the Intel/AMD/Cyrix MMX (MultiMedia eXtensions), there are: Digital Alpha MAX (MultimediA
eXtensions), Hewlett—Packard PA-RISC MAX (Multimedia Acceleration eXtensions), MIPS

MDMX (Digital Media eXtension, pronounced "Mad Max"), and Sun SPARC V9 VIS (Visual
Instruction Set). Aside from the three vendors who have agreed on MMX, all of these instruction set
extensions are roughly comparable, but mutually incompatible.

Attached Processors:

RAID:

1A32:

COTS:

Attached processors are essentially special-purpose computers that are connected to a host systern
accelerate specific types of computation. For example, many video and audio cards for PCs contain
attached processors designed, respectively, to accelerate common graphics operations and audio D
(Digital Signal Processing). There is also a wide range of attached array processors, so called
because they are designed to accelerate arithmetic operations on arrays. In fact, many commercial
supercomputers are really attached processors with workstation hosts.

RAID (Redundant Array of Inexpensive Disks) is a simple technology for increasing both the
bandwidth and reliability of disk 1/0. Although there are many different variations, all have two key
concepts in common. First, each data block is striped across a group of n+k disk drives such that
each drive only has to read or write 1/n of the data... yielding n times the bandwidth of one drive.
Second, redundant data is written so that data can be recovered if a disk drive fails; this is important
because otherwise if any one of the n+k drives were to fail, the entire file system could be lost. A
good overview of RAID in general is given at
http://www.uni—-mainz.de/~neuffer/scsi/what_is_raid.html, and information about RAID options for
Linux systems is at http://linas.org/linux/raid.html. Aside from specialized RAID hardware support,
Linux also supports software RAID 0, 1, 4, and 5 across multiple disks hosted by a single Linux
system; see the Software RAID mini-HOWTO and the Multi-Disk System Tuning mini-HOWTO
for details. RAID across disk drives on multiple machines in a cluster is not directly supported.

IA32 (Intel Architecture, 32-bit) really has nothing to do with parallel processing, but rather refers to
the class of processors whose instruction sets are generally compatible with that of the Intel 386.
Basically, any Intel x86 processor after the 286 is compatible with the 32-bit flat memory model that
characterizes IA32. AMD and Cyrix also make a multitude of IA32-compatible processors. Because
Linux evolved primarily on IA32 processors and that is where the commodity market is centered, it is
convenient to use IA32 to distinguish any of these processors from the PowerPC, Alpha, PA-RISC,
MIPS, SPARC, etc. The upcoming 1A64 (64-bit with EPIC, Explicitly Parallel Instruction

Computing) will certainly complicate matters, but Merced, the first IA64 processor, is not scheduled
for production until 1999.

Since the demise of many parallel supercomputer companies, COTS (Commercial Off-The—-Shelf) is
commonly discussed as a requirement for parallel computing systems. Being fanatically pure, the on
COTS parallel processing techniques using PCs are things like SMP Windows NT servers and variol
MMX Windows applications; it really doesn't pay to be that fanatical. The underlying concept of
COTS is really minimization of development time and cost. Thus, a more useful, more common,
meaning of COTS is that at least most subsystems benefit from commodity marketing, but other
technologies are used where they are effective. Most often, COTS parallel processing refers to a
cluster in which the nodes are commaodity PCs, but the network interface and software are somewha
customized... typically running Linux and applications codes that are freely available (e.g., copyleft o
public domain), but not literally COTS.

1.2 Terminology 5

http://www.uni-mainz.de/~neuffer/scsi/what_is_raid.html
http://linas.org/linux/raid.html

Linux Parallel Processing HOWTO
1.3 Example Algorithm

In order to better understand the use of the various parallel programming approaches outlined in this
HOWTO, it is useful to have an example problem. Although just about any simple parallel algorithm would
do, by selecting an algorithm that has been used to demonstrate various other parallel programming system
it becomes a bit easier to compare and contrast approaches. M. J. Quinn's book, Parallel Computing Theory
And Practice, second edition, McGraw Hill, New York, 1994, uses a parallel algorithm that computes the
value of Pi to demonstrate a variety of different parallel supercomputer programming environments (e.g.,
NCUBE message passing, Sequent shared memory). In this HOWTO, we use the same basic algorithm.

The algorithm computes the approximate value of Pi by summing the area under x squared. As a purely
sequential C program, the algorithm looks like:

#include <stdlib.h>;
#include <stdio.h>;

main(int argc, char **argv)

{
register double width, sum;
register int intervals, i;

/* get the number of intervals */
intervals = atoi(argv[1]);
width = 1.0 / intervals;

/* do the computation */

sum = 0;

for (i=0; i<intervals; ++i) {
register double x = (i + 0.5) * width;
sum +=4.0/ (1.0 + x * x);

}

sum *= width;
printf("Estimation of pi is %f\n", sum);

return(0);

}

However, this sequential algorithm easily yields an "embarrassingly parallel" implementation. The area is
subdivided into intervals, and any number of processors can each independently sum the intervals assignec
it, with no need for interaction between processors. Once the local sums have been computed, they are add
together to create a global sum; this step requires some level of coordination and communication between
processors. Finally, this global sum is printed by one processor as the approximate value of Pi.

In this HOWTO, the various parallel implementations of this algorithm appear where each of the different
programming methods is discussed.

1.4 Organization Of This Document

The remainder of this document is divided into five parts. Sections 2, 3, 4, and 5 correspond to the three
different types of hardware configurations supporting parallel processing using Linux:

* Section 2 discusses SMP Linux systems. These directly support MIMD execution using shared
memory, although message passing also is implemented easily. Although Linux supports SMP

1.3 Example Algorithm 6

Linux Parallel Processing HOWTO

configurations up to 16 processors, most SMP PC systems have either two or four identical
processors.

« Section 3 discusses clusters of networked machines, each running Linux. A cluster can be used as ¢
parallel processing system that directly supports MIMD execution and message passing, perhaps al
providing logically shared memory. Simulated SIMD execution and aggregate function
communication also can be supported, depending on the networking method used. The number of
processors in a cluster can range from two to thousands, primarily limited by the physical wiring
constraints of the network. In some cases, various types of machines can be mixed within a cluster;
for example, a nhetwork combining DEC Alpha and Pentium Linux systems would be a
heterogeneous cluster.

« Section 4 discusses SWAR, SIMD Within A Register. This is a very restrictive type of parallel
execution model, but on the other hand, it is a built—in capability of ordinary processors. Recently,
MMX (and other) instruction set extensions to modern processors have made this approach even mc
effective.

 Section 5 discusses the use of Linux PCs as hosts for simple parallel computing systems. Either as
add-in card or as an external box, attached processors can provide a Linux system with formidable
processing power for specific types of applications. For example, inexpensive ISA cards are availabl
that provide multiple DSP processors offering hundreds of MFLOPS for compute—bound problems.
However, these add-in boards are just processors; they generally do not run an OS, have disk or
console 1/0O capability, etc. To make such systems useful, the Linux "host" must provide these
functions.

The final section of this document covers aspects that are of general interest for parallel processing using
Linux, not specific to a particular one of the approaches listed above.

As you read this document, keep in mind that we haven't tested everything, and a lot of stuff reported here
"still has a research character" (a nice way to say "doesn't quite work like it should" ;-). However, parallel
processing using Linux is useful now, and an increasingly large group is working to make it better.

The author of this HOWTO is Hank Dietz, Ph.D., currently Professor & James F. Hardymon Chair in
Networking at the University of Kentucky, Electrical & Computer Engineering Dept in Lexington, KY,
40506-0046. Dietz retains rights to this document as per the Linux Documentation Project guidelines.
Although an effort has been made to ensure the correctness and fairness of this presentation, neither Dietz
University of Kentucky can be held responsible for any problems or errors, and University of Kentucky does
not endorse any of the work/products discussed.

2. SMP_Linux

This document gives a brief overview of how to_use SMP Linux systems for parallel processing. The most
up—to—date information on SMP Linux is probably available via the SMP Linux project mailing list; send
email to_majordomo@vger.rutgers.edu with the text subscribe linux—smp to join the list.

Does SMP Linux really work? In June 1996, | purchased a brand new (well, new off-brand ;-) two—processt
100MHz Pentium system. The fully assembled system, including both processors, Asus motherboard, 256K
cache, 32M RAM, 1.6G disk, 6X CDROM, Stealth 64, and 15" Acer monitor, cost a total of $1,800. This was
just a few hundred dollars more than a comparable uniprocessor system. Getting SMP Linux running was
simply a matter of installing the "stock" uniprocessor Linux, recompiling the kernel with the SMP=1 line in
the makefile uncommented (although | find setting SMP to 1 a bit ironic ;-), and informing lilo about the

new kernel. This system performs well enough, and has been stable enough, to serve as my primary
workstation ever since. In summary, SMP Linux really does work.

2. SMP Linux 7

http://www.linux.org.uk/SMP/title.html
mailto:majordomo@vger.rutgers.edu

Linux Parallel Processing HOWTO

The next question is how much high-level support is available for writing and executing shared memory
parallel programs under SMP Linux. Through early 1996, there wasn't much. Things have changed. For
example, there is now a very complete POSIX threads library.

Although performance may be lower than for native shared—-memory mechanisms, an SMP Linux system al
can use most parallel processing software that was originally developed for a workstation cluster using sock
communication. Sockets (see section 3.3) work within an SMP Linux system, and even for multiple SMPs
networked as a cluster. However, sockets imply a lot of unnecessary overhead for an SMP. Much of that
overhead is within the kernel or interrupt handlers; this worsens the problem because SMP Linux generally
allows only one processor to be in the kernel at a time and the interrupt controller is set so that only the boo
processor can process interrupts. Despite this, typical SMP communication hardware is so much better thar
most cluster networks that cluster software will often run better on an SMP than on the cluster for which it
was designed.

The remainder of this section discusses SMP hardware, reviews the basic Linux mechanisms for sharing
memory across the processes of a parallel program, makes a few observations about atomicity, volatility,
locks, and cache lines, and finally gives some pointers to other shared memory parallel processing resource

2.1 SMP Hardware

Although SMP systems have been around for many years, until very recently, each such machine tended to
implement basic functions differently enough so that operating system support was not portable. The thing
that has changed this situation is Intel's Multiprocessor Specification, often referred to as simply MPS. The
MPS 1.4 specification is currently available as a PDF file at
http://www.intel.com/design/pro/datashts/242016.htm, and there is a brief overview of MPS 1.1 at
http://support.intel.com/oem_developer/ial/support/9300.HTM, but be aware that Intel does re—arrange their
WWW site often. A wide range of vendors are building MPS—-compliant systems supporting up to four
processors, but MPS theoretically allows many more processors.

The only non—-MPS, non-I1A32, systems supported by SMP Linux are Sun4m multiprocessor SPARC
machines. SMP Linux supports most Intel MPS version 1.1 or 1.4 compliant machines with up to sixteen
486DX, Pentium, Pentium MMX, Pentium Pro, or Pentium Il processors. Unsupported IA32 processors
include the Intel 386, Intel 486SX/SLC processors (the lack of floating point hardware interferes with the
SMP mechanisms), and AMD & Cyrix processors (they require different SMP support chips that do not seer
to be available at this writing).

It is important to understand that the performance of MPS—-compliant systems can vary widely. As expected
one cause for performance differences is processor speed: faster clock speeds tend to yield faster systems,
a Pentium Pro processor is faster than a Pentium. However, MPS does not really specify how hardware
implements shared memory, but only how that implementation must function from a software point of view;
this means that performance is also a function of how the shared memory implementation interacts with the
characteristics of SMP Linux and your particular programs.

The primary way in which systems that comply with MPS differ is in how they implement access to
physically shared memory.

Does each processor have its own L2 cache?

Some MPS Pentium systems, and all MPS Pentium Pro and Pentium Il systems, have independent L2 cach
(The L2 cache is packaged within the Pentium Pro or Pentium Il modules.) Separate L2 caches are generall

2.1 SMP Hardware 8

http://www.intel.com/design/pro/datashts/242016.htm
http://support.intel.com/oem_developer/ial/support/9300.HTM
http://www.uruk.org/~erich/mps-hw.html

Linux Parallel Processing HOWTO

viewed as maximizing compute performance, but things are not quite so obvious under Linux. The primary
complication is that the current SMP Linux scheduler does not attempt to keep each process on the same
processor, a concept known as processor affinity. This may change soon; there has recently been some
discussion about this in the SMP Linux development community under the title "processor binding." Without
processor affinity, having separate L2 caches may introduce significant overhead when a process is given a
timeslice on a processor other than the one that was executing it last.

Many relatively inexpensive systems are organized so that two Pentium processors share a single L2 cache
The bad news is that this causes contention for the cache, seriously degrading performance when running
multiple independent sequential programs. The good news is that many parallel programs might actually
benefit from the shared cache because if both processors will want to access the same line from shared
memory, only one had to fetch it into cache and contention for the bus is averted. The lack of processor
affinity also causes less damage with a shared L2 cache. Thus, for parallel programs, it isn't really clear that
sharing L2 cache is as harmful as one might expect.

Experience with our dual Pentium shared 256K cache system shows quite a wide range of performance
depending on the level of kernel activity required. At worst, we see only about 1.2x speedup. However, we
also have seen up to 2.1x speedup, which suggests that compute-intensive SPMD-style code really does
profit from the "shared fetch" effect.

Bus configuration?

The first thing to say is that most modern systems connect the processors to one or more PCI buses that in
are "bridged" to one or more ISA/EISA buses. These bridges add latency, and both EISA and ISA generally
offer lower bandwidth than PCI (ISA being the lowest), so disk drives, video cards, and other
high—performance devices generally should be connected via a PCI bus interface.

Although an MPS system can achieve good speed-up for many compute-intensive parallel programs even
there is only one PCI bus, I/O operations occur at no better than uniprocessor performance... and probably
little worse due to bus contention from the processors. Thus, if you are looking to speed-up I/O, make sure
that you get an MPS system with multiple independent PCI busses and 1/O controllers (e.g., multiple SCSI
chains). You will need to be careful to make sure SMP Linux supports what you get. Also keep in mind that
the current SMP Linux essentially allows only one processor in the kernel at any time, so you should choose
your /O controllers carefully to pick ones that minimize the kernel time required for each 1/O operation. For
really high performance, you might even consider doing raw device I/O directly from user processes, withou
a system call... this isn't necessarily as hard as it sounds, and need not compromise security (see section 3.
for a description of the basic techniques).

It is important to note that the relationship between bus speed and processor clock rate has become very fu
over the past few years. Although most systems now use the same PCI clock rate, it is not uncommon to fin
faster processor clock paired with a slower bus clock. The classic example of this was that the Pentium 133
generally used a faster bus than a Pentium 150, with appropriately strange—looking performance on various
benchmarks. These effects are amplified in SMP systems; it is even more important to have a faster bus clo

Memory interleaving and DRAM technologies?

Memory interleaving actually has nothing whatsoever to do with MPS, but you will often see it mentioned for
MPS systems because these systems are typically more demanding of memory bandwidth. Basically,
two—-way or four—way interleaving organizes RAM so that a block access is accomplished using multiple
banks of RAM rather than just one. This provides higher memory access bandwidth, particularly for cache

Bus configuration? 9

Linux Parallel Processing HOWTO

line loads and stores.

The waters are a bit muddied about this, however, because EDO DRAM and various other memory
technologies tend to improve similar kinds of operations. An excellent overview of DRAM technologies is

given in_http://www.pcgquide.com/ref/ram/tech.htm.

So, for example, is it better to have 2—-way interleaved EDO DRAM or non-interleaved SDRAM? That is a
very good question with no simple answer, because both interleaving and exotic DRAM technologies tend tc
be expensive. The same dollar investment in more ordinary memory configurations generally will give you a
significantly larger main memory. Even the slowest DRAM is still a heck of a lot faster than using disk—base
virtual memory....

2.2 Introduction To Shared Memory Programming

Ok, so you have decided that parallel processing on an SMP is a great thing to do... how do you get started’
Well, the first step is to learn a little bit about how shared memory communication really works.

It sounds like you simply have one processor store a value into memory and another processor load it;
unfortunately, it isn't quite that simple. For example, the relationship between processes and processors is v
blurry; however, if we have no more active processes than there are processors, the terms are roughly
interchangeable. The remainder of this section briefly summarizes the key issues that could cause serious
problems, if you were not aware of them: the two different models used to determine what is shared, atomic
issues, the concept of volatility, hardware lock instructions, cache line effects, and Linux scheduler issues.

Shared Everything Vs. Shared Something

There are two fundamentally different models commonly used for shared memory programming: shared
everything and shared something. Both of these models allow processors to communicate by loads and
stores from/into shared memory; the distinction comes in the fact that shared everything places all data
structures in shared memory, while shared something requires the user to explicitly indicate which data
structures are potentially shared and which are private to a single processor.

Which shared memory model should you use? That is mostly a question of religion. A lot of people like the
shared everything model because they do not really need to identify which data structures should be shared
the time they are declared... you simply put locks around potentially—conflicting accesses to shared objects
ensure that only one process(or) has access at any moment. Then again, that really isn't all that simple... so
many people prefer the relative safety of shared something.

Shared Everything

The nice thing about sharing everything is that you can easily take an existing sequential program and
incrementally convert it into a shared everything parallel program. You do not have to first determine which
data need to be accessible by other processors.

Put simply, the primary problem with sharing everything is that any action taken by one processor could affe
the other processors. This problem surfaces in two ways:

« Many libraries use data structures that simply are not sharable. For example, the UNIX convention is
that most functions can return an error code in a variable called errno; if two shared everything
processes perform various calls, they would interfere with each other because they share the same

2.2 Introduction To Shared Memory Programming 10

http://www.pcguide.com/ref/ram/tech.htm

Linux Parallel Processing HOWTO

errno. Although there is now a library version that fixes the errno problem, similar problems still
exist in most libraries. For example, unless special precautions are taken, the X library will not work
if calls are made from multiple shared everything processes.

« Normally, the worst—case behavior for a program with a bad pointer or array subscript is that the
process that contains the offending code dies. It might even generate a core file that clues you in to
what happened. In shared everything parallel processing, it is very likely that the stray accesses will
bring the demise of a process other than the one at fault, making it nearly impossible to localize and
correct the error.

Neither of these types of problems is common when shared something is used, because only the
explicitly-marked data structures are shared. It also is fairly obvious that shared everything only works if all
processors are executing the exact same memory image; you cannot use shared everything across multiple
different code images (i.e., can use only SPMD, not general MIMD).

The most common type of shared everything programming support is a threads library. Threads are
essentially "light-weight" processes that might not be scheduled in the same way as regular UNIX processe
and, most importantly, share access to a single memory map. The POSIX Pthreads package has been the f
of a number of porting efforts; the big question is whether any of these ports actually run the threads of a
program in parallel under SMP Linux (ideally, with a processor for each thread). The POSIX API doesn't
require it, and versions like http://www.aa.net/~mtp/PCthreads.html apparently do not implement parallel
thread execution — all the threads of a program are kept within a single Linux process.

The first threads library that supported SMP Linux parallelism was the now somewhat obsolete bb_threads
library, ftp://caliban.physics.utoronto.ca/pub/linux/, a very small library that used the Linux clone() call to
fork new, independently scheduled, Linux processes all sharing a single address space. SMP Linux machin
can run multiple of these "threads" in parallel because each "thread" is a full Linux process; the trade-off is
that you do not get the same "light-weight" scheduling control provided by some thread libraries under othe
operating systems. The library used a bit of C-wrapped assembly code to install a new chunk of memory as
each thread's stack and to provide atomic access functions for an array of locks (mutex objects).
Documentation consisted of a README and a short sample program.

More recently, a version of POSIX threads using clone() has been developed. This library, LinuxThreads,

is clearly the preferred shared everything library for use under SMP Linux. POSIX threads are well
documented, and the LinuxThreads README _and LinuxThreads FAQ are very well done. The primary
problem now is simply that POSIX threads have a lot of details to get right and LinuxThreads is still a work i
progress. There is also the problem that the POSIX thread standard has evolved through the standardizatio
process, so you need to be a bit careful not to program for obsolete early versions of the standard.

Shared Something

Shared something is really "only share what needs to be shared." This approach can work for general MIML
(not just SPMD) provided that care is taken for the shared objects to be allocated at the same places in eacl
processor's memory map. More importantly, shared something makes it easier to predict and tune
performance, debug code, etc. The only problems are:

« It can be hard to know beforehand what really needs to be shared.

» The actual allocation of objects in shared memory may be awkward, especially for what would have
been stack-allocated objects. For example, it may be necessary to explicitly allocate shared objects
a separate memory segment, requiring separate memory allocation routines and introducing extra
pointer indirections in each reference.

Shared Something 11

http://liinwww.ira.uka.de/bibliography/Os/threads.html
http://www.humanfactor.com/pthreads/mit-pthreads.html
http://www.aa.net/~mtp/PCthreads.html
ftp://caliban.physics.utoronto.ca/pub/linux/
http://pauillac.inria.fr/~xleroy/linuxthreads/
http://pauillac.inria.fr/~xleroy/linuxthreads/README
http://pauillac.inria.fr/~xleroy/linuxthreads/faq.html

Linux Parallel Processing HOWTO

Currently, there are two very similar mechanisms that allow groups of Linux processes to have independent
memory spaces, all sharing only a relatively small memory segment. Assuming that you didn't foolishly
exclude "System V IPC" when you configured your Linux system, Linux supports a very portable mechanisn
that has generally become known as "System V Shared Memory." The other alternative is a memory mappi
facility whose implementation varies widely across different UNIX systems: the mmap() system call. You
can, and should, learn about these calls from the manual pages... but a brief overview of each is given in
sections 2.5 and 2.6 to help get you started.

Atomicity And Ordering

No matter which of the above two models you use, the result is pretty much the same: you get a pointer to &
chunk of read/write memory that is accessible by all processes within your parallel program. Does that meat
can just have my parallel program access shared memory objects as though they were in ordinary local
memory? Well, not quite....

Atomicity refers to the concept that an operation on an object is accomplished as an indivisible,
uninterruptible, sequence. Unfortunately, sharing memory access does not imply that all operations on data
shared memory occur atomically. Unless special precautions are taken, only simple load or store operations
that occur within a single bus transaction (i.e., aligned 8, 16, or 32-bit operations, but not misaligned nor
64-Dbit operations) are atomic. Worse still, "smart" compilers like GCC will often perform optimizations that
could eliminate the memory operations needed to ensure that other processors can see what this processor
done. Fortunately, both these problems can be remedied... leaving only the relationship between access
efficiency and cache line size for us to worry about.

However, before discussing these issues, it is useful to point—out that all of this assumes that memory
references for each processor happen in the order in which they were coded. The Pentium does this, but als
notes that future Intel processors might not. So, for future processors, keep in mind that it may be necessary
surround some shared memory accesses with instructions that cause all pending memory accesses to
complete, thus providing memory access ordering. The CPUID instruction apparently is reserved to have thi
side—effect.

Volatility

To prevent GCC's optimizer from buffering values of shared memory objects in registers, all objects in share
memory should be declared as having types with the volatile attribute. If this is done, all shared object
reads and writes that require just one word access will occur atomically. For example, suppose that p is a
pointer to an integer, where both the pointer and the integer it will point at are in shared memory; the ANSI (
declaration might be:

volatile int * volatile p;

In this code, the first volatile refers to the int that p will eventually point at; the second volatile

refers to the pointer itself. Yes, it is annoying, but it is the price one pays for enabling GCC to perform some
very powerful optimizations. At least in theory, the —traditional option to GCC might suffice to produce
correct code at the expense of some optimization, because pre—ANSI K&R C essentially claimed that all
variables were volatile unless explicitly declared as register. Still, if your typical GCC compile looks like

cc —06 ..., you really will want to explicitly mark things as volatile only where necessary.

There has been a rumor to the effect that using assembly—language locks that are marked as modifying all
processor registers will cause GCC to appropriately flush all variables, thus avoiding the “inefficient"

Atomicity And Ordering 12

Linux Parallel Processing HOWTO

compiled code associated with things declared as volatile. This hack appears to work for statically

allocated global variables using version 2.7.0 of GCC... however, that behavior is not required by the ANSI (
standard. Still worse, other processes that are making only read accesses can buffer the values in registers
forever, thus never noticing that the shared memory value has actually changed. In summary, do what you
want, but only variables accessed through volatile are guaranteed to work correctly.

Note that you can cause a volatile access to an ordinary variable by using a type cast that imposes the
volatile attribute. For example, the ordinary int i; can be referenced as a volatile by *((volatile
int *) &i); thus, you can explicitly invoke the "overhead" of volatility only where it is critical.

Locks

If you thought that ++i; would always work to add one to a variable i in shared memory, you've got a nasty
little surprise coming: even if coded as a single instruction, the load and store of the result are separate
memory transactions, and other processors could access i between these two transactions. For example,
having two processes both perform ++i; might only increment i by one, rather than by two. According to

the Intel Pentium "Architecture and Programming Manual," the LOCK prefix can be used to ensure that any
the following instructions is atomic relative to the data memory location it accesses:

BTS, BTR, BTC mem, reg/imm

XCHG reg, mem

XCHG mem, reg

ADD, OR, ADC, SBB, AND, SUB, XOR mem, reg/imm
NOT, NEG, INC, DEC mem

CMPXCHG, XADD

However, it probably is not a good idea to use all these operations. For example, XADD did not even exist fi
the 386, so coding it may cause portability problems.

The XCHG instruction always asserts a lock, even without the LOCK prefix, and thus is clearly the preferred
atomic operation from which to build higher-level atomic constructs such as semaphores and shared queue
Of course, you can't get GCC to generate this instruction just by writing C code... instead, you must use a bi
of in—line assembly code. Given a word-size volatile object obj and a word-size register value reg, the GCC
in—line assembly code is:

__asm__ _ volatile__ ("xchgl %1,%0"
:ll:rll (reg), Il=mll (Obj)
:llrll (r.eg)l IImH (Obj));

Examples of GCC in-line assembly code using bit operations for locking are given in the source code for the
bb_threads library.

It is important to remember, however, that there is a cost associated with making memory transactions atorr
A locking operation carries a fair amount of overhead and may delay memory activity from other processors
whereas ordinary references may use local cache. The best performance results when locking operations al
used as infrequently as possible. Further, these IA32 atomic instructions obviously are not portable to other
systems.

There are many alternative approaches that allow ordinary instructions to be used to implement various

synchronizations, including mutual exclusion — ensuring that at most one processor is updating a given
shared object at any moment. Most OS textbooks discuss at least one of these techniques. There is a fairly

Locks 13

ftp://caliban.physics.utoronto.ca/pub/linux/

Linux Parallel Processing HOWTO

good discussion in the Fourth Edition of Operating System Concepts, by Abraham Silberschatz and Peter B
Galvin, ISBN 0-201-50480-4.

Cache Line Size

One more fundamental atomicity concern can have a dramatic impact on SMP performance: cache line size
Although the MPS standard requires references to be coherent no matter what caching is used, the fact is tt
when one processor writes to a particular line of memory, every cached copy of the old line must be
invalidated or updated. This implies that if two or more processors are both writing data to different portions
of the same line a lot of cache and bus traffic may result, effectively to pass the line from cache to cache. Tt
problem is known as false sharing. The solution is simply to try to organize data so that what is accessed in
parallel tends to come from a different cache line for each process.

You might be thinking that false sharing is not a problem using a system with a shared L2 cache, but
remember that there are still separate L1 caches. Cache organization and number of separate levels can bc
vary, but the Pentium L1 cache line size is 32 bytes and typical external cache line sizes are around 256 by
Suppose that the addresses (physical or virtual) of two items are a and b and that the largest per—processor
cache line size is ¢, which we assume to be a power of two. To be very precise, if ((int) a) & ~(c -

1) is equal to ((int) b) & ~(c — 1), then both references are in the same cache line. A simpler rule is

that if shared objects being referenced in parallel are at least ¢ bytes apart, they should map to different cac
lines.

Linux Scheduler Issues

Although the whole point of using shared memory for parallel processing is to avoid OS overhead, OS
overhead can come from things other than communication per se. We have already said that the number of
processes that should be constructed is less than or equal to the number of processors in the machine. But
do you decide exactly how many processes to make?

For best performance, the number of processes in your parallel program should be equal to the expected
number of your program's processes that simultaneously can be running on different processors. For examg
if a four—processor SMP typically has one process actively running for some other purpose (e.g., a WWW
server), then your parallel program should use only three processes. You can get a rough idea of how many
other processes are active on your system by looking at the "load average" quoted by the uptime command

Alternatively, you could boost the priority of the processes in your parallel program using, for example, the
renice command or nice() system call. You must be privileged to increase priority. The idea is simply to
force the other processes out of processors so that your program can run simultaneously across all process
This can be accomplished somewhat more explicitly using the prototype version of SMP Linux at
http://luz.cs.nmt.edu/~rtlinux/, which offers real-time schedulers.

If you are not the only user treating your SMP system as a parallel machine, you may also have conflicts
between the two or more parallel programs trying to execute simultaneously. This standard solution is gang
scheduling - i.e., manipulating scheduling priority so that at any given moment, only the processes of a sing
parallel program are running. It is useful to recall, however, that using more parallelism tends to have
diminishing returns and scheduler activity adds overhead. Thus, for example, it is probably better for a
four—processor machine to run two programs with two processes each rather than gang scheduling betweer
two programs with four processes each.

Cache Line Size 14

http://luz.cs.nmt.edu/~rtlinux/

Linux Parallel Processing HOWTO

There is one more twist to this. Suppose that you are developing a program on a machine that is heavily use
all day, but will be fully available for parallel execution at night. You need to write and test your code for
correctness with the full number of processes, even though you know that your daytime test runs will be slo
Well, they will be very slow if you have processes busy waiting for shared memory values to be changed by
other processes that are not currently running (on other processors). The same problem occurs if you devel
and test your code on a single—processor system.

The solution is to embed calls in your code, wherever it may loop awaiting an action from another processor
so that Linux will give another process a chance to run. | use a C macro, call it IDLE_ME, to do this: for a te:
run, compile with cc -DIDLE_ME=usleep(1); ...; for a "production" run, compile with cc

-DIDLE_ME={} The usleep(1) call requests a 1 microsecond sleep, which has the effect of

allowing the Linux scheduler to select a different process to run on that processor. If the number of processe
is more than twice the number of processors available, it is not unusual for codes to run ten times faster witt
usleep(1) calls than without them.

2.3 bb_threads

The bb_threads ("Bare Bones" threads) library, ftp://caliban.physics.utoronto.ca/pub/linux/, is a remarkably
simple library that demonstrates use of the Linux clone() call. The gzip tar file is only 7K bytes!

Although this library is essentially made obsolete by the LinuxThreads library discussed in section 2.4,
bb_threads is still usable, and it is small and simple enough to serve well as an introduction to use of Linux
thread support. Certainly, it is far less daunting to read this source code than to browse the source code for
LinuxThreads. In summary, the bb_threads library is a good starting point, but is not really suitable for codin
large projects.

The basic program structure for using the bb_threads library is:

1. Start the program running as a single process.

2. You will need to estimate the maximum stack space that will be required for each thread. Guessing
large is relatively harmless (that is what virtual memory is for ;-), but remember that all the stacks ar
coming from a single virtual address space, so guessing huge is not a great idea. The demo suggest
64K. This size is set to b bytes by bb_threads_stacksize(b).

3. The next step is to initialize any locks that you will need. The lock mechanism built-into this library
numbers locks from 0 to MAX_MUTEXES, and initializes lock i by
bb_threads_mutexcreate(i).

4. Spawning a new thread is done by calling a library routine that takes arguments specifying what
function the new thread should execute and what arguments should be transmitted to it. To start a n
thread executing the void—returning function f with the single argument arg, you do something like
bb_threads_newthread(f, &arg), where f should be declared something like void
f(void *arg, size_t dummy). If you need to pass more than one argument, pass a pointer to
a structure initialized to hold the argument values.

5. Run parallel code, being careful to use bb_threads_lock(n) and bb_threads_unlock(n)
where n is an integer identifying which lock to use. Note that the lock and unlock operations in this
library are very basic spin locks using atomic bus—locking instructions, which can cause excessive
memaory-reference interference and do not make any attempt to ensure fairness. The demo progran
packaged with bb_threads did not correctly use locks to prevent printf() from being executed
simultaneously from within the functions fnn and main... and because of this, the demo does not
always work. I'm not saying this to knock the demo, but rather to emphasize that this stuff is very
tricky; also, it is only slightly easier using LinuxThreads.

2.3 bb_threads 15

ftp://caliban.physics.utoronto.ca/pub/linux/

Linux Parallel Processing HOWTO

6. When a thread executes a return, it actually destroys the process... but the local stack memory is
not automatically deallocated. To be precise, Linux doesn't support deallocation, but the memory
space is not automatically added back to the malloc() free list. Thus, the parent process should
reclaim the space for each dead child by bb_threads_cleanup(wait(NULL)).

The following C program uses the algorithm discussed in section 1.3 to compute the approximate value of P
using two bb_threads threads.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/wait.h>
#include "bb_threads.h"

volatile double pi = 0.0;
volatile int intervals;
volatile int pids[2]; /* Unix PIDs of threads */

void

do_pi(void *data, size_t len)

{
register double width, localsum;
register int i;

register int iproc = (getpid() !'= pids[0]);

/* set width */
width = 1.0 / intervals;

/* do the local computations */

localsum = 0;

for (i=iproc; i<intervals; i+=2) {
register double x = (i + 0.5) * width;
localsum +=4.0/ (1.0 + x * x);

}

localsum *= width;

[* get permission, update pi, and unlock */
bb_threads_lock(0);
pi += localsum;
bb_threads_unlock(0);
}

int

main(int argc, char **argv)

{
[* get the number of intervals */
intervals = atoi(argv[1]);

/* set stack size and create lock... */
bb_threads_stacksize(65536);
bb_threads_mutexcreate(0);

/* make two threads... */
pids[0] = bb_threads_newthread(do_pi, NULL);
pids[1] = bb_threads_newthread(do_pi, NULL);

/* cleanup after two threads (really a barrier sync) */

bb_threads_cleanup(wait(NULL));
bb_threads_cleanup(wait(NULL));

2.3 bb_threads 16

Linux Parallel Processing HOWTO
[* print the result */
printf("Estimation of pi is %f\n", pi);

/* check—out */
exit(0);

2.4 LinuxThreads

LinuxThreads http://pauillac.inria.fr/~xleroy/linuxthreads/ is a fairly complete and solid implementation of
"shared everything" as per the POSIX 1003.1c threads standard. Unlike other POSIX threads ports,
LinuxThreads uses the same Linux kernel threads facility (clone()) that is used by bb_threads. POSIX
compatibility means that it is relatively easy to port quite a few threaded applications from other systems anc
various tutorial materials are available. In short, this is definitely the threads package to use under Linux for
developing large—scale threaded programs.

The basic program structure for using the LinuxThreads library is:

1. Start the program running as a single process.

2. The next step is to initialize any locks that you will need. Unlike bb_threads locks, which are
identified by numbers, POSIX locks are declared as variables of type pthread_mutex_t lock.

Use pthread_mutex_init(&lock,val) to initialize each one you will need to use.

3. As with bb_threads, spawning a new thread is done by calling a library routine that takes arguments
specifying what function the new thread should execute and what arguments should be transmitted t
it. However, POSIX requires the user to declare a variable of type pthread_t to identify each
thread. To create a thread pthread_t thread running (), one calls
pthread_create(&thread,NULL,f,&arg).

4. Run parallel code, being careful to use pthread_mutex_lock(&lock) and
pthread_mutex_unlock(&lock) as appropriate.

5. Use pthread_join(thread,&retval) to clean—up after each thread.

6. Use —-D_REENTRANT when compiling your C code.

An example parallel computation of Pi using LinuxThreads follows. The algorithm of section 1.3 is used and.
as for the bb_threads example, two threads execute in parallel.

#include <stdio.h>
#include <stdlib.h>
#include "pthread.h”

volatile double pi = 0.0; /* Approximation to pi (shared) */
pthread_mutex_t pi_lock; /* Lock for above */
volatile double intervals; /* How many intervals? */

void *
process(void *arg)

{

register double width, localsum;
register int i;
register int iproc = (*((char *) arg) —'0");

/* Set width */
width = 1.0 / intervals;

2.4 LinuxThreads 17

http://pauillac.inria.fr/~xleroy/linuxthreads/

Linux Parallel Processing HOWTO

/* Do the local computations */

localsum = 0;

for (i=iproc; i<intervals; i+=2) {
register double x = (i + 0.5) * width;
localsum +=4.0/ (1.0 + X * X);

}

localsum *= width;

/* Lock pi for update, update it, and unlock */
pthread_mutex_lock(&pi_lock);

pi += localsum;
pthread_mutex_unlock(&pi_lock);

return(NULL);
}

int

main(int argc, char **argv)

{
pthread_t threadO, thread1l;
void * retval;

[* Get the number of intervals */
intervals = atoi(argv[1]);

/* Initialize the lock on pi */
pthread_mutex_init(&pi_lock, NULL);

/* Make the two threads */
if (pthread_create(&threadO, NULL, process, "0") ||
pthread_create(&threadl, NULL, process, "1")) {
fprintf(stderr, "%s: cannot make thread\n", argv[0]);
exit(1);
}

/* Join (collapse) the two threads */
if (pthread_join(threadO, &retval) ||
pthread_join(thread1l, &retval)) {
fprintf(stderr, "%s: thread join failed\n", argv[0]);
exit(1);
}

[* Print the result */
printf("Estimation of pi is %f\n", pi);

/* Check—out */
exit(0);

2.5 System V Shared Memory

The System V IPC (Inter—Process Communication) support consists of a number of system calls providing
message queues, semaphores, and a shared memory mechanism. Of course, these mechanisms were orig
intended to be used for multiple processes to communicate within a uniprocessor system. However, that
implies that it also should work to communicate between processes under SMP Linux, no matter which
processors they run on.

2.5 System V Shared Memory 18

Linux Parallel Processing HOWTO

Before going into how these calls are used, it is important to understand that although System V IPC calls
exist for things like semaphores and message transmission, you probably should not use them. Why not?
These functions are generally slow and serialized under SMP Linux. Enough said.

The basic procedure for creating a group of processes sharing access to a shared memory segment is:

1. Start the program running as a single process.

2. Typically, you will want each run of a parallel program to have its own shared memory segment, so
you will need to call shmget() to create a new segment of the desired size. Alternatively, this call
can be used to get the ID of a pre—existing shared memory segment. In either case, the return value
either the shared memory segment ID or -1 for error. For example, to create a shared memory
segment of b bytes, the call might be shmid = shmget(IPC_PRIVATE, b, (IPC_CREAT |
0666)).

3. The next step is to attach this shared memory segment to this process, literally adding it to the virtua
memory map of this process. Although the shmat() call allows the programmer to specify the
virtual address at which the segment should appear, the address selected must be aligned on a pag
boundary (i.e., be a multiple of the page size returned by getpagesize(), which is usually 4096
bytes), and will override the mapping of any memory formerly at that address. Thus, we instead prefi
to let the system pick the address. In either case, the return value is a pointer to the base virtual
address of the segment just mapped. The code is shmptr = shmat(shmid, 0, 0). Notice that
you can allocate all your static shared variables into this shared memory segment by simply declarin
all shared variables as members of a struct type, and declaring shmptr to be a pointer to that type.
Using this technique, shared variable x would be accessed as shmptr—>x.

4. Since this shared memory segment should be destroyed when the last process with access to it
terminates or detaches from it, we need to call shmctl() to set—up this default action. The code is
something like shmctl(shmid, IPC_RMID, 0).

5. Use the standard Linux fork() call to make the desired number of processes... each will inherit the
shared memory segment.

6. When a process is done using a shared memory segment, it really should detach from that shared
memory segment. This is done by shmdt(shmptr).

Although the above set-up does require a few system calls, once the shared memory segment has been
established, any change made by one processor to a value in that memory will automatically be visible to all
processes. Most importantly, each communication operation will occur without the overhead of a system cal

An example C program using System V shared memory segments follows. It computes Pi, using the same
algorithm given in section 1.3.

#include <stdio.h>
#include <stdlib.h>
#include <unistd.h>
#include <sys/types.h>
#include <sys/stat.h>
#include <fcntl.h>
#include <sys/ipc.h>
#include <sys/shm.h>

volatile struct shared { double pi; int lock; } *shared;

inline extern int xchg(register int reg,
volatile int * volatile obj)

{

/* Atomic exchange instruction */
__asm__ __ volatile__ ("xchgl %1,%0"

2.5 System V Shared Memory 19

Linux Parallel Processing HOWTO

"=r" (reg), "=m" (*obj)
" (reg), "m" (*ob));
return(reg);

}

main(int argc, char **argv)
{
register double width, localsum;
register int intervals, i;
register int shmid,;
register int iproc = 0;;

[* Allocate System V shared memory */
shmid = shmget(IPC_PRIVATE,
sizeof(struct shared),
(IPC_CREAT | 0600));
shared = ((volatile struct shared *) shmat(shmid, 0, 0));
shmctl(shmid, IPC_RMID, 0);

/* Initialize... */
shared—>pi = 0.0;
shared—>lock = 0;

[* Fork a child */
if (ffork()) ++iproc;

[* get the number of intervals */
intervals = atoi(argv[1]);
width = 1.0 / intervals;

/* do the local computations */

localsum = 0;

for (i=iproc; i<intervals; i+=2) {
register double x = (i + 0.5) * width;
localsum +=4.0/ (1.0 + x * X);

}

localsum *= width;

/* Atomic spin lock, add, unlock... */

while (xchg((iproc + 1), &(shared—>lock))) ;
shared—>pi += localsum;

shared—>lock = 0;

/* Terminate child (barrier sync) */
if (iproc == 0) {
wait(NULL);
printf("Estimation of pi is %f\n", shared—>pi);

}

/* Check out */
return(0);

}

In this example, | have used the 1A32 atomic exchange instruction to implement locking. For better
performance and portability, substitute a synchronization technique that avoids atomic bus-locking
instructions (discussed in section 2.2).

When debugging your code, it is useful to remember that the ipcs command will report the status of the
System V IPC facilities currently in use.

2.5 System V Shared Memory 20

Linux Parallel Processing HOWTO
2.6 Memory Map Call

Using system calls for file I/O can be very expensive; in fact, that is why there is a user-buffered file I/0O
library (getchar(), fwrite(), etc.). But user buffers don't work if multiple processes are accessing the

same writeable file, and the user buffer management overhead is significant. The BSD UNIX fix for this was
the addition of a system call that allows a portion of a file to be mapped into user memory, essentially using
virtual memory paging mechanisms to cause updates. This same mechanism also has been used in system
from Sequent for many years as the basis for their shared memory parallel processing support. Despite sor
very negative comments in the (quite old) man page, Linux seems to correctly perform at least some of the
basic functions, and it supports the degenerate use of this system call to map an anonymous segment of
memory that can be shared across multiple processes.

In essence, the Linux implementation of mmap() is a plug-in replacement for steps 2, 3, and 4 in the Syster
V shared memory scheme outlined in section 2.5. To create an anonymous shared memory segment:

shmptr =
mmap(0, [* system assigns address */
b /* size of shared memory segment */

(PROT_READ | PROT_WRITE), /* access rights, can be rwx */
(MAP_ANON | MAP_SHARED), /* anonymous, shared */

0, [* file descriptor (not used) */

0); [* file offset (not used) */

The equivalent to the System V shared memory shmdt() call is munmap():

munmap(shmptr, b);

In my opinion, there is no real benefit in using mmap() instead of the System V shared memory support.

3._Clusters Of Linux Systems

This section attempts to give an overview of cluster parallel processing using Linux. Clusters are currently
both the most popular and the most varied approach, ranging from a conventional network of workstations
(NOW) to essentially custom parallel machines that just happen to use Linux PCs as processor nodes. Ther
is also quite a lot of software support for parallel processing using clusters of Linux machines.

3.1 Why A Cluster?

Cluster parallel processing offers several important advantages:

» Each of the machines in a cluster can be a complete system, usable for a wide range of other
computing applications. This leads many people to suggest that cluster parallel computing can simpl
claim all the "wasted cycles" of workstations sitting idle on people's desks. It is not really so easy to
salvage those cycles, and it will probably slow your co—worker's screen saver, but it can be done.

» The current explosion in networked systems means that most of the hardware for building a cluster i
being sold in high volume, with correspondingly low "commodity"” prices as the result. Further
savings come from the fact that only one video card, monitor, and keyboard are needed for each
cluster (although you may need to swap these into each machine to perform the initial installation of
Linux, once running, a typical Linux PC does not need a "console"). In comparison, SMP and
attached processors are much smaller markets, tending toward somewhat higher price per unit

2.6 Memory Map Call 21

Linux Parallel Processing HOWTO

performance.

« Cluster computing can scale to very large systems. While it is currently hard to find a
Linux—compatible SMP with many more than four processors, most commonly available network
hardware easily builds a cluster with up to 16 machines. With a little work, hundreds or even
thousands of machines can be networked. In fact, the entire Internet can be viewed as one truly hug
cluster.

 The fact that replacing a "bad machine" within a cluster is trivial compared to fixing a partly faulty
SMP vyields much higher availability for carefully designed cluster configurations. This becomes
important not only for particular applications that cannot tolerate significant service interruptions, but
also for general use of systems containing enough processors so that single-machine failures are
fairly common. (For example, even though the average time to failure of a PC might be two years, in
a cluster with 32 machines, the probability that at least one will fail within 6 months is quite high.)

OK, so clusters are free or cheap and can be very large and highly available... why doesn't everyone use a
cluster? Well, there are problems too:

« With a few exceptions, network hardware is not designed for parallel processing. Typically latency is
very high and bandwidth relatively low compared to SMP and attached processors. For example, Sh
latency is generally no more than a few microseconds, but is commonly hundreds or thousands of
microseconds for a cluster. SMP communication bandwidth is often more than 100 MBytes/second;
although the fastest network hardware (e.g., "Gigabit Ethernet") offers comparable speed, the most
commonly used networks are between 10 and 1000 times slower. The performance of network
hardware is poor enough as an isolated cluster network. If the network is not isolated from other
traffic, as is often the case using "machines that happen to be networked" rather than a system
designed as a cluster, performance can be substantially worse.

» There is very little software support for treating a cluster as a single system. For example, the ps
command only reports the processes running on one Linux system, not all processes running across
cluster of Linux systems.

Thus, the basic story is that clusters offer great potential, but that potential may be very difficult to achieve fc
most applications. The good news is that there is quite a lot of software support that will help you achieve
good performance for programs that are well suited to this environment, and there are also networks design
specifically to widen the range of programs that can achieve good performance.

3.2 Network Hardware

Computer networking is an exploding field... but you already knew that. An ever-increasing range of
networking technologies and products are being developed, and most are available in forms that could be
applied to make a parallel-processing cluster out of a group of machines (i.e., PCs each running Linux).

Unfortunately, no one network technology solves all problems best; in fact, the range of approach, cost, and
performance is at first hard to believe. For example, using standard commercially—available hardware, the
cost per machine networked ranges from less than $5 to over $4,000. The delivered bandwidth and latency
each also vary over four orders of magnitude.

Before trying to learn about specific networks, it is important to recognize that these things change like the

wind (see_http://www.linux.org.uk/NetNews.html for Linux networking news), and it is very difficult to get
accurate data about some networks.

3.2 Network Hardware 22

http://www.linux.org.uk/NetNews.html

Linux Parallel Processing HOWTO

Where | was particularly uncertain, I've placed a ?. | have spent a lot of time researching this topic, but I'm
sure my summary is full of errors and has omitted many important things. If you have any corrections or
additions, please send email to hankd@engr.uky.edu.

Summaries like the LAN Technology Scorecard at
http://web.syr.edu/~jmwobus/comfags/lan—-technology.html give some characteristics of many different type:
of networks and LAN standards. However, the summary in this HOWTO centers on the network properties
that are most relevant to construction of Linux clusters. The section discussing each network begins with a
short list of characteristics. The following defines what these entries mean.

Linux support:
If the answer is no, the meaning is pretty clear. Other answers try to describe the basic program
interface that is used to access the network. Most network hardware is interfaced via a kernel driver,
typically supporting TCP/UDP communication. Some other networks use more direct (e.g., library)
interfaces to reduce latency by bypassing the kernel.

Years ago, it used to be considered perfectly acceptable to access a floating point unit via an OS cal
but that is now clearly ludicrous; in my opinion, it is just as awkward for each communication
between processors executing a parallel program to require an OS call. The problem is that compute
haven't yet integrated these communication mechanisms, so non—-kernel approaches tend to have
portability problems. You are going to hear a lot more about this in the near future, mostly in the forn
of the new Virtual Interface (VI) Architecture,_http://www.viarch.org/, which is a standardized
method for most network interface operations to bypass the usual OS call layers. The VI standard is
backed by Compagq, Intel, and Microsoft, and is sure to have a strong impact on SAN (System Area
Network) designs over the next few years.

Maximum bandwidth:
This is the number everybody cares about. | have generally used the theoretical best case humbers;
your mileage will vary.

Minimum latency:
In my opinion, this is the number everybody should care about even more than bandwidth. Again, |
have used the unrealistic best-case numbers, but at least these numbers do include all sources of
latency, both hardware and software. In most cases, the network latency is just a few microseconds;
the much larger numbers reflect layers of inefficient hardware and software interfaces.

Available as:
Simply put, this describes how you get this type of network hardware. Commodity stuff is widely
available from many vendors, with price as the primary distinguishing factor. Multiple-vendor things
are available from more than one competing vendor, but there are significant differences and potenti
interoperability problems. Single-vendor networks leave you at the mercy of that supplier (however
benevolent it may be). Public domain designs mean that even if you cannot find somebody to sell yo
one, you or anybody else can buy parts and make one. Research prototypes are just that; they are
generally neither ready for external users nor available to them.

Interface port/bus used:
How does one hook-up this network? The highest performance and most common now is a PCI bus
interface card. There are also EISA, VESA local bus (VL bus), and ISA bus cards. ISA was there
first, and is still commonly used for low—performance cards. EISA is still around as the second bus in
a lot of PCI machines, so there are a few cards. These days, you don't see much VL stuff (although
http://www.vesa.org/ would beg to differ).

Of course, any interface that you can use without having to open your PC's case has more than a litt
appeal. IrDA and USB interfaces are appearing with increasing frequency. The Standard Parallel Po
(SPP) used to be what your printer was plugged into, but it has seen a lot of use lately as an externa

3.2 Network Hardware 23

mailto:hankd@engr.uky.edu
http://web.syr.edu/~jmwobus/comfaqs/lan-technology.html
http://www.viarch.org/
http://www.vesa.org/

Linux Parallel Processing HOWTO

extension of the ISA bus; this new functionality is enhanced by the IEEE 1284 standard, which
specifies EPP and ECP improvements. There is also the old, reliable, slow RS232 serial port. | don't
know of anybody connecting machines using VGA video connectors, keyboard, mouse, or game
ports... so that's about it.

Network structure:
A bus is a wire, set of wires, or fiber. A hub is a little box that knows how to connect different
wires/fibers plugged into it; switched hubs allow multiple connections to be actively transmitting data
simultaneously.

Cost per machine connected:
Here's how to use these numbers. Suppose that, not counting the network connection, it costs $2,00
to purchase a PC for use as a node in your cluster. Adding a Fast Ethernet brings the per node cost
about $2,400; adding a Myrinet instead brings the cost to about $3,800. If you have about $20,000 tc
spend, that means you could have either 8 machines connected by Fast Ethernet or 5 machines
connected by Myrinet. It also can be very reasonable to have multiple networks; e.g., $20,000 could
buy 8 machines connected by both Fast Ethernet and TTL_PAPERS. Pick the network, or set of
networks, that is most likely to yield a cluster that will run your application fastest.

By the time you read this, these numbers will be wrong... heck, they're probably wrong already. Ther
may also be quantity discounts, special deals, etc. Still, the prices quoted here aren't likely to be
wrong enough to lead you to a totally inappropriate choice. It doesn't take a PhD (although | do have
one ;-) to see that expensive networks only make sense if your application needs their special
properties or if the PCs being clustered are relatively expensive.

Now that you have the disclaimers, on with the show....

ArcNet

* Linux support: kernel drivers

» Maximum bandwidth: 2.5 Mb/s

e Minimum latency: 1,000 microseconds?

« Available as: multiple-vendor hardware

« Interface port/bus used: ISA

» Network structure: unswitched hub or bus (logical ring)
« Cost per machine connected: $200

ARCNET is a local area network that is primarily intended for use in embedded real-time control systems.
Like Ethernet, the network is physically organized either as taps on a bus or one or more hubs, however,
unlike Ethernet, it uses a token—based protocol logically structuring the network as a ring. Packet headers a
small (3 or 4 bytes) and messages can carry as little as a single byte of data. Thus, ARCNET yields more
consistent performance than Ethernet, with bounded delays, etc. Unfortunately, it is slower than Ethernet an
less popular, making it more expensive. More information is available from the ARCNET Trade Association

at http://www.arcnet.com/.

ATM

« Linux support: kernel driver, AAL* library

* Maximum bandwidth: 155 Mb/s (soon, 1,200 Mb/s)
e Minimum latency: 120 microseconds

« Available as: multiple-vendor hardware

« Interface port/bus used: PCI

ArcNet 24

http://www.arcnet.com/

Linux Parallel Processing HOWTO

* Network structure: switched hubs
* Cost per machine connected: $3,000

Unless you've been in a coma for the past few years, you have probably heard a lot about how ATM
(Asynchronous Transfer Mode) is the future... well, sort—of. ATM is cheaper than HiPPI and faster than Fast
Ethernet, and it can be used over the very long distances that the phone companies care about. The ATM
network protocol is also designed to provide a lower—overhead software interface and to more efficiently
manage small messages and real-time communications (e.g., digital audio and video). It is also one of the
highest—-bandwidth networks that Linux currently supports. The bad news is that ATM isn't cheap, and there
are still some compatibility problems across vendors. An overview of Linux ATM development is available at

http://Ircwww.epfl.ch/linux—atm/.

CAPERS

* Linux support: AFAPI library

* Maximum bandwidth: 1.2 Mb/s

e Minimum latency: 3 microseconds

« Available as: commodity hardware

« Interface port/bus used: SPP

» Network structure: cable between 2 machines
« Cost per machine connected: $2

CAPERS (Cable Adapter for Parallel Execution and Rapid Synchronization) is a spin—off of the PAPERS
project,_http://garage.ecn.purdue.edu/~papers/, at the Purdue University School of Electrical and Computer
Engineering. In essence, it defines a software protocol for using an ordinary "LapLink" SPP-to—SPP cable t
implement the PAPERS library for two Linux PCs. The idea doesn't scale, but you can't beat the price. As
with TTL_PAPERS, to improve system security, there is a minor kernel patch recommended, but not

required;:_http://garage.ecn.purdue.edu/~papers/giveioperm.html.
Ethernet

* Linux support: kernel drivers

» Maximum bandwidth: 10 Mb/s

e Minimum latency: 100 microseconds

« Available as: commodity hardware

« Interface port/bus used: PCI

* Network structure: switched or unswitched hubs, or hubless bus
« Cost per machine connected: $100 (hubless, $50)

For some years now, 10 Mbits/s Ethernet has been the standard network technology. Good Ethernet interfa
cards can be purchased for well under $50, and a fair number of PCs now have an Ethernet controller
built-=into the motherboard. For lightly—used networks, Ethernet connections can be organized as a multi—ta|
bus without a hub; such configurations can serve up to 200 machines with minimal cost, but are not
appropriate for parallel processing. Adding an unswitched hub does not really help performance. However,
switched hubs that can provide full bandwidth to simultaneous connections cost only about $100 per port.
Linux supports an amazing range of Ethernet interfaces, but it is important to keep in mind that variations in
the interface hardware can yield significant performance differences. See the Hardware Compatibility
HOWTO for comments on which are supported and how well they work; also see

http://cesdisl.gsfc.nasa.gov/linux/drivers/.

CAPERS 25

http://lrcwww.epfl.ch/linux-atm/
http://garage.ecn.purdue.edu/~papers/
http://garage.ecn.purdue.edu/~papers/giveioperm.html
http://cesdis1.gsfc.nasa.gov/linux/drivers/

Linux Parallel Processing HOWTO

An interesting way to improve performance is offered by the 16—machine Linux cluster work done in the
Beowulf project,_http://cesdis.gsfc.nasa.gov/linux/beowulf/beowulf.html, at NASA CESDIS. There, Donald
Becker, who is the author of many Ethernet card drivers, has developed support for load sharing across
multiple Ethernet networks that shadow each other (i.e., share the same network addresses). This load shai
is built-into the standard Linux distribution, and is done invisibly below the socket operation level. Because
hub cost is significant, having each machine connected to two or more hubless or unswitched hub Ethernet
networks can be a very cost—effective way to improve performance. In fact, in situations where one machine
is the network performance bottleneck, load sharing using shadow networks works much better than using &
single switched hub network.

Ethernet (Fast Ethernet)

* Linux support: kernel drivers

* Maximum bandwidth: 100 Mb/s

e Minimum latency: 80 microseconds

« Available as: commodity hardware

« Interface port/bus used: PCI

» Network structure: switched or unswitched hubs
« Cost per machine connected: $400?

Although there are really quite a few different technologies calling themselves "Fast Ethernet," this term mos
often refers to a hub—based 100 Mbits/s Ethernet that is somewhat compatible with older "10 BaseT" 10
Mbits/s devices and cables. As might be expected, anything called Ethernet is generally priced for a volume
market, and these interfaces are generally a small fraction of the price of 155 Mbits/s ATM cards. The catch
that having a bunch of machines dividing the bandwidth of a single 100 Mbits/s "bus" (using an unswitched
hub) yields performance that might not even be as good on average as using 10 Mbits/s Ethernet with a
switched hub that can give each machine's connection a full 10 Mbits/s.

Switched hubs that can provide 100 Mbits/s for each machine simultaneously are expensive, but prices are
dropping every day, and these switches do yield much higher total network bandwidth than unswitched hub:s
The thing that makes ATM switches so exp